共查询到20条相似文献,搜索用时 0 毫秒
1.
The faithful replication of the genome, coupled with the accurate repair of DNA damage, is essential for the maintenance of chromosomal integrity. The MMS22 gene of Saccharomyces cerevisiae plays an important but poorly understood role in preservation of genome integrity. Here we describe a novel gene in Schizosaccharomyces pombe that we propose is a highly diverged ortholog of MMS22. Fission yeast Mms22 functions in the recovery from replication-associated DNA damage. Loss of Mms22 results in the accumulation of spontaneous DNA damage in the S- and G2-phases of the cell cycle and elevated genomic instability. There are severe synthetic interactions involving mms22 and most of the homologous recombination proteins but not the structure-specific endonuclease Mus81-Eme1, which is required for survival of broken replication forks. Mms22 forms spontaneous nuclear foci and colocalizes with Rad22 in cells treated with camptothecin, suggesting that it has a direct role in repair of broken replication forks. Moreover, genetic interactions with components of the DNA replication fork suggest that Mms2 functions in the coordination of DNA synthesis following damage. We propose that Mms22 functions directly at the replication fork to maintain genomic integrity in a pathway involving Mus81-Eme1. 相似文献
2.
Xiong Y 《Developmental cell》2010,19(5):641-643
Just as the activity of many multifunctional proteins is restricted by subcellular localization, so is their regulation. In this issue of Development Cell, Starostina et al. identify an E3 ubiquitin ligase, CRL2(LRR1), for the cyclin-dependent kinase inhibitor p21 that specifically ubiquitylates cytoplasmic p21 to facilitate cell migration. 相似文献
3.
4.
J John I Schlichting E Schiltz P R?sch A Wittinghofer 《The Journal of biological chemistry》1989,264(22):13086-13092
The human c-Ha-ras protooncogene product p21C was truncated at the C terminus by 23 amino acids. The resulting G-binding domain, p21 (1-166) = p21C', can be crystallized as a complex with the slowly hydrolyzing GTP analogues guanosin-5'-[beta,gamma-imido]triphosphate, guanosin-5'-[beta,gamma-methylene]triphosphate, and guanosin-5'-O-(3-thiotriphosphate). We show here that this protein has biochemical properties very similar to those of the intact protein. Activating mutations in position 12 (Gly12----Val; Gly12----Arg) have the same effect on the properties of the truncated protein as on intact protein. Nuclear magnetic resonance (NMR) measurements show no apparent effect of the C-terminal deletion on the solution structure of p21. This suggests that neither the structure of the G-binding domain nor any of its biochemical properties are markedly influenced by the truncation. 相似文献
5.
A network of multi-tasking proteins at the DNA replication fork preserves genome stability 下载免费PDF全文
To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions) whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics. 相似文献
6.
Jiafeng Wang Rentian Wu Chun Liang 《Biochemical and biophysical research communications》2010,395(3):336-28977
Ctf4p (chromosome transmission fidelity) has been reported to function in DNA metabolism and sister chromatid cohesion in Saccharomyces cerevisiae. In this study, a ctf4S143F mutant was isolated from a yeast genetic screen to identify replication-initiation proteins. The ctf4S143F mutant exhibits plasmid maintenance defects which can be suppressed by the addition of multiple origins to the plasmid, like other known replication-initiation mutants. We show that both ctf4S143F and ctf4Δ strains have defects in S phase entry and S phase progression at the restrictive temperature of 38 °C. Ctf4p localizes in the nucleus throughout the cell cycle but only starts to bind chromatin at the G1/S transition and then disassociates from chromatin after DNA replication. Furthermore, Ctf4p interacts with Mcm10p physically and genetically, and the chromatin association of Ctf4p depends on Mcm10p. Finally, deletion of CTF4 destabilizes Mcm10p and Pol α in both mcm10-1 and MCM10 cells. These data indicate that Ctf4p facilitates Mcm10p to promote the DNA replication. 相似文献
7.
《DNA Repair》2019
Replication of DNA is a fundamental biological process that ensures precise duplication of the genome and thus safeguards inheritance. Any errors occurring during this process must be repaired before the cell divides, by activating the DNA damage response (DDR) machinery that detects and corrects the DNA lesions. Consistent with its significance, DNA replication is under stringent control, both spatial and temporal. Defined regions of the genome are replicated at specific times during S phase and the speed of replication fork progression is adjusted to fully replicate DNA in pace with the cell cycle. Insults that impair DNA replication cause replication stress (RS), which can lead to genomic instability and, potentially, to cell transformation. In this perspective, we review the current concept of replication stress, including the recent findings on the effects of accelerated fork speed and their impact on genomic (in)stability. We discuss in detail the Fork Speed Regulatory Network (FSRN), an integrated molecular machinery that regulates the velocity of DNA replication forks. Finally, we explore the potential for targeting FSRN components as an avenue to treat cancer. 相似文献
8.
Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation 总被引:15,自引:0,他引:15
We examined the mechanism responsible for the degradation of p21, a negative regulator of the cell division cycle. We found that p21 proteolysis requires functional ubiquitin and Nedd8 systems. Ubiquitinylated forms of p21 and p21(K0), a p21 mutant missing all lysines, are detected in vivo and in vitro, showing that the presence of lysines is dispensable for p21 ubiquitinylation. Instead, the free amino group of the N-terminal methionine of p21 is a site for ubiquitinylation in vivo. Although wild-type p21 is more abundantly ubiquitinylated than p21(K0) mutant due to the presence of internal lysine residues, their rates of proteolysis are indistinguishable. These results demonstrate that proteasomal degradation of p21 is regulated by the ubiquitin pathway and suggest that the site of the ubiquitin chain is critical in making p21 a competent substrate for the proteasome. 相似文献
9.
Wong RP Lin H Khosravi S Piche B Jafarnejad SM Chen DW Li G 《Nucleic acids research》2011,39(9):3632-3642
The lesion bypass pathway, which is regulated by monoubiquitination of proliferating cell nuclear antigen (PCNA), is essential for resolving replication stalling due to DNA lesions. This process is important for preventing genomic instability and cancer development. Previously, it was shown that cells deficient in tumour suppressor p33ING1 (ING1b) are hypersensitive to DNA damaging agents via unknown mechanism. In this study, we demonstrated a novel tumour suppressive function of ING1b in preserving genomic stability upon replication stress through regulating PCNA monoubiquitination. We found that ING1b knockdown cells are more sensitive to UV due to defects in recovering from UV-induced replication blockage, leading to enhanced genomic instability. We revealed that ING1b is required for the E3 ligase Rad18-mediated PCNA monoubiquitination in lesion bypass. Interestingly, ING1b-mediated PCNA monoubiquitination is associated with the regulation of histone H4 acetylation. Results indicate that chromatin remodelling contributes to the stabilization of stalled replication fork and to the regulation of PCNA monoubiquitination during lesion bypass. 相似文献
10.
The ATPase associated with various cellular activities (AAA-ATPase) p97 (p97) has been implicated in the retrotranslocation of target proteins for delivery to the cytosolic proteasome during endoplasmic reticulum-associated degradation (ERAD). Apolipoprotein B-100 (apoB-100) is an ERAD substrate in liver cells, including the human hepatoma, HepG2. We studied the potential role of p97 in the ERAD of apoB-100 in HepG2 cells using cell permeabilization, coimmunoprecipitation, and gene silencing. Degradation was abolished when HepG2 cytosol was removed by digitonin permeabilization, and treatment of intact cells with the proteasome inhibitor MG132 caused accumulation of ubiquitinated apoB protein in the cytosol. Cross-linking of intact cells with the thiol-cleavable agent dithiobis(succinimidylpropionate) (DSP), as well as nondenaturing immunoprecipitation, demonstrated an interaction between p97 and intracellular apoB. Small interfering ribonucleic acid (siRNA)-mediated reduction of p97 protein increased the intracellular levels of newly synthesized apoB-100, predominantly because of a decrease in the turnover of newly synthesized apoB-100 protein. However, although the posttranslational degradation of newly synthesized apoB-100 was delayed by p97 knockdown, secretion of apoB-100 was not affected. Knockdown of p97 also impaired the release of apoB-100 and polyubiquitinated apoB into the cytosol. In summary, our results suggest that retrotranslocation and proteasomal degradation of apoB-100 can be dissociated in HepG2 cells, and that the AAA-ATPase p97 is involved in the removal of full-length apoB from the biosynthetic pathway to the cytosolic proteasome. 相似文献
11.
12.
A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation 总被引:1,自引:0,他引:1
We developed a growth test to screen for yeast mutants defective in endoplasmic reticulum (ER) quality control and associated protein degradation (ERAD) using the membrane protein CTL*, a chimeric derivative of the classical ER degradation substrate CPY*. In a genomic screen of approximately 5,000 viable yeast deletion mutants, we identified genes necessary for ER quality control and degradation. Among the new gene products, we identified Dsk2p and Rad23p. We show that these two proteins are probably delivery factors for ubiquitinated ER substrates to the proteasome, following their removal from the membrane via the Cdc48-Ufd1-Npl4p complex. In contrast to the ERAD substrate CTG*, proteasomal degradation of a cytosolic CPY*-GFP fusion is not dependent on Dsk2p and Rad23p, indicating pathway specificity for both proteins. We propose that, in certain degradation pathways, Dsk2p, Rad23p and the trimeric Cdc48 complex function together in the delivery of ubiquitinated proteins to the proteasome, avoiding malfolded protein aggregates in the cytoplasm. 相似文献
13.
Carotenoids and genomic stability 总被引:6,自引:0,他引:6
Collins AR 《Mutation research》2001,475(1-2):21-28
Epidemiological evidence abounds for a link between intake of carotenoids from fruit and vegetable foods and relatively low incidence of various cancers. However, intervention trials have shown, in some cases, a significant increase in occurrence of lung cancer in those volunteers taking supplements of beta-carotene. More information is clearly needed about the mechanism of action of carotenoids. Effects of carotenoids on cells in culture include inhibition of DNA synthesis and proliferation, changes in gene expression, decreased micronucleus frequency, and inhibition of transformation via synthesis of gap-junction proteins. Experiments with animal models are unsatisfactory because of the very poor uptake of carotenoids in rodents compared with man. In humans, oxidative damage to lymphocytes correlates negatively with plasma carotenoid concentrations, and the level of DNA damage is susceptible to reduction by carotenoid-rich foods. It seems clear that the carotenoids act as antioxidants in vivo, and yet this activity may not result in cancer prevention. 相似文献
14.
Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There is no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as highly toxic and carcinogenic with no nutritional value. Recent data indicate that it causes genomic instability and also has no role in promoting genomic stability. 相似文献
15.
Expression of the CDK inhibitor p21(Cip1) is tightly regulated by signals that control cell division. p21 is an unstable protein that is degraded by the proteasome; however, the pathway that leads to proteasomal degradation of p21 has proven to be enigmatic. An important issue is whether proteasomal degradation of p21 occurs independently of ubiquitylation or, alternatively, whether ubiquitylation on its N terminus is crucial. We resolve this uncertainty by showing that endogenous cellular p21 is completely acetylated at its amino terminus and is therefore not a substrate for N-ubiquitylation. We further show that inactivation of essential components of the ubiquitylation machinery does not directly impact endogenous p21 degradation. Our results underscore the importance of N-acetylation in restricting N-ubiquitylation and show, in particular, that ubiquitylation of endogenous p21 either at internal lysines or on the N terminus is unlikely to control its degradation by the proteasome. 相似文献
16.
17.
A. Amiel Tali Litmanovich Elena Gaber Michael Lishner Lydia Avivi Moshe D. Fejgin 《Human genetics》1997,101(2):219-222
In this study, in order to evaluate the replication pattern and the cell cycle dynamics of normal and malignant cells from
patients with chronic lymphocytic leukemia, we applied the FISH technique with the p53 gene. Asynchrony was determined by
the presence of one single and one set of double dots in the same cell. The rate of asynchronous replication was significantly
higher in malignant cells than in normal cells (a mean of 28 vs 13, respectively, P = 0.023). There were proportionately more cells with two single dots among the normal cells (P = 0.0047). These results probably reflect the changes in gene replication and cell cycle progression that occur in malignant
cells.
Received: 25 March 1997 / Accepted: 28 July 1997 相似文献
18.
Chk1 and p21 cooperate to prevent apoptosis during DNA replication fork stress 总被引:5,自引:0,他引:5 下载免费PDF全文
Cells respond to DNA replication stress by triggering cell cycle checkpoints, repair, or death. To understand the role of the DNA damage response pathways in determining whether cells survive replication stress or become committed to death, we examined the effect of loss of these pathways on cellular response to agents that slow or arrest DNA synthesis. We show that replication inhibitors such as excess thymidine, hydroxyurea, and camptothecin are normally poor inducers of apoptosis. However, these agents become potent inducers of death in S-phase cells upon small interfering RNA-mediated depletion of the checkpoint kinase Chk1. This death response is independent of p53 and Chk2. p21-deficient cells, on the other hand, produce a more robust apoptotic response upon Chk1 depletion. p21 is normally induced only late after thymidine treatment. In Chk1-depleted cells p21 induction occurs earlier and does not require p53. Thus, Chk1 plays a primary role in the protection of cells from death induced by replication fork stress, whereas p21 mediates through its role in regulating entry into S phase. These findings are of potential importance to cancer therapy because we demonstrate that the efficacy of clinically relevant agents can be enhanced by manipulation of these signaling pathways. 相似文献
19.
20.
《DNA Repair》2019
DNA replication, the faithful copying of genetic material, must be tightly regulated to produce daughter cells with intact copies of the chromosome(s). This regulated replication is initiated by binding of specific proteins at replication origins, such as DnaA to oriC in bacteria. However, unregulated replication can sometimes be initiated at other sites, which can threaten genomic stability. One of the first systems of unregulated replication to be described is the one activated in Escherichia coli mutants lacking RNase HI (rnhA). In fact, rnhA mutants can replicate their chromosomes in a DnaA- and oriC-independent process. Because this replication occurs in cells lacking RNase HI, it is proposed that RNA from R-loops is used as a DNA polymerase primer. Replication from R-loops has recently attracted increased attention due to the advent of DNA:RNA hybrid immunoprecipitation coupled with high-throughput DNA sequencing that revealed the high prevalence of R-loop formation in many organisms, and the demonstration that R-loops can severely threaten genomic stability. Although R-loops have been linked to genomic instability mostly via replication stress, evidence of their toxic effects via unregulated replication has also been presented. Replication from R-loops may also beneficially trigger stress-induced mutagenesis (SIM) that assists bacterial adaptation to stress. Here, we describe the cis- and trans-acting elements involved in R-loop-dependent replication in bacteria, with an emphasis on new data obtained with type 1A topoisomerase mutants and new available technologies. Furthermore, we discuss about the mechanism(s) by which R-loops can reshape the genome with both negative and positive outcomes. 相似文献