首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>畸牙移动是在机械力的作用下,通过对牙周膜产生牵张或压缩的力来引起牙周组织在生理限度内的组织改建,从而达到牙齿移动、矫治畸形的目的。由于没有明显的年龄限制,正畸矫治在全球范围已变得越来越普遍。因此,相关的研究也日益增多。牙齿移动的生物学基础是正畸力作用于牙周组织激活一系列信号转导通路,进而引起牙周膜的修复改建。为指导临床、加速正畸矫治疗程提供新的思路,本文综述了近年来有关正畸牙移动相关信号通路的研究进展。发现最新的研究集中在MAPK信号通路,Wnt/β-catenin信号通路,PI3K/AKt/m TOR信号通路,BMP-2信号通路,Caspase-3介导的凋亡通路较多。但是正畸牙移动引起的牙周组织改建是一个多种生物力学信号转导通路相互调节相互作用的过程,对于上述信号通路之间的相互关系还有待于我们更进一步的探索。  相似文献   

2.
Despite their importance as vectors of human and livestock diseases, relatively little is known about innate antiviral immune pathways in mosquitoes and other insects. Previous work has shown that Culex Vago (CxVago), which is induced and secreted from West Nile virus (WNV)-infected mosquito cells, acts as a functional homolog of interferon, by activating Jak-STAT pathway and limiting virus replication in neighbouring cells. Here we describe the Dicer-2-dependent pathway leading to WNV-induced CxVago activation. Using a luciferase reporter assay, we show that a NF-κB-like binding site in CxVago promoter region is conserved in mosquito species and is responsible for induction of CxVago expression following WNV infection. Using dsRNA-based gene knockdown, we show that the NF-κB ortholog, Rel2, plays significant role in the signaling pathway that activates CxVago in mosquito cells in vitro and in vivo. Using similar approaches, we also show that TRAF, but not TRAF-3, is involved in activation of Rel2 after viral infection. Overall the study shows that a conserved signaling pathway, which is similar to mammalian interferon activation pathway, is responsible for the induction and antiviral activity of CxVago.  相似文献   

3.
毒蝇碱型乙酰胆碱受体 (muscarinicacetylcholinereceptor,mAChR)和Bcl 2家族蛋白均具有调控神经细胞凋亡和生存的作用 ,然而mAChR和Bcl 2家族蛋白之间的内在联系即信号转导通路仍然不清楚。为此 ,对mAChR调控神经母细胞瘤SH SY5Y细胞生存蛋白Bcl 2和磷酸化Bad的信号转导通路进行了研究。结果显示 :(1)mAChR激动剂卡巴可 (carbachol)不仅活化SH SY5Y细胞的MEK/ERK 1/ 2 ,而且上调Bcl 2和磷酸化Bad的表达 ;(2 )mAChR拮抗剂阿托品、MEK抑制剂PD980 5 9、PKC抑制剂bisindolymaleimide I和Src抑制剂PP1均能完全阻断或显著减弱卡巴可的上述作用 ,但G蛋白脱偶联剂百日咳毒素和PI 3激酶抑制剂wortmannin对卡巴可的上述作用无明显影响 ;(3)显性负突变Ras和Raf均能阻断卡巴可上调转染至SH SY5Y细胞内的Bcl 2启动子的转录调控活性。结果表明 :mAChR通过Gq/ 11、PKC和Src依赖的Ras ERK 1/ 2信号转导通路上调SH SY5Y细胞Bcl 2和磷酸化Bad蛋白表达。这一研究将有助于揭示神经递质、神经营养因子和神经营养药物等抑制神经细胞凋亡、促进神经细胞生存的分子机制。  相似文献   

4.
5.
Platelets play a pivotal role in atherothrombosis and the antiplatelet agents have been proved to be useful in preventing onset of acute clinical events including myocardial infarction and stroke. Increasing number of natural compounds has been identified to be potential antiplatelet agents. Here we report the antiplatelet effect of glaucocalyxin A (GLA), an ent-diterpenoid that we isolated and purified from the aerial parts of Rabdosia japonica (Burm. f.) var. glaucocalyx (Maxim.) Hara, and investigate the molecular mechanisms by which GLA inhibits platelet activation and thrombus formation. The effect of GLA on platelet activation was measured using platelets freshly isolated from peripheral blood of healthy donors. Results showed that pretreatment of human platelets with lower concentrations of GLA (0.01μg/ml, 0.1μg/ml) significantly inhibited platelet aggregation induced by collagen (P<0.001) and CRP (P<0.01), a synthetic GPVI ligand, but not by ADP and U46619. Accordingly, GLA inhibited collagen-stimulated tyrosine phosphorylation of Syk, LAT, and phospholipase Cγ2, the signaling events in collagen receptor GPⅥ pathway. GLA also inhibited platelet p-selectin secretion and integrin activation by convulxin, a GPVI selective ligand. Additionally, GLA was found to inhibit low-dose thrombin-induced platelet activation. Using a flow chamber device, GLA was found to attenuate platelet adhesion on collagen surfaces in high shear condition. In vivo studies showed that GLA administration increased the time for complete occlusion upon vascular injury in mice, but did not extend tail-bleeding time when mice were administered with relatively lower doses of GLA. Therefore, the present results provide the molecular basis for the inhibition effect of GLA on platelet activation and its in vivo effect on thrombus formation, suggesting that GLA could potentially be developed as an antiplatelet and antithrombotic agent.  相似文献   

6.
Pemetrexed is approved for first-line and maintenance treatment of patients with advanced or metastatic non-small-cell lung cancer (NSCLC). The protein kinase Akt/protein kinase B is a well-known regulator of cell survival which is activated by pemetrexed, but its role in pemetrexed-mediated cell death and its molecular mechanisms are unclear. This study showed that stimulation with pemetrexed induced S-phase arrest and cell apoptosis and a parallel increase in sustained Akt phosphorylation and nuclear accumulation in the NSCLC A549 cell line. Inhibition of Akt expression by Akt specific siRNA blocked S-phase arrest and protected cells from apoptosis, indicating an unexpected proapoptotic role of Akt in the pemetrexed-mediated toxicity. Treatment of A549 cells with pharmacological inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and Ly294002, similarly inhibited pemetrexed-induced S-phase arrest and apoptosis and Akt phosphorylation, indicating that PI3K is an upstream mediator of Akt and is involved in pemetrexed-mediated cell death. Previously, we identified cyclin A-associated cyclin-dependent kinase 2 (Cdk2) as the principal kinase that was required for pemetrexed-induced S-phase arrest and apoptosis. The current study showed that inhibition of Akt function and expression by pharmacological inhibitors as well as Akt siRNA drastically inhibited cyclin A/Cdk2 activation. These pemetrexed-mediated biological and molecular events were also observed in a H1299 cell line. Overall, our results indicate that, in contrast to its normal prosurvival role, the activated Akt plays a proapoptotic role in pemetrexed-mediated S-phase arrest and cell death through a mechanism that involves Cdk2/cyclin A activation.  相似文献   

7.
8.
Epigallocatechin 3-O-gallate (EGCG) is a predominant component in green tea with various health benefits. The 67 kDa laminin receptor (67LR) is a nonintegrin cell surface receptor that is overexpressed in various types of cancer; 67LR was identified a cell surface EGCG target that plays a pivotal role in tumor growth, metastasis, and resistance to chemotherapy. However, the plasma concentration of EGCG is limited, and its molecular mechanisms remain unelucidated in colon cancer. In this study, we found that the phosphodiesterase 5 (PDE5) inhibitor, vardenafil (VDN), potentiates EGCG-induced apoptotic cell death in colon cancer cells. The combination of EGCG and VDN induced apoptosis via activation of the endothelial nitric oxide synthase/cyclic guanosine monophosphate/protein kinase Cδ signaling pathway. In conclusion, the PDE5 inhibitor, VDN, may reduce the intracellular PDE5 enzyme activity that potentiates EGCG-induced apoptotic cell death in Caco-2 cells. These results suggest that PDE5 inhibitors can be used to elevate cGMP levels to induce 67LR-mediated, cancer-specific cell death. Therefore, EGCG may be employed as a therapeutic candidate for colon cancer.  相似文献   

9.
低氧诱导因子-1的转录活性调控及其信号传导   总被引:5,自引:0,他引:5  
低氧诱导因子-1(hypoxia-inducible factor-1,HIF-1)是氧平衡调控相关的转录因子.依赖HIF-1的基因表达调控系统广泛影响葡萄糖代谢、细胞增殖、凋亡和血管发生,与机体低氧适应、胚胎发育、各种缺血性疾病及肿瘤相关.HIF-1自身活性调节是低氧应答基因表达调控的中心环节.调控主要发生在源于Ras的两条信号途径:Ras/Raf/MEK介导的HIF-1反式激活功能调控,PI(3)K/Akt依赖的HIF-1alpha蛋白稳定性调控.这两个信号传导途径分别独立又协调地调控着HIF-1的转录活性.  相似文献   

10.
11.
ERK3是ERK家族中结构较为独特的成员,尤其在分子生物学特征上与ERK家族其他成员明显不同,如基因结构中外显子之间的大内含子、蛋白质结构中活化环的丝氨酸单磷酸化位点以及激酶C端的延伸序列等.ERK3具有独特的丝氨酸单磷酸化位点,导致所有以苏氨酸/酪氨酸双磷酸化位点为磷酸化靶点的MEK分子均不能活化ERK3.ERK3的C端延伸序列能与细胞周期蛋白D3结合并调控ERK3的亚细胞定位,从而影响ERK3对细胞周期的调节.据目前文献推测,ERK3调控细胞周期的信号通路可能为:Ras→B-Raf→ERK3激酶→ERK3→G1期CDK复合物减少→S期抑制因子增多→细胞增殖阻滞于S期→细胞停止增殖,进入分化.此外,ERK3信号通路的活化与细胞分化、胚胎发育、胰岛素分泌以及肿瘤的发生密切相关.  相似文献   

12.
13.
14.
15.
Cellular and Molecular Neurobiology - Glioma is a common invasive cancer with unfavorable prognosis in patients. Long non-coding RNAs have been reported to participate in modulating diverse...  相似文献   

16.
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Although its pathogenesis is still unclear, increasing evidence suggests that mitochondrial dysfunction induced by environmental toxins, such as mitochondrial complex I inhibitors, plays a significant role in the disease process. The microglia in PD brains are highly activated, and inflammation is also an essential element in PD pathogenesis. However, the means by which these toxins activate microglia is still unclear. In the present study, we found that rotenone, a mitochondrial complex I inhibitor, could directly activate microglia via the nuclear factor kappa B (NF-κB) signaling pathway, thereby inducing significantly increased expression of inflammatory cytokines. We further observed that rotenone induced caspase-1 activation and mature IL-1β release, both of which are strictly dependent on p38 mitogen-activated protein kinase (MAPK). The activation of p38 is associated with the presence of reactive oxygen species (ROS) produced by rotenone. Removal of these ROS abrogated the activation of the microglia. Therefore, our data suggest that the environmental toxin rotenone can directly activate microglia through the p38 MAPK pathway.  相似文献   

17.
18.
19.
20.
Autophagy is a regulated process that sequesters and transports cytoplasmic materials such as protein aggregates via autophagosomes to lysosomes for degradation. Dapper1 (Dpr1), an interacting protein of Dishevelled (Dvl), antagonizes Wnt signaling by promoting Dishevelled degradation via lysosomes. However, the mechanism is unclear. Here, we show that Dpr1 promotes the von Hippel-Lindau tumor suppressor (VHL)-mediated ubiquitination of Dvl2 and its autophagic degradation. Knockdown of Dpr1 decreases the interaction between Dvl2 and pVHL, resulting in reduced ubiquitination of Dvl2. Dpr1-mediated autophagic degradation of Dvl2 depends on Dvl2 aggregation. Moreover, the aggregate-prone proteins Dvl2, p62, and the huntingtin mutant Htt103Q promote autophagy in a Dpr1-dependent manner. These protein aggregates enhance the Beclin1-Vps34 interaction and Atg14L puncta formation, indicating that aggregated proteins stimulate autophagy initiation. Ubiquitination is not essential for the aggregate-induced autophagy initiation as inhibition of the ubiquitin-activation E1 enzyme activity did not block the aggregate-induced Atg14L puncta formation. Our findings suggest that Dpr1 promotes the ubiquitination of Dvl2 by pVHL and mediates the protein aggregate-elicited autophagy initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号