首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Mice with a deficiency in the HDL receptor SR-BI and low expression of a modified apolipoprotein E gene (SR-BI KO/ApoeR61h/h) called ‘HypoE’ when fed an atherogenic, ‘Paigen’ diet develop occlusive, atherosclerotic coronary arterial disease (CHD), myocardial infarctions (MI), and heart dysfunction and die prematurely (50% mortality ∼40 days after initiation of this diet). Because few murine models share with HypoE mice these cardinal, human-like, features of CHD, HypoE mice represent a novel, small animal, diet-inducible and genetically tractable model for CHD. To better describe the properties of this model, we have explored the effects of varying the composition and timing of administration of atherogenic diets, as well as social isolation vs. group housing, on these animals.

Methodology/Principal Findings

HypoE mice were maintained on a standard lab chow diet (control) until two months of age. Subsequently they received one of three atherogenic diets (Paigen, Paigen without cholate, Western) or control diet for varying times and were housed in groups or singly, and we determined the plasma cholesterol levels, extent of cardiomegaly and/or survival. The rate of disease progression could be reduced by lowering the severity of the atherogenic diet and accelerated by social isolation. Disease could be induced by Paigen diets either containing or free of cholate. We also established conditions under which CHD could be initiated by an atherogenic diet and then subsequently, by replacing this diet with standard lab chow, hypercholesterolemia could be reduced and progression to early death prevented.

Conclusions/Significance

HypoE mice provide a powerful, surgery-free, diet-‘titratable’ small animal model that can be used to study the onset of recovery from occlusive, atherosclerotic CHD and heart failure due to MI. HypoE mice can be used for the analysis of the effects of environment (diet, social isolation) on a variety of features of cardiovascular disease.  相似文献   

2.

Aims

Myocardial CCN2/CTGF is induced in heart failure of various etiologies. However, its role in the pathophysiology of left ventricular (LV) remodeling after myocardial infarction (MI) remains unresolved. The current study explores the role of CTGF in infarct healing and LV remodeling in an animal model and in patients admitted for acute ST-elevation MI.

Methods and Results

Transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) and non-transgenic littermate controls (NLC) were subjected to permanent ligation of the left anterior descending coronary artery. Despite similar infarct size (area of infarction relative to area at risk) 24 hours after ligation of the coronary artery in Tg-CTGF and NLC mice, Tg-CTGF mice disclosed smaller area of scar tissue, smaller increase of cardiac hypertrophy, and less LV dilatation and deterioration of LV function 4 weeks after MI. Tg-CTGF mice also revealed substantially reduced mortality after MI. Remote/peri-infarct tissue of Tg-CTGF mice contained reduced numbers of leucocytes, macrophages, and cells undergoing apoptosis as compared with NLC mice. In a cohort of patients with acute ST-elevation MI (n = 42) admitted to hospital for percutaneous coronary intervention (PCI) serum-CTGF levels (s-CTGF) were monitored and related to infarct size and LV function assessed by cardiac MRI. Increase in s-CTGF levels after MI was associated with reduced infarct size and improved LV ejection fraction one year after MI, as well as attenuated levels of CRP and GDF-15.

Conclusion

Increased myocardial CTGF activities after MI are associated with attenuation of LV remodeling and improved LV function mediated by attenuation of inflammatory responses and inhibition of apoptosis.  相似文献   

3.

Background

Despite remarkable progress in treatment of chronic heart failure (CHF) over the last two decades, mortality, personal suffering and cost remain staggering, and effective interventions are still a challenge. Previously we reported that a blueberry-enriched diet (BD) attenuated necroapoptosis and inflammation in periinfarct area in a rat model of myocardial infarction (MI).

Objectives

To test the hypothesis that BD will attenuate the course of CHF, including mortality and cardiac remodeling during the first year after induction of MI in rats.

Method and Results

Two weeks after coronary artery ligation, rats were divided into two groups of similar average MI size, measured by echocardiography, and then12-mo dietary regimens were initiated as follows: ad libitum regular diet (control, CD, n = 27) and isocaloric food with 2% blueberry supplement (BD, n = 27) also available ad libitum. These dietary groups were compared to each other and to sham group (SH). Mortality over the 12 mo was reduced by 22% in BD compared with CD (p<0.01). In the course of developing CHF, BD had no effect on the body weight, heart rate or blood pressure. Bi-monthly Echo revealed significant attenuation of the LV chamber remodeling, LV posterior wall thinning, and MI expansion in BD compared with CD. In fact, BD arrested the MI expansion.

Conclusion

This is the first experimental evidence that a blueberry-enriched diet has positive effects on the course of CHF and thus warrants consideration for clinical evaluation.  相似文献   

4.

Background

Epicardial injection of heart-derived cell products is safe and effective post-myocardial infarction (MI), but clinically-translatable transendocardial injection has never been evaluated. We sought to assess the feasibility, safety and efficacy of percutaneous transendocardial injection of heart-derived cells in porcine chronic ischemic cardiomyopathy.

Methods and Results

We studied a total of 89 minipigs; 63 completed the specified protocols. After NOGA-guided transendocardial injection, we quantified engraftment of escalating doses of allogeneic cardiospheres or cardiosphere-derived cells in minipigs (n = 22) post-MI. Next, a dose-ranging, blinded, randomized, placebo-controlled (“dose optimization”) study of transendocardial injection of the better-engrafting product was performed in infarcted minipigs (n = 16). Finally, the superior product and dose (150 million cardiospheres) were tested in a blinded, randomized, placebo-controlled (“pivotal”) study (n = 22). Contrast-enhanced cardiac MRI revealed that all cardiosphere doses preserved systolic function and attenuated remodeling. The maximum feasible dose (150 million cells) was most effective in reducing scar size, increasing viable myocardium and improving ejection fraction. In the pivotal study, eight weeks post-injection, histopathology demonstrated no excess inflammation, and no myocyte hypertrophy, in treated minipigs versus controls. No alloreactive donor-specific antibodies developed over time. MRI showed reduced scar size, increased viable mass, and attenuation of cardiac dilatation with no effect on ejection fraction in the treated group compared to placebo.

Conclusions

Dose-optimized injection of allogeneic cardiospheres is safe, decreases scar size, increases viable myocardium, and attenuates cardiac dilatation in porcine chronic ischemic cardiomyopathy. The decreases in scar size, mirrored by increases in viable myocardium, are consistent with therapeutic regeneration.  相似文献   

5.

Background

Coronary artery disease (CAD) may coexist with extracranial carotid artery stenosis (ECAS), but the influence of CAD on procedure-related complications after carotid artery stenting (CAS) has not been well investigated. The study aimed to determine the impact of CAD on the occurrence of peri-CAS cerebral ischemic lesions on diffusion-weighted imaging (DWI) scanning.

Methods

Coronary angiography was performed within six months before CAS. DWI scanning was repetitively done within 1 week before and after CAS. Clinical outcome measures were stroke, angina, myocardial infarction and death within 30 days.

Results

Among 126 patients (69.5±9.0 years) recruited for unilateral protected CAS, 33 (26%) patients had peri-CAS DWI-positive lesions. CAD was noted in 79% (26 in 33) and 48% (45 in 93) of patients with and without peri-CAS DWI-positive lesions (OR, 4.0; 95% CI, 1.6–10.0; P = .0018), and the number of concomitant CAD on coronary angiography was positively correlated with the risk for peri-CAS DWI-positive lesions (P = .0032). In patients with no CAD (n = 55), asymptomatic CAD (n = 41) and symptomatic CAD (n = 30), the occurrence rates of peri-CAS DWI-positive lesions were 13%, 41% and 30% (P = .0048), and the peri-CAS stroke rates were 2%, 7% and 0% (P = .2120).

Conclusions

The severity of morphological CAD and the presence of either symptomatic or asymptomatic CAD are associated with the occurrence of peri-CAS cerebral ischemic lesions.  相似文献   

6.

Objective

To investigate the therapeutic effects of renal denervation (RD) on post- myocardial infarction (MI) cardiac remodeling in rats, the most optimal time for intervention and the sustainability of these effects.

Methods

One hundred SPF male Wistar rats were randomly assigned to N group (Normal, n = 10), MI group(MI, n = 20),RD group (RD, n = 10), RD3+MI (MI three days after RD, n = 20), MI1+RD (RD one day after MI, n = 20), MI7+RD (RD seven days after MI, n = 20). MI was produced through thoracotomic ligation of the anterior descending artery. RD was performed through laparotomic stripping of the renal arteriovenous adventitial sympathetic nerve. Left ventricular function, hemodynamics, plasma BNP, urine volume, urine sodium excretion and other indicators were measured four weeks after MI.

Results

(1) The left ventricular function of the MI group significantly declined (EF<40%), plasma BNP was elevated, urine output was significantly reduced, and 24-hour urine sodium excretion was significantly reduced. (2) Denervation can be achieved by surgically stripping the arteriovenous adventitia, approximately 3 mm from the abdominal aorta. (3) In rats with RD3+MI, MI1+RD and MI7+RD, compared with MI rats respectively, the LVEF was significantly improved (75±8.4%,69±3.8%,73±5.5%), hemodynamic indicators were significantly improved, plasma BNP was significantly decreased, and the urine output was significantly increased (21.3±5 ml,23.8±5.4 ml,25.2±8.7 ml). However, the urinary sodium excretion also increased but without significant difference.

Conclusions

RD has preventive and therapeutic effects on post-MI cardiac remodeling.These effects can be sustained for at least four weeks, but there were no significant differences between denervation procedures performed at different times in the course of illness. Cardiac function, hemodynamics, urine volume and urine sodium excretion in normal rats were not affected by RD.  相似文献   

7.

Background

A prostacyclin analogue, ONO-1301, is reported to upregulate beneficial proteins, including stromal cell derived factor-1 (SDF-1). We hypothesized that the sustained-release delivery of ONO-1301 would enhance SDF-1 expression in the acute myocardial infarction (MI) heart and induce bone marrow cells (BMCs) to home to the myocardium, leading to improved cardiac function in mice.

Methods and Results

ONO-1301 significantly upregulated SDF-1 secretion by fibroblasts. BMC migration was greater to ONO-1301-stimulated than unstimulated conditioned medium. This increase was diminished by treating the BMCs with a CXCR4-neutralizing antibody or CXCR4 antagonist (AMD3100). Atelocollagen sheets containing a sustained-release form of ONO-1301 (n = 33) or ONO-1301-free vehicle (n = 48) were implanted on the left ventricular (LV) anterior wall immediately after permanent left-anterior descending artery occlusion in C57BL6/N mice (male, 8-weeks-old). The SDF-1 expression in the infarct border zone was significantly elevated for 1 month in the ONO-1301-treated group. BMC accumulation in the infarcted hearts, detected by in vivo imaging after intravenous injection of labeled BMCs, was enhanced in the ONO-1301-treated hearts. This increase was inhibited by AMD3100. The accumulated BMCs differentiated into capillary structures. The survival rates and cardiac function were significantly improved in the ONO-1301-treated group (fractional area change 23±1%; n = 22) compared to the vehicle group (19±1%; n = 20; P = 0.004). LV anterior wall thinning, expansion of infarction, and fibrosis were lower in the ONO-1301-treated group.

Conclusions

Sustained-release delivery of ONO-1301 promoted BMC recruitment to the acute MI heart via SDF-1/CXCR4 signaling and restored cardiac performance, suggesting a novel mechanism for ONO-1301-mediated acute-MI heart repair.  相似文献   

8.

Objectives

to assess the cardioprotective properties of a blueberry enriched diet (BD).

Background

Reactive oxygen species (ROS) play a major role in ischemia-related myocardial injury. The attempts to use synthetic antioxidants to block the detrimental effects of ROS have produced mixed or negative results precipitating the interest in natural products. Blueberries are readily available product with the highest antioxidant capacity among fruits and vegetables.

Methods and Results

Following 3-mo of BD or a regular control diet (CD), the threshold for mitochondrial permeability transition (tMPT) was measured in isolated cardiomyocytes obtained from young male Fischer-344 rats. Compared to CD, BD resulted in a 24% increase (p<0.001) of ROS indexed tMPT. The remaining animals were subjected to a permanent ligation of the left descending coronary artery. 24 hrs later resulting myocardial infarction (MI) in rats on BD was 22% less than in CD rats (p<0.01). Significantly less TUNEL(+) cardiomyocytes (2% vs 9%) and 40% less inflammation cells were observed in the myocardial area at risk of BD compared to CD rats (p<0.01). In the subgroup of rats, after coronary ligation the original diet was either continued or switched to the opposite one, and cardiac remodeling and MI expansion were followed by serial echocardiography for 10 weeks. Measurements suggested that continuation of BD or its withdrawal after MI attenuated or accelerated rates of post MI cardiac remodeling and MI expansion.

Conclusion

A blueberry-enriched diet protected the myocardium from induced ischemic damage and demonstrated the potential to attenuate the development of post MI chronic heart failure.  相似文献   

9.

Background

Type 2 diabetes is frequently associated with co-morbidities, including hypertension. Here we investigated if hypertension is a critical factor in myocardial remodeling and the development of cardiac dysfunction in type 2 diabetic db/db mice.

Methods

Thereto, 14-wks-old male db/db mice and non-diabetic db/+ mice received vehicle or angiotensin II (AngII) for 4 wks to induce mild hypertension (n = 9–10 per group). Left ventricular (LV) function was assessed by serial echocardiography and during a dobutamine stress test. LV tissue was subjected to molecular and (immuno)histochemical analysis to assess effects on hypertrophy, fibrosis and inflammation.

Results

Vehicle-treated diabetic mice neither displayed marked myocardial structural remodeling nor cardiac dysfunction. AngII-treatment did not affect body weight and fasting glucose levels, and induced a comparable increase in blood pressure in diabetic and control mice. Nonetheless, AngII-induced LV hypertrophy was significantly more pronounced in diabetic than in control mice as assessed by LV mass (increase +51% and +34%, respectively, p<0.01) and cardiomyocyte size (+53% and +31%, p<0.001). This was associated with enhanced LV mRNA expression of markers of hypertrophy and fibrosis and reduced activation of AMP-activated protein kinase (AMPK), while accumulation of Advanced Glycation End products (AGEs) and the expression levels of markers of inflammation were not altered. Moreover, AngII-treatment reduced LV fractional shortening and contractility in diabetic mice, but not in control mice.

Conclusions

Collectively, the present findings indicate that type 2 diabetes in its early stage is not yet associated with adverse cardiac structural changes, but already renders the heart more susceptible to hypertension-induced hypertrophic remodeling.  相似文献   

10.

Background

At least four laboratories have shown that endogenous cardiac progenitor cells (CPCs) can be grown directly from adult heart tissue in primary culture, as cardiospheres or their progeny (cardiosphere-derived cells, CDCs). Indeed, CDCs are already being tested in a clinical trial for cardiac regeneration. Nevertheless, the validity of the cardiosphere strategy to generate CPCs has been called into question by reports based on variant methods. In those reports, cardiospheres are argued to be cardiomyogenic only because of retained cardiomyocytes, and stem cell activity has been proposed to reflect hematological contamination. We use a variety of approaches (including genetic lineage tracing) to show that neither artifact is applicable to cardiospheres and CDCs grown using established methods, and we further document the stem cell characteristics (namely, clonogenicity and multilineage potential) of CDCs.

Methodology/Principal Findings

CPCs were expanded from human endomyocardial biopsies (n = 160), adult bi-transgenic MerCreMer-Z/EG mice (n = 6), adult C57BL/6 mice (n = 18), adult GFP+ C57BL/6 transgenic mice (n = 3), Yucatan mini pigs (n = 67), adult SCID beige mice (n = 8), and adult Wistar-Kyoto rats (n = 80). Cellular yield was enhanced by collagenase digestion and process standardization; yield was reduced in altered media and in specific animal strains. Heparinization/retrograde organ perfusion did not alter the ability to generate outgrowth from myocardial sample. The initial outgrowth from myocardial samples was enriched for sub-populations of CPCs (c-Kit+), endothelial cells (CD31+, CD34+), and mesenchymal cells (CD90+). Lineage tracing using MerCreMer-Z/EG transgenic mice revealed that the presence of cardiomyocytes in the cellular outgrowth is not required for the generation of CPCs. Rat CDCs are shown to be clonogenic, and cloned CDCs exhibit spontaneous multineage potential.

Conclusions/Significance

This study demonstrates that direct culture and expansion of CPCs from myocardial tissue is simple, straightforward, and reproducible when appropriate techniques are used.  相似文献   

11.

Aims

Controversy exists in regard to the beneficial effects of transplanting cardiac or somatic progenitor cells upon myocardial injury. We have therefore investigated the functional short- and long-term consequences after intramyocardial transplantation of these cell types in a murine lesion model.

Methods and Results

Myocardial infarction (MI) was induced in mice (n = 75), followed by the intramyocardial injection of 1−2×105 luciferase- and GFP-expressing embryonic cardiomyocytes (eCMs), skeletal myoblasts (SMs), mesenchymal stem cells (MSCs) or medium into the infarct. Non-treated healthy mice (n = 6) served as controls. Bioluminescence and fluorescence imaging confirmed the engraftment and survival of the cells up to seven weeks postoperatively. After two weeks MRI was performed, which showed that infarct volume was significantly decreased by eCMs only (14.8±2.2% MI+eCM vs. 26.7±1.6% MI). Left ventricular dilation was significantly decreased by transplantation of any cell type, but most efficiently by eCMs. Moreover, eCM treatment increased the ejection fraction and cardiac output significantly to 33.4±2.2% and 22.3±1.2 ml/min. In addition, this cell type exclusively and significantly increased the end-systolic wall thickness in the infarct center and borders and raised the wall thickening in the infarct borders. Repetitive echocardiography examinations at later time points confirmed that these beneficial effects were accompanied by better survival rates.

Conclusion

Cellular cardiomyoplasty employing contractile and electrically coupling embryonic cardiomyocytes (eCMs) into ischemic myocardium provoked significantly smaller infarcts with less adverse remodeling and improved cardiac function and long-term survival compared to transplantation of somatic cells (SMs and MSCs), thereby proving that a cardiomyocyte phenotype is important to restore myocardial function.  相似文献   

12.

Aims

We sought to evaluate the impact of ischemic burden for the prediction of hard cardiac events (cardiac death or nonfatal myocardial infarction) in patients with known or suspected CAD who undergo dobutamine stress cardiac magnetic resonance imaging (DCMR)

Methods

We included 3166 patients (pts.), mean age 63±12 years, 27% female, who underwent DCMR in 3 tertiary cardiac centres (University Hospital Heildelberg, German Heart Institute and Kings College London). Pts. were separated in groups based on the number of ischemic segments by wall motion abnormalities (WMA) as follows: 1. no ischemic segment, 2. one ischemic segment, 3. two ischemic segments and 4. ≥three ischemic segments. Cardiac death and nonfatal myocardial infarction were registered as hard cardiac events. Pts. with an “early” revascularization procedure (in the first three months after DCMR) were not included in the final survival analysis.

Results

Pts. were followed for a median of 3.1 years (iqr 2–4.5 years). 187 (5.9%) pts. experienced hard cardiac events. 2349 (74.2%) had no inducible ischemia, 189 (6%) had ischemia in 1 segment, 292 (9.2%) in 2 segments and 336 (10.6%) ≥3 segments. Patients with only 1 ischemic segment showed a high rate of hard cardiac events of ∼6% annually, which was 10-fold higher compared to those without ischemia (0.6% annually, p<0.001) but similar to those with 2 and ≥3ischemic segments (∼5.5% and ∼7%, p = NS).

Conclusions

The presence of inducible ischemia even in a single ‘culprit’ myocardial segment during DCMR is enough to predict hard cardiac events in patients with known or suspected CAD.  相似文献   

13.

Background

CCL21 acting through CCR7, is termed a homeostatic chemokine. Based on its role in concerting immunological responses and its proposed involvement in tissue remodeling, we hypothesized that this chemokine could play a role in myocardial remodeling during left ventricular (LV) pressure overload.

Methods and Results

Our main findings were: (i) Serum levels of CCL21 were markedly raised in patients with symptomatic aortic stenosis (AS, n = 136) as compared with healthy controls (n = 20). (ii) A CCL21 level in the highest tertile was independently associated with all-cause mortality in these patients. (iii) Immunostaining suggested the presence of CCR7 on macrophages, endothelial cells and fibroblasts within calcified human aortic valves. (iv). Mice exposed to LV pressure overload showed enhanced myocardial expression of CCL21 and CCR7 mRNA, and increased CCL21 protein levels. (v) CCR7−/− mice subjected to three weeks of LV pressure overload had similar heart weights compared to wild type mice, but increased LV dilatation and reduced wall thickness.

Conclusions

Our studies, combining experiments in clinical and experimental LV pressure overload, suggest that CCL21/CCR7 interactions might be involved in the response to pressure overload secondary to AS.  相似文献   

14.

Background

Mild therapeutic hypothermia following cardiac arrest is neuroprotective, but its effect on myocardial dysfunction that is a critical issue following resuscitation is not clear. This study sought to examine whether hypothermia and the combination of hypothermia and pharmacological postconditioning are cardioprotective in a model of cardiopulmonary resuscitation following acute myocardial ischemia.

Methodology/Principal Findings

Thirty pigs (28–34 kg) were subjected to cardiac arrest following left anterior descending coronary artery ischemia. After 7 minutes of ventricular fibrillation and 2 minutes of basic life support, advanced cardiac life support was started according to the current AHA guidelines. After successful return of spontaneous circulation (n = 21), coronary perfusion was reestablished after 60 minutes of occlusion, and animals were randomized to either normothermia at 38°C, hypothermia at 33°C or hypothermia at 33°C combined with sevoflurane (each group n = 7) for 24 hours. The effects on cardiac damage especially on inflammation, apoptosis, and remodeling were studied using cellular and molecular approaches. Five animals were sham operated. Animals treated with hypothermia had lower troponin T levels (p<0.01), reduced infarct size (34±7 versus 57±12%; p<0.05) and improved left ventricular function compared to normothermia (p<0.05). Hypothermia was associated with a reduction in: (i) immune cell infiltration, (ii) apoptosis, (iii) IL-1β and IL-6 mRNA up-regulation, and (iv) IL-1β protein expression (p<0.05). Moreover, decreased matrix metalloproteinase-9 activity was detected in the ischemic myocardium after treatment with mild hypothermia. Sevoflurane conferred additional protective effects although statistic significance was not reached.

Conclusions/Significance

Hypothermia reduced myocardial damage and dysfunction after cardiopulmonary resuscitation possible via a reduced rate of apoptosis and pro-inflammatory cytokine expression.  相似文献   

15.

Purpose

Besides its application in oncology, 18F-FDG PET-CT imaging is also useful in the diagnosis of certain lung infections, inflammatory diseases, and atherosclerotic plaques. Myocardial uptake of 18F-FDG may hamper visualization of the lesions caused by these diseases. Two approaches have been proposed for reducing myocardial uptake in preclinical studies, namely, calcium channel blockers (verapamil) and high-fat diets such as commercial ketogenic diets and sunflower seed diets. The objective of this study was to compare the efficacy of these approaches in reducing myocardial uptake of 18F-FDG in mice.

Methods

We performed two experiments. In experiment A, each animal underwent four 18F-FDG PET/CT scans in the following order: baseline, after administration of verapamil, after two days on ketogenic diet and after two days on sunflower seeds. PET scans were performed 60 minutes after injection of 18.5 MBq of 18F-FDG. In experiment B, the best protocol of the three (ketogenic diet) was evaluated in a lung inflammation model to assess the efficacy of reducing myocardial uptake of 18F-FDG.

Results

Compared with baseline (SUV 2.03±1.21); the greatest reduction in uptake of 18F-FDG was with ketogenic diet (SUV 0.79±0.16; p = 0.008), followed by sunflower seeds (SUV 0.91±0.13; p = 0.015); the reduction in myocardial uptake produced by verapamil was not statistically significant (SUV 1.78±0.79; p = NS). In experiment B, complete suppression of myocardial uptake noticeably improved the visualization of inflamed areas near the heart, while in the case of null or partial myocardial suppression, it was much harder to distinguish lung inflammation from myocardial spillover.

Conclusion

A high-fat diet appeared to be the most effective method for decreasing myocardial uptake of 18F-FDG in healthy mice, outperforming verapamil. Our findings also demonstrate that ketogenic diet actually improves visualization of inflammatory lesions near the heart.  相似文献   

16.

Background

Recent studies indicated that microRNAs (miRNAs, miRs) were important for many biological and pathological processes, and they might be potential biomarkers for cardiovascular diseases. The present study aims to determine the release patterns of miRNAs in cardiac surgery and to analyze the ability of miRs to provide early prediction of perioperative myocardial infarction (PMI) in patients undergoing coronary artery bypass graft (CABG) surgery.

Methodology/Principal Findings

Thirty on-pump CABG patients were recruited in this study; and miR-499, miR-133a and miR-133b, cardiac troponin I (cTnI) were selected for measurement. Serial plasma samples were collected at seven perioperative time points (preoperatively, and 1, 3, 6, 12, 24, and 48 hours after declamping) and were tested for cTnI and miRs levels. Importantly, miR levels peaked as early as 1–3 hours, whereas cTnI levels peaked at 6 hours after declamping. Peak plasma concentrations of miRs correlated significantly with cTnI (miR-499, r = 0.583, P = 0.001; miR-133a, r = 0.514, P = 0.006; miR-133b, r = 0.437, P = 0.05), indicating the degree of myocardial damage. In addition, 30 off-pump CABG patients were recruited; miR-499 and miR-133a levels were tested, which were significantly lower in off-pump group than in on-pump group. A prospective cohort of CABG patients (n = 120) was recruited to study the predictive power of miRs for PMI. The diagnosis of PMI strictly adhered to the principles of universal definition of myocardial infarction. The data analysis revealed that miR-499 had higher sensitivity and specificity than cTnI, and indicated that miR-499 could be an independent risk factor for PMI.

Conclusion

Our results demonstrate that circulating miR-499 is a novel, early biomarker for identifying perioperative myocardial infarction in cardiac surgery.  相似文献   

17.

Background

Ischemic cardiac damage is associated with upregulation of cardiac pro-inflammatory cytokines, as well as invasion of lymphocytes into the heart. Regulatory T cells (Tregs) are known to exert a suppressive effect on several immune cell types. We sought to determine whether the Treg pool is influenced by myocardial damage and whether Tregs transfer and deletion affect cardiac remodeling.

Methods and Results

The number and functional suppressive activity of Tregs were assayed in mice subjected to experimental myocardial infarction. The numbers of splenocyte-derived Tregs in the ischemic mice were significantly higher after the injury than in the controls, and their suppressive properties were significantly compromised. Compared with PBS, adoptive Treg transfer to mice with experimental infarction reduced infarct size and improved LV remodeling and functional performance by echocardiography. Treg deletion with blocking anti-CD25 antibodies did not influence infarct size or echocardiographic features of cardiac remodeling.

Conclusion

Treg numbers are increased whereas their function is compromised in mice with that underwent experimental infarction. Transfer of exogeneous Tregs results in attenuation of myocardial remodeling whereas their ablation has no effect. Thus, Tregs may serve as interesting potential interventional targets for attenuating left ventricular remodeling.  相似文献   

18.

Objective

To compare frontal sinus cranialization to obliteration for future prevention of secondary mucocele formation following open surgery for benign lesions of the frontal sinus.

Study Design

Retrospective case series.

Setting

Tertiary academic medical center.

Patients

Sixty-nine patients operated for benign frontal sinus pathology between 1994 and 2011.

Interventions

Open excision of benign frontal sinus pathology followed by either frontal obliteration (n = 41, 59%) or frontal cranialization (n = 28, 41%).

Main Outcome Measures

The prevalence of post-surgical complications and secondary mucocele formation were compiled.

Results

Pathologies included osteoma (n = 34, 49%), mucocele (n = 27, 39%), fibrous dysplasia (n = 6, 9%), and encephalocele (n = 2, 3%). Complications included skin infections (n = 6), postoperative cutaneous fistula (n = 1), telecanthus (n = 4), diplopia (n = 3), nasal deformity (n = 2) and epiphora (n = 1). None of the patients suffered from postoperative CSF leak, meningitis or pneumocephalus. Six patients, all of whom had previously undergone frontal sinus obliteration, required revision surgery due to secondary mucocele formation. Statistical analysis using non-inferiority test reveal that cranialization of the frontal sinus is non-inferior to obliteration for preventing secondary mucocele formation (P<0.0001).

Conclusion

Cranialization of the frontal sinus appears to be a good option for prevention of secondary mucocele development after open excision of benign frontal sinus lesions.  相似文献   

19.

Background

Hemodynamic insults at arterial bifurcations are believed to play a critical role in initiating intracranial aneurysms. Recent studies in a rabbit model indicate that aneurysmal damage initiates under specific wall shear stress conditions when smooth muscle cells (SMCs) become pro-inflammatory and produce matrix metalloproteinases (MMPs). The mechanisms leading to SMC activation and MMP production during hemodynamic aneurysm initiation are unknown. The goal is to determine if nitric oxide and/or superoxide induce SMC changes, MMP production and aneurysmal remodeling following hemodynamic insult.

Methods

Bilateral common carotid artery ligation was performed on rabbits (n = 19, plus 5 sham operations) to induce aneurysmal damage at the basilar terminus. Ligated animals were treated with the nitric oxide synthase (NOS) inhibitor LNAME (n = 7) or the superoxide scavenger TEMPOL (n = 5) and compared to untreated animals (n = 7). Aneurysm development was assessed histologically 5 days after ligation. Changes in NOS isoforms, peroxynitrite, reactive oxygen species (ROS), MMP-2, MMP-9, and smooth muscle α-actin were analyzed by immunohistochemistry.

Results

LNAME attenuated ligation-induced IEL loss, media thinning and bulge formation. In untreated animals, immunofluorescence showed increased endothelial NOS (eNOS) after ligation, but no change in inducible or neuronal NOS. Furthermore, during aneurysm initiation ROS increased in the media, but not the intima, and there was no change in peroxynitrite. In LNAME-treated animals, ROS production did not change. Together, this suggests that eNOS is important for aneurysm initiation but not by producing superoxide. TEMPOL treatment reduced aneurysm development, indicating that the increased medial superoxide is also necessary for aneurysm initiation. LNAME and TEMPOL treatment in ligated animals restored α-actin and decreased MMPs, suggesting that eNOS and superoxide both lead to SMC de-differentiation and MMP production.

Conclusion

Aneurysm-inducing hemodynamics lead to increased eNOS and superoxide, which both affect SMC phenotype, increasing MMP production and aneurysmal damage.  相似文献   

20.

Background

Betaine is a major osmolyte, also important in methyl group metabolism. Concentrations of betaine, its metabolite dimethylglycine and analog trimethylamine-N-oxide (TMAO) in blood are cardiovascular risk markers. Diabetes disturbs betaine: does diabetes alter associations between betaine-related measures and cardiovascular risk?

Methods

Plasma samples were collected from 475 subjects four months after discharge following an acute coronary admission. Death (n = 81), secondary acute MI (n = 87), admission for heart failure (n = 85), unstable angina (n = 72) and all cardiovascular events (n = 283) were recorded (median follow-up: 1804 days).

Results

High and low metabolite concentrations were defined as top or bottom quintile of the total cohort. In subjects with diabetes (n = 79), high plasma betaine was associated with increased frequencies of events; significantly for heart failure, hazard ratio 3.1 (1.2–8.2) and all cardiovascular events, HR 2.8 (1.4–5.5). In subjects without diabetes (n = 396), low plasma betaine was associated with events; significantly for secondary myocardial infarction, HR 2.1 (1.2–3.6), unstable angina, HR 2.3 (1.3–4.0), and all cardiovascular events, HR 1.4 (1.0–1.9). In diabetes, high TMAO was a marker of all outcomes, HR 2.7 (1.1–7.1) for death, 4.0 (1.6–9.8) for myocardial infarction, 4.6 (2.0–10.7) for heart failure, 9.1 (2.8–29.7) for unstable angina and 2.0 (1.1–3.6) for all cardiovascular events. In subjects without diabetes TMAO was only significant for death, HR 2.7 (1.6–4.8) and heart failure, HR 1.9 (1.1–3.4). Adding the estimated glomerular filtration rate to Cox regression models tended to increase the apparent risks associated with low betaine.

Conclusions

Elevated plasma betaine concentration is a marker of cardiovascular risk in diabetes; conversely low plasma betaine concentrations indicate increased risk in the absence of diabetes. We speculate that the difference reflects control of osmolyte retention in tissues. Elevated plasma TMAO is a strong risk marker in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号