共查询到20条相似文献,搜索用时 10 毫秒
1.
Background
The control of intracellular vesicle trafficking is an ideal target to weigh the role of alternative splicing in shaping genomes to make cells. Alternative splicing has been reported for several Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptors of the vesicle (v-SNAREs) or of the target membrane (t-SNARES), which are crucial to intracellular membrane fusion and protein and lipid traffic in Eukaryotes. However, splicing has not yet been investigated in Longins, i.e. the most widespread v-SNAREs. Longins are essential in Eukaryotes and prototyped by VAMP7, Sec22b and Ykt6, sharing a conserved N-terminal Longin domain which regulates membrane fusion and subcellular targeting. Human VAMP7/TI-VAMP, encoded by gene SYBL1, is involved in multiple cell pathways, including control of neurite outgrowth.Results
Alternative splicing of SYBL1 by exon skipping events results in the production of a number of VAMP7 isoforms. In-frame or frameshift coding sequence modifications modulate domain architecture of VAMP7 isoforms, which can lack whole domains or domain fragments and show variant or extra domains. Intriguingly, two main types of VAMP7 isoforms either share the inhibitory Longin domain and lack the fusion-promoting SNARE motif, or vice versa. Expression analysis in different tissues and cell lines, quantitative real time RT-PCR and confocal microscopy analysis of fluorescent protein-tagged isoforms demonstrate that VAMP7 variants have different tissue specificities and subcellular localizations. Moreover, design and use of isoform-specific antibodies provided preliminary evidence for the existence of splice variants at the protein level.Conclusions
Previous evidence on VAMP7 suggests inhibitory functions for the Longin domain and fusion/growth promoting activity for the Δ-longin molecule. Thus, non-SNARE isoforms with Longin domain and non-longin SNARE isoforms might have somehow opposite regulatory functions. When considering splice variants as "natural mutants", evidence on modulation of subcellular localization by variation in domain combination can shed further light on targeting determinants. Although further work will be needed to characterize identified variants, our data might open the route to unravel novel molecular partners and mechanisms, accounting for the multiplicity of functions carried out by the different members of the Longin proteins family. 相似文献2.
O. V. Chertkov R. N. Chuprov-Netochin S. V. Legotskiy N. N. Sykilinda M. M. Shneider M. A. Ivanova E. A. Pleteneva O. V. Shaburova M. B. Burkal’tseva E. S. Kostryukova V. N. Lazarev N. L. Klyachko K. A. Miroshnikov 《Russian Journal of Bioorganic Chemistry》2011,37(6):732-738
The ?PMG1 Pseudomonas aeruginosa bacteriophage was isolated. It is characterized by certain peculiarities of the lytic infection cycle and forms a halo (clear zone) around negative colonies. The phage was studied with regard to its potential use in therapeutic phage preparations and as a source of peptidoglycan- and lipopolysacchraide-degrading enzymes. Partial sequencing of the ?PMG1 genome revealed a high degree of homology with the D3 moderate bacteriophage. An open reading frame coding for a lytic transglycosylase has been identified in ?PMG1 genome. The enzyme has been obtained in a recombinant form, and its activity and substrate specificity have been characterized. 相似文献
3.
Cloning and Analysis of the Capsid Morphogenesis Genes of Pseudomonas aeruginosa Bacteriophage D3: Another Example of Protein Chain Mail? 下载免费PDF全文
The terminal DNA restriction fragments (PstI-D and -B) of Pseudomonas aeruginosa bacteriophage D3 were ligated, cloned, and sequenced. Of the nine open reading frames in this 8.3-kb fragment, four were identified as encoding large-subunit terminase, portal, ClpP protease, and major head proteins. The portal and capsid proteins showed significant homology with proteins of the lambdoid coliphage HK97. Phage D3 was purified by CsCl equilibrium gradient centrifugation (rho = 1.533 g/ml), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed six proteins with molecular masses of 186, 91, 79, 70, 45, and 32 kDa. The pattern was unusual, since a major band corresponding to the expected head protein (43 kDa) was missing and a significant amount of the protein was retained in the stacking gel. The amino terminus of the 186-kDa protein was sequenced, revealing that the D3 head is composed of cross-linked 31-kDa protein subunits, resulting from the proteolysis of the 43-kDa precursor. This is identical to the situation observed with coliphage HK97. 相似文献
4.
5.
Thomas JA Weintraub ST Wu W Winkler DC Cheng N Steven AC Black LW 《Molecular microbiology》2012,84(2):324-339
Encased within the 280 kb genome in the capsid of the giant myovirus φKZ is an unusual cylindrical proteinaceous 'inner body' of highly ordered structure. We present here mass spectrometry, bioinformatic and biochemical studies that reveal novel information about the φKZ head and the complex inner body. The identification of 39 cleavage sites in 19 φKZ head proteins indicates cleavage of many prohead proteins forms a major morphogenetic step in φKZ head maturation. The φKZ head protease, gp175, is newly identified here by a bioinformatics approach, as confirmed by a protein expression assay. Gp175 is distantly related to T4 gp21 and recognizes and cleaves head precursors at related but distinct S/A/G-X-E recognition sites. Within the φKZ head there are six high-copy-number proteins that are probable major components of the inner body. The molecular weights of five of these proteins are reduced 35-65% by cleavages making their mature form similar (26-31 kDa), while their precursors are dissimilar (36-88 kDa). Together the six abundant proteins sum to the estimated mass of the inner body (15-20 MDa). The identification of these proteins is important for future studies on the composition and function of the inner body. 相似文献
6.
Proteins fold and function inside cells that are crowded with macromolecules. Here, we address the role of the resulting excluded volume effects by in vitro spectroscopic studies of Pseudomonas aeruginosa apoazurin stability (thermal and chemical perturbations) and folding kinetics (chemical perturbation) as a function of increasing levels of crowding agents dextran (sizes 20, 40, and 70 kDa) and Ficoll 70. We find that excluded volume theory derived by Minton quantitatively captures the experimental effects when crowding agents are modeled as arrays of rods. This finding demonstrates that synthetic crowding agents are useful for studies of excluded volume effects. Moreover, thermal and chemical perturbations result in free energy effects by the presence of crowding agents that are identical, which shows that the unfolded state is energetically the same regardless of method of unfolding. This also underscores the two-state approximation for apoazurin’s unfolding reaction and suggests that thermal and chemical unfolding experiments can be used in an interchangeable way. Finally, we observe increased folding speed and invariant unfolding speed for apoazurin in the presence of macromolecular crowding agents, a result that points to unfolded-state perturbations. Although the absolute magnitude of excluded volume effects on apoazurin is only on the order of 1–3 kJ/mol, differences of this scale may be biologically significant. 相似文献
7.
《Microbes and infection / Institut Pasteur》2015,17(10):710-716
Microorganisms in a biofilm might promote or suppress each other. We previously found that Pseudomonas aeruginosa (P. aeruginosa) and the normal colonized bacteria in the oropharynx, Streptococcus mitis (S. mitis), were the most common bacteria in the biofilm found on newborns' endotracheal tubes. Here, we found that S. mitis enhanced the adhesion and biofilm formation of P. aeruginosa. Furthermore, it alleviated the immune response induced by P. aeruginosa. These findings remind us that we should not ignore the role of traditionally viewed non-pathogenic bacteria in biofilms and provide new insights into exploring bacterial interaction mechanisms in biofilm related infections. 相似文献
8.
Masayochi Iwaki Hiroyuki Kagamiyama Mitsuhiro Nozaki 《Archives of biochemistry and biophysics》1981,210(1):210-223
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper. 相似文献
9.
Beno?t Valot Christophe Guyeux Julien Yves Rolland Kamel Mazouzi Xavier Bertrand Didier Hocquet 《PloS one》2015,10(5)
Pseudomonas aeruginosa is an opportunistic bacterial pathogen able to thrive in highly diverse ecological niches and to infect compromised patients. Its genome exhibits a mosaic structure composed of a core genome into which accessory genes are inserted en bloc at specific sites. The size and the content of the core genome are open for debate as their estimation depends on the set of genomes considered and the pipeline of gene detection and clustering. Here, we redefined the size and the content of the core genome of P. aeruginosa from fully re-analyzed genomes of 17 reference strains. After the optimization of gene detection and clustering parameters, the core genome was defined at 5,233 orthologs, which represented ~ 88% of the average genome. Extrapolation indicated that our panel was suitable to estimate the core genome that will remain constant even if new genomes are added. The core genome contained resistance determinants to the major antibiotic families as well as most metabolic, respiratory, and virulence genes. Although some virulence genes were accessory, they often related to conserved biological functions. Long-standing prophage elements were subjected to a genetic drift to eventually display a G+C content as higher as that of the core genome. This contrasts with the low G+C content of highly conserved ribosomal genes. The conservation of metabolic and respiratory genes could guarantee the ability of the species to thrive on a variety of carbon sources for energy in aerobiosis and anaerobiosis. Virtually all the strains, of environmental or clinical origin, have the complete toolkit to become resistant to the major antipseudomonal compounds and possess basic pathogenic mechanisms to infect humans. The knowledge of the genes shared by the majority of the P. aeruginosa isolates is a prerequisite for designing effective therapeutics to combat the wide variety of human infections. 相似文献
10.
Sorbitol-fermenting Escherichia coli O157:NM (SF O157) is an emerging pathogen suggested to be more virulent than nonsorbitol-fermenting Escherichia coli O157:H7 (NSF O157). Important virulence factors are the Shiga toxins (stx), encoded by stx1 and/or stx2 located within prophages integrated in the bacterial genome. The stx genes are expressed from p(R) (') as a late protein, and anti-terminator activity from the Q protein is necessary for read through of the late terminator t(R) (') and activation of p(R) (') . We investigated the regulation of stx2(EDL933) expression at the genomic level in 17 Norwegian SF O157. Sequencing of three selected SF O157 strains revealed that the anti-terminator q gene and genes upstream of stx2(EDL933) were identical or similar to the ones observed in the E.?coli O111:H- strain AP010960, but different from the ones observed in the NSF O157 strain EDL933 (AE005174). This suggested divergent stx2(EDL933) -encoding bacteriophages between NSF O157 and the SF O157 strains (FR874039-41). Furthermore, different DNA structures were detected in the SF O157 strains, suggesting diversity among bacteriophages also within the SF O157 group. Further investigations are needed to elucidate whether the q(O111:H) (-) gene observed in all our SF O157 contributes to the increased virulence seen in SF O157 compared to NSF O157. An assay for detecting q(O111:H) (-) was developed. 相似文献
11.
12.
Isabelle Cloutier Catherine Paradis-Bleau Anne-Marie Giroux Xavier Pigeon Marjolaine Arseneault Roger C. Levesque Michèle Auger 《European biophysics journal : EBJ》2010,39(2):263-276
The use of naturally occurring lytic bacteriophage proteins as specific antibacterial agents is a promising way to treat bacterial
infections caused by antibiotic-resistant pathogens. The opportunity to develop bacterial resistance to these agents is minimized
by their broad mechanism of action on bacterial membranes and peptidoglycan integrity. In the present study, we have investigated
lipid interactions of the gp144 lytic transglycosylase from the Pseudomonas aeruginosa phage ϕKZ. Interactions with zwitterionic lipids characteristic of eukaryotic cells and with anionic lipids characteristic
of bacterial cells were studied using fluorescence, solid-state nuclear magnetic resonance, Fourier transform infrared, circular
dichroism, Langmuir monolayers, and Brewster angle microscopy (BAM). Gp144 interacted preferentially with anionic lipids,
and the presence of gp144 in anionic model systems induced membrane disruption and lysis. Lipid domain formation in anionic
membranes was observed by BAM. Gp144 did not induce disruption of zwitterionic membranes but caused an increase in rigidity
of the lipid polar head group. However, gp144 interacted with zwitterionic and anionic lipids in a model membrane system containing
both lipids. Finally, the gp144 secondary structure was not significantly modified upon lipid binding. 相似文献
13.
Penn AS Conibear TC Watson RA Kraaijeveld AR Webb JS 《FEMS immunology and medical microbiology》2012,65(2):226-235
Co-operative behaviours, such as the production of public goods, are commonly displayed by bacteria in biofilms and can enhance their ability to survive in environmental or clinical settings. Non-co-operative cheats commonly arise and should, theoretically, disrupt co-operative behaviour. Its stability therefore requires explanation, but no mechanisms to suppress cheating within biofilms have yet been demonstrated experimentally. Theoretically, repeated aggregation into groups, interleaved with dispersal and remixing, can increase co-operation via a 'Simpson's paradox'. That is, an increase in the global proportion of co-operators despite a decrease in within-group proportions, via differential growth of groups. We investigate the hypothesis that microcolony formation and dispersal produces a Simpson's paradox that explains bacterial co-operation in biofilms. Using the production of siderophores in Pseudomonas aeruginosa as our model system for co-operation, we use well-documented co-operator and siderophore-deficient cheat strains to measure the frequency of co-operating and cheating individuals, in-situ within-microcolony structures. We detected significant within-type negative density-dependant effects that vary over microcolony development. However, we find no evidence of Simpson's paradox. Instead, we see clear within-microcolony spatial structure (cheats occupying the interior portions of microcolonies) that may violate the assumption required for Simpson's paradox that group members share equally in the public good. 相似文献
14.
Screening the Pseudomonas aeruginosa genome has led to the identification of the highest number of putative genes encoding two-component regulatory systems of all bacterial genomes sequenced to date (64 and 63 encoding response regulators and histidine kinases, respectively). Sixteen atypical kinases, among them 11 devoid of an Hpt domain, and three independent Hpt modules were retrieved. These data suggest that P. aeruginosa possesses complex control strategies with which to respond to environmental challenges. 相似文献
15.
The specificity and binding capacity of the galactophilic lectin from the Gram negative bacterium Pseudomonas aeruginosa (PA-IL) was determined by solid phase measurements using galactosylated neoglycoproteins immobilized on microtiter plates. The bacterial lectin reacted with both short chain (monosaccharide) and long chain (pentasaccharide) glycoconjugates. Among the Galα1-XGal disaccharides, the highest affinity was observed towards the Galα1-3Gal structure. Raising the incubation temperature enhanced the lectin-polysaccharide agglutination, and it is suggested that binding to certain conformations of polysaccharides could vary between lectins with the same monocarbohydrate specificity and that this activity may, in part, be temperature dependent. Histochemical examination of lectin binding to different porcine tissues suggests a differential glycosylation of the carbohydrate antigens on endothelial cells in various parts of the vascular system. In the pancreas, PA-IL also adhered to the excretory ducts. These observations on PA-IL binding could be of importance both to determine infection foci in P. aeruginosa-mediated vacuities and to determine its role for pancreatic involvement in cystic fibrosis. 相似文献
16.
L Que J D Lipscomb R Zimmermann E Münck N R Orme-Johnson W H Orme-Johnson 《Biochimica et biophysica acta》1976,452(2):320-334
Protocatechuate 3,4-dioxygenase (EC 1.13.11.3) from Pseudomonas aeruginosa has been investigated by EPR and M?ssbauer spectroscopy. Low temperature M?ssbauer data on the native enzyme (Fe3+, S = 5/2) yields a hyperfine field Hsat=-525 kG at the nucleus. This observation is inconsistent with earlier suggestions, based on EPR data of a rubredoxin-like ligand environment around the iron, i.e. a tetrahedral sulfur coordination. Likewise, the dithionite-reduced enzyme has M?ssbauer parameters unlike those of reduced rubredoxin. We conclude that the iron atoms are in a previously unrecognized environment. The ternary complex of the enzyme with 3,4-dihydroxyphenylpropionate and O2 yields EPR signals at g = 6.7 and g = 5.3; these signals result from an excited state Kramers doublet. The kinetics of the disappearance of these signals parallels product formation and the decay of the ternary complex as observed in the optical spectrum. The M?ssbauer and EPR data on the ternary complex establish the iron atoms to be a high-spin ferric state characterized by a large and negative zero-field splitting, D = approximately -2 cm-1. 相似文献
17.
《Gene》1997,192(1):117-121
The bifunctional enzyme prepilin peptidase (PilD) from Pseudomonas aeruginosa is a key determinant in both type-IV pilus biogenesis and extracellular protein secretion, in its roles as a leader peptidase and MTase. It is responsible for endopeptidic cleavage of the unique leader peptides that characterize type-IV pilin precursors, as well as proteins with homologous leader sequences that are essential components of the general secretion pathway found in a variety of Gram-negative pathogens. Following removal of the leader peptides, the same enzyme is responsible for the second posttranslational modification that characterizes the type-IV pilins and their homologues, namely N-methylation of the newly exposed N-terminal amino acid residue. This review discusses some of the work begun in order to answer questions regarding the structure-function relationships of the active sites of this unique enzyme. 相似文献
18.
M. V. Burkal'tseva V. N. Krylov E. A. Pleteneva O. V. Shaburova S. V. Krylov G. Volkart N. N. Sykilinda L. P. Kurochkina V. V. Mesyanzhinov 《Russian Journal of Genetics》2002,38(11):1242-1250
A comparative study was made of a group ofPseudomonas aeruginosa virulent giant DNA bacteriophages similar to phage KZ in several genetic and phenotypic properties (particle size, particle morphology, genome size, appearance of negative colonies, high productivity, broad spectrum of lytic activity, ability to overcome the suppressing effect of plasmids, absence of several DNA restriction sites, capability of general transduction, pseudolysogeny). We have recently sequenced the phage KZ genome (288 334 bp) [J. Mol. Biol., 2002, vol. 317, pp. 1–19]. By DNA homology, the phages were assigned to three species (represented by phages KZ, Lin68, and EL, respectively) and two new genera (KZ and EL). Restriction enzyme analysis revealed the mosaic genome structure in four phages of the KZ species (KZ, Lin21, NN, and PTB80) and two phages of the EL species (EL and RU). Comparisons with respect to phage particle size, number of structural proteins, and the N-terminal sequences of the major capsid protein confirmed the phylogenetic relatedness of the phages belonging to the KZ genus. The origin and evolution of the KZ-like phages are discussed. Analysis of protein sequences encoded by the phage KZ genome made it possible to assume wide migration of the KZ-like phages (wandering phages) among various prokaryotes and possibly eukaryotes. Since the phage KZ genome codes for potentially toxic proteins, caution must be exercised in the employment of large bacteriophages in phage therapy. 相似文献
19.
Lucile Moynié Stuart M. Leckie Stephen A. McMahon Fraser G. Duthie Alessa Koehnke James W. Taylor Magnus S. Alphey Ruth Brenk Andrew D. Smith James H. Naismith 《Journal of molecular biology》2013,425(2):365-377
Fatty acid biosynthesis is an essential component of metabolism in both eukaryotes and prokaryotes. The fatty acid biosynthetic pathway of Gram-negative bacteria is an established therapeutic target. Two homologous enzymes FabA and FabZ catalyze a key step in fatty acid biosynthesis; both dehydrate hydroxyacyl fatty acids that are coupled via a phosphopantetheine to an acyl carrier protein (ACP). The resulting trans-2-enoyl-ACP is further polymerized in a processive manner. FabA, however, carries out a second reaction involving isomerization of trans-2-enoyl fatty acid to cis-3-enoyl fatty acid. We have solved the structure of Pseudomonas aeruginosa FabA with a substrate allowing detailed molecular insight into the interactions of the active site. This has allowed a detailed examination of the factors governing the second catalytic step. We have also determined the structure of FabA in complex with small molecules (so-called fragments). These small molecules occupy distinct regions of the active site and form the basis for a rational inhibitor design program. 相似文献
20.
Pseudomonas aeruginosa is a Gram-negative bacterium that does not contain large, nonspecific porins in its outer membrane. Consequently, the outer membrane is highly impermeable to polar solutes and serves as a barrier against the penetration of antimicrobial agents. This is one of the reasons why such bacteria are intrinsically resistant to antibiotics. Polar molecules that permeate across the outer membrane do so through substrate-specific channels proteins. To design antibiotics that target substrate-channel proteins, it is essential to first identify the permeation pathways of their natural substrates. In P. aeruginosa, the largest family of substrate-specific proteins is the OccD (previously reported under the name OprD) family. Here, we employ equilibrium and steered molecular-dynamics simulations to study OccD1/OprD, the archetypical member of the OccD family. We study the permeation of arginine, one of the natural substrates of OccD1, through the protein. The combination of simulation methods allows us to predict the pathway taken by the amino acid, which is enabled by conformational rearrangements of the extracellular loops of the protein. Furthermore, we show that arginine adopts a specific orientation to form the molecular interactions that facilitate its passage through part of the protein. We predict a three-stage permeation process for arginine. 相似文献