首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adhesion molecules such as ICAM-1 are important in the infiltration of leukocytes into the site of inflammation. In this study, we investigated the inhibitory effects of curcumin on ICAM-1 expression and monocyte adhesiveness as well as its underlying action mechanism in the TNF-α-stimulated keratinocytes. Curcumin induced expression of heme oxygenase-1 (HO-1) in the human keratinocyte cell line HaCaT. In addition, curcumin induced Nrf2 activation in dose- and time-dependent manners in the HaCaT cells. Curcumin suppressed TNF-α- induced ICAM-1 expression and subsequent monocyte adhesion, which were reversed by the addition of tin protoporphyrin IX (SnPP), a specific inhibitor of HO-1, or HO-1 knockdown using siRNA. Furthermore, Nrf2 knockdown using siRNA reversed the inhibitory effect of curcumin on the TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes. These results suggest that curcumin may exert its anti-inflammatory activity by suppressing the TNF-α-induced ICAM-1 expression and subsequent monocyte adhesion via expression of HO-1 in the keratinocytes. [BMB Reports 2013;46(8): 410-415]  相似文献   

2.
Respiratory syncytial virus (RSV) infection is the main cause of bronchiolitis in children. Excessive mucus secretion is one of the primary symbols in RSV related lower respiratory tract infections (RSV-related LRTI), which is closely associated with the occurrence and development of asthma in later life. Integrin β4 (ITGB4) is down-regulated in the airway epithelial cells (AECs) of asthma patients which plays a critical role in the pathogenesis of asthma. However, whether ITGB4 is involved in the pathological processes of RSV infection remains unclear. In this study, we found that decreased expression of ITGB4 was negatively correlated with the level of MUC5AC in childhood AECs following RSV infection. Moreover, ITGB4 deficiency led to mucus hypersecretion and MUC5AC overexpression in the small airway of RSV-infected mice. MUC5AC expression was upregulated by ITGB4 in HBE cells through EGFR, ERK and c-Jun pathways. EGFR inhibitors treatment inhibited mucus hypersecretion and MUC5AC overexpression in ITGB4-deficient mice after RSV infection. Together, these results demonstrated that epithelial ITGB4 deficiency induces mucus hypersecretion by upregulating the expression of MUC5AC through EGFR/ERK/c-Jun pathway, which further associated with RSV-related LRTI.  相似文献   

3.
Respiratory syncytial virus (RSV) is a major cause of morbidity and mortality worldwide, causing severe respiratory illness in infants and immune compromised patients. The ciliated cells of the human airway epithelium have been considered to be the exclusive target of RSV, although recent data have suggested that basal cells, the progenitors for the conducting airway epithelium, may also become infected in vivo. Using either mechanical or chemical injury models, we have demonstrated a robust RSV infection of p63+ basal cells in air-liquid interface (ALI) cultures of human bronchial epithelial cells. In addition, proliferating basal cells in 2D culture were also susceptible to RSV infection. We therefore tested the hypothesis that RSV infection of this progenitor cell would influence the differentiation status of the airway epithelium. RSV infection of basal cells on the day of seeding (MOI≤0.0001), resulted in the formation of an epithelium that showed a profound loss of ciliated cells and gain of secretory cells as assessed by acetylated α-tubulin and MUC5AC/MUC5B immunostaining, respectively. The mechanism driving the switch in epithelial phenotype is in part driven by the induced type I and type III interferon response that we demonstrate is triggered early following RSV infection. Neutralization of this response attenuates the RSV-induced loss of ciliated cells. Together, these data show that through infection of proliferating airway basal cells, RSV has the potential to influence the cellular composition of the airway epithelium. The resulting phenotype might be expected to contribute towards both the severity of acute infection, as well as to the longer-term consequences of viral exacerbations in patients with pre-existing respiratory diseases.  相似文献   

4.
The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin-1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress- and inflammation-related neurodegenerative disorders such as Parkinson’s disease.  相似文献   

5.
Stress is a common phenomenon that is attracting increasing attention. Hydrogen sulfide (H2S) is a gasotransmitter that plays an important role in many physiological and pathological events. Our study aimed to estimate the effect and the underlying mechanisms of the H2S donor, sodium hydrosulfide (NaHS), against immobilization stress (IS)–induced lung injury. Forty adult male rats were classified into control group, NaHS group, and IS groups with and without NaHS treatment. Serum was obtained to determine corticosterone (CORT), total antioxidant capacity (TAC), tumor necrosis factor‐α (TNF‐α), and interleukin-10 (IL-10) levels. Lung H2S, nitric oxide (NO), inducible nitric oxide synthase (iNOS), and malondialdehyde (MDA) levels were measured. Lung expressions of H2S synthesizing enzymes and Western blot analysis of nuclear factor erythroid 2–related factor 2 (Nrf2) and hypoxia-inducible factor 1 alpha (HIF 1α) were estimated. Histopathological changes and immunohistochemical assessment of nuclear factor kappa B (NF-κB) and caspase‐3 were also done. Pretreatment with NaHS led to marked histological protection from lung damage seen in IS rats. Furthermore, pretreatment with NaHS before IS protected lung H2S levels and expressions of H2S-synthesizing enzymes. Similarly, the levels of CORT, TNF-α, IL-10, MDA, TAC, NO, iNOS, HIF-1 α, and nuclear Nrf2 and expressions of NF-kB and caspase 3 were all maintained at near control levels in contrast to that in the IS rats. In conclusion, NaHS is protective against stress‐induced lung injury due to its antioxidant, anti-inflammatory, anti-fibrotic, and antiapoptotic effects. Thus, NaHS can be used to minimize stress complications on lung.  相似文献   

6.
Oxidative damage and inflammation are closely associated with the pathogenesis of acute lung injury (ALI). Thus, we explored the protective effect of isovitexin (IV), a glycosylflavonoid, in the context of ALI. To accomplish this, we created in vitro and in vivo models by respectively exposing macrophages to lipopolysaccharide (LPS) and using LPS to induce ALI in mice. In vitro, our results showed that IV treatment reduced LPS-induced pro-inflammatory cytokine secretion, iNOS and COX-2 expression and decreased the generation of ROS. Consistent findings were obtained in vivo. Additionally, IV inhibited H2O2-induced cytotoxicity and apoptosis. However, these effects were partially reversed following the use of an HO-1 inhibitor in vitro. Further studies revealed that IV significantly inhibited MAPK phosphorylation, reduced NF-κB nuclear translocation, and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) expression in RAW 264.7 cells. In vivo, pretreatment with IV attenuated histopathological changes, infiltration of polymorphonuclear granulocytes and endothelial activation, decreased the expression of ICAM-1 and VCAM-1, reduced the levels of MPO and MDA, and increased the content of GSH and SOD in ALI. Furthermore, IV treatment effectively increased Nrf2 and HO-1 expression in lung tissues. Therefore, IV may offer a protective role against LPS-induced ALI by inhibiting MAPK and NF-κB and activating HO-1/Nrf2 pathways.  相似文献   

7.
Respiratory syncytial virus (RSV) infects the upper and lower respiratory tracts and can cause lower respiratory tract infections in children and elders. RSV has traditionally been isolated, grown, studied and quantified in immortalized cell lines, most frequently HEp-2 cells. However, in vivo RSV infection is modeled more accurately in primary well differentiated human bronchial epithelial (HBE) cultures where RSV targets the ciliated cells and where the putative RSV receptor differs from the receptor on HEp-2 cells. The RSV attachment (G) glycoprotein in virions produced by HEp-2 cells is a highly glycosylated 95 kDa protein with a 32 kDa peptide core. However, virions produced in HBE cultures, RSV (HBE), contain an even larger, 170 kDa, G protein (LgG). Here we show that LgG is found in virions from both subgroups A and B lab-adapted and clinical isolates. Unexpectedly, RSV (HBE) virions were approximately 100-fold more infectious for HBE cultures than for HEp-2 cells. Surprisingly, the cause of this differential infectivity, was reduced infectivity of RSV (HBE) on HEp-2 cells rather than enhanced infectivity on HBE cultures. The lower infectivity of RSV(HBE) for HEp-2 cells is caused by the reduced ability of LgG to interact with heparan sulfate proteoglycans (HSPG), the RSV receptor on HEp-2 cells. The discovery of different infectivity corresponding with the larger form of the RSV attachment protein when produced by HBE cultures highlights the importance of studying a virus produced by its native host cell and the potential impact on quantifying virus infectivity on cell lines where the virus entry mechanisms differ from their natural target cell.  相似文献   

8.
Intercellular adhesion between adjacent airway epithelial cells plays a critical role in maintaining the barrier function of the respiratory mucosa. In the current study, we examined the expression and interaction of cell surface adhesion molecules (E-cadherin, ICAM-1, and MUC1) and their intracellular binding partners (alpha-catenin, beta-catenin, gamma-catenin, and ezrin) in 16HBE14o-, HBE1, 1HAEo-, BEAS-2B, A549, and NCI-H292 human airway epithelial cells. Expression of E-cadherin and MUC1, both in whole cell lysates and biotinylated surface proteins, was observed in 16HBE14o-, HBE1, A549, and NCI-H292 cells, while ICAM-1 was detected only in NCI-H292. In contrast, alpha-, beta-, and gamma-catenin and ezrin were expressed in all of the cells. E-cadherin formed coimmunoprecipitation complexes with beta- and gamma-catenin, whereas MUC1 only associated with beta-catenin. ICAM-1, but not MUC1, coimmunoprecipitated with ezrin in NCI-H292 cells. We conclude that airway epithelial cell-cell adhesion involves a complex network of protein-protein interactions mediated by a diverse array of membrane-bound and cytosolic protein partners.  相似文献   

9.
10.
Virus infection is restricted by intracellular immune responses in host cells, and this is typically modulated by stimulation of cytokines. The cytokines and host factors that determine the host cell restriction against hepatitis B virus (HBV) infection are not well understood. We screened 36 cytokines and chemokines to determine which were able to reduce the susceptibility of HepaRG cells to HBV infection. Here, we found that pretreatment with IL-1β and TNFα remarkably reduced the host cell susceptibility to HBV infection. This effect was mediated by activation of the NF-κB signaling pathway. A cytidine deaminase, activation-induced cytidine deaminase (AID), was up-regulated by both IL-1β and TNFα in a variety of hepatocyte cell lines and primary human hepatocytes. Another deaminase APOBEC3G was not induced by these proinflammatory cytokines. Knockdown of AID expression impaired the anti-HBV effect of IL-1β, and overexpression of AID antagonized HBV infection, suggesting that AID was one of the responsible factors for the anti-HBV activity of IL-1/TNFα. Although AID induced hypermutation of HBV DNA, this activity was dispensable for the anti-HBV activity. The antiviral effect of IL-1/TNFα was also observed on different HBV genotypes but not on hepatitis C virus. These results demonstrate that proinflammatory cytokines IL-1/TNFα trigger a novel antiviral mechanism involving AID to regulate host cell permissiveness to HBV infection.  相似文献   

11.
We examined the underlying mechanisms involved in n-3 docosahexaenoic acid (DHA) inhibition of inflammation in EA.hy926 cells. The present results demonstrated that pretreatment with DHA (50 and 100 μM) inhibited tumor necrosis factor-alpha (TNF-α)-induced intercellular adhesion molecule 1 (ICAM-1) protein, mRNA expression and promoter activity. In addition, TNF-α-stimulated inhibitory kappa B (IκB) kinase (IKK) phosphorylation, IκB phosphorylation and degradation, p65 nuclear translocation, and nuclear factor-κB (NF-κB) and DNA binding activity were attenuated by pretreatment with DHA. DHA triggered early-stage and transient reactive oxygen species (ROS) generation and significantly increased the protein expression of heme oxygenase 1 (HO-1), induced nuclear factor erythroid 2-related factor 2 (Nrf2) translocation to the nucleus and up-regulated antioxidant response element (ARE)-luciferase reporter activity. Moreover, DHA inhibited Nrf2 ubiquitination and proteasome activity. DHA activated Akt, p38 and ERK1/2 phosphorylation, and specific inhibitors of respective pathways attenuated DHA-induced Nrf2 nuclear translocation and HO-1 expression. Transfection with HO-1 siRNA knocked down HO-1 expression and partially reversed the DHA-mediated inhibition of TNF-α-induced p65 nuclear translocation and ICAM-1 expression. Importantly, we show for the first time that HO-1 plays a down-regulatory role in NF-κB nuclear translocation, and inhibition of Nrf2 ubiquitination and proteasome activity are involved in increased cellular Nrf2 level by DHA. In this study, we show that HO-1 plays a down-regulatory role in NF-κB nuclear translocation and that the protective effect of DHA against inflammation is partially via up-regulation of Nrf2-mediated HO-1 expression and inhibition of IKK/NF-κB signaling pathway.  相似文献   

12.
The physiological gaseous molecule, carbon monoxide (CO) becomes a subject of extensive investigation due to its vasoactive activity throughout the body but its role in gastroprotection has been little investigated. We determined the mechanism of CO released from its donor tricarbonyldichlororuthenium (II) dimer (CORM-2) in protection of gastric mucosa against 75% ethanol-induced injury. Rats were pretreated with CORM-2 30 min prior to 75% ethanol with or without 1) non-selective (indomethacin) or selective cyclooxygenase (COX)-1 (SC-560) and COX-2 (celecoxib) inhibitors, 2) nitric oxide (NO) synthase inhibitor L-NNA, 3) ODQ, a soluble guanylyl cyclase (sGC) inhibitor, hemin, a heme oxygenase (HO)-1 inductor or zinc protoporphyrin IX (ZnPPIX), an inhibitor of HO-1 activity. The CO content in gastric mucosa and carboxyhemoglobin (COHb) level in blood was analyzed by gas chromatography. The gastric mucosal mRNA expression for HO-1, COX-1, COX-2, iNOS, IL-4, IL-1β was analyzed by real-time PCR while HO-1, HO-2 and Nrf2 protein expression was determined by Western Blot. Pretreatment with CORM-2 (0.5–10 mg/kg) dose-dependently attenuated ethanol-induced lesions and raised gastric blood flow (GBF) but large dose of 100 mg/kg was ineffective. CORM-2 (5 mg/kg and 50 mg/kg i.g.) significantly increased gastric mucosal CO content and whole blood COHb level. CORM-2-induced protection was reversed by indomethacin, SC-560 and significantly attenuated by celecoxib, ODQ and L-NNA. Hemin significantly reduced ethanol damage and raised GBF while ZnPPIX which exacerbated ethanol-induced injury inhibited CORM-2- and hemin-induced gastroprotection and the accompanying rise in GBF. CORM-2 significantly increased gastric mucosal HO-1 mRNA expression and decreased mRNA expression for iNOS, IL-1β, COX-1 and COX-2 but failed to affect HO-1 and Nrf2 protein expression decreased by ethanol. We conclude that CORM-2 released CO exerts gastroprotection against ethanol-induced gastric lesions involving an increase in gastric microcirculation mediated by sGC/cGMP, prostaglandins derived from COX-1, NO-NOS system and its anti-inflammatory properties.  相似文献   

13.
Respiratory syncytial virus (RSV) is worldwide the most frequent cause of bronchiolitis and pneumonia in infants requiring hospitalization. In the present study, we supply evidence that human lung microvascular endothelial cells, human pulmonary lung aorta endothelial cells, and HUVEC are target cells for productive RSV infection. All three RSV-infected endothelial cell types showed an enhanced cell surface expression of ICAM-1 (CD54), which increased in a time- and RSV-dose-dependent manner. By using noninfectious RSV particles we verified that replication of RSV is a prerequisite for the increase of ICAM-1 cell surface expression. The up-regulated ICAM-1 expression pattern correlated with an increased cellular ICAM-1 mRNA amount. In contrast to ICAM-1, a de novo expression of VCAM-1 (CD106) was only observed on RSV-infected HUVEC. Neither P-selectin (CD62P) nor E-selectin (CD62E) was up-regulated by RSV on human endothelial cells. Additional experiments performed with neutralizing Abs specific for IL-1alpha, IL-1beta, IL-6, and TNF-alpha, respectively, excluded an autocrine mechanism responsible for the observed ICAM-1 up-regulation. The virus-induced ICAM-1 up-regulation was dependent on protein kinase C and A, PI3K, and p38 MAPK activity. Adhesion experiments using polymorphonuclear neutrophil granulocytes (PMN) verified an increased ICAM-1-dependent adhesion rate of PMN cocultured with RSV-infected endothelial cells. Furthermore, the increased adhesiveness resulted in an enhanced transmigration rate of PMN. Our in vitro data suggest that human lung endothelial cells are target cells for RSV infection and that ICAM-1 up-regulated on RSV-infected endothelial cells might contribute to the enhanced accumulation of PMN into the bronchoalveolar space.  相似文献   

14.

Objective

To investigate whether lipoxin A4 (LXA4) increases expression of heme oxygenase-1(HO-1) in cardiomyocytes, whether LXA4-induced HO-1 protects cardiomyocytes against hypoxia/reoxygenation (H/R) injury, and what are the mechanisms involved in the LXA4-induced HO-1 induction.

Methods

Rat cardiomyocytes were exposed to H/R injury with or without preincubation with LXA4 or HO-1 inhibitor ZnPP-IX or various signal molecule inhibitors. Expressions of HO-1 protein and mRNA were analyzed by using Western blot and RT-PCR respectively. Activity of nuclear factor E2-related factor 2 (Nrf2) binding to the HO-1 E1 enhancer was assessed by chromatin immunoprecipitation. Nrf2 binding to the HO-1 antioxidant responsive element (ARE) were measured by using electrophoretic mobility shift assay.

Results

Pretreatment of the cells undergoing H/R lesion with LXA4 significantly reduced the lactate dehydrogenase and creatine kinase productions, increased the cell viability, and increased the expressions of HO-1 protein and mRNA and HO-1 promoter activity. HO-1 inhibition abolished the protective role of LXA4 on the cells undergoing H/R lesion. LXA4 increased p38 mitogen-activated protein kinase (p38 MAPK) activation, nuclear translocation of Nrf2, Nrf2 binding to the HO-1 ARE and E1 enhancer in cardiomyocytes with or without H/R exposure.

Conclusion

The protection role of LXA4 against H/R injury of cardiomyocytes is related to upregulation of HO-1, via activation of p38 MAPK pathway and nuclear translocation of Nrf2 and Nrf2 binding to the HO-1 ARE and E1 enhancer, but not via activation of phosphatidyinositol-3-kinase or extracellular signal-regulated kinase pathway.  相似文献   

15.
Recruitment and trafficking of autoreactive leucocytes across the BNB (blood–nerve barrier) is an early pathological insult in GBS (Guillain-Barré syndrome), an aggressive autoimmune disorder of the PNS (peripheral nervous system). Whereas the aetiology and pathogenesis of GBS remain unclear, pro-inflammatory cytokines, including TNFα (tumour necrosis factor α), are reported to be elevated early in the course of GBS and may initiate nerve injury by activating the BNB. Previously, we reported that disrupting leucocyte trafficking in vivo therapeutically attenuates the course of an established animal model of GBS. Here, PNMECs (peripheral nerve microvascular endothelial cells) that form the BNB were harvested from rat sciatic nerves, immortalized by SV40 (simian virus 40) large T antigen transduction and subsequently challenged with TNFα. Relative changes in CCL2 (chemokine ligand 2) and ICAM-1 (intercellular adhesion molecule 1) expression were determined. We report that TNFα elicits marked dose- and time-dependent increases in CCL2 and ICAM-1 mRNA and protein content and promotes secretion of functional CCL2 from immortalized and primary PNMEC cultures. TNFα-mediated secretion of CCL2 promotes, in vitro, the transendothelial migration of CCR2-expressing THP-1 monocytes. Increased CCL2 and ICAM-1 expression in response to TNFα may facilitate recruitment and trafficking of autoreactive leucocytes across the BNB in autoimmune disorders, including GBS.  相似文献   

16.
17.
18.
19.
20.
S-(-)equol, a natural product of the isoflavone daidzein, has been reported to offer cytoprotective effects with respect to the cardiovascular system, but how this occurs is unclear. Interestingly, S-(-)equol is produced by the human gut, suggesting a role in physiological processes. We report that treatment of human umbilical vein endothelial cells and EA.hy926 cells with S-(-)equol induces ARE-luciferase reporter gene activity that is dose and time dependent. S-(-)equol (10–250 nM) increases nuclear factor-erythroid 2-related factor 2 (Nrf2) as well as gene products of Nrf2 target genes heme oxygenase-1 (HO-1) and NAD(P)H (nicotinamide-adenine-dinucleotide-phosphate) quinone oxidoreductase 1 (NQO1). Endothelial cells transfected with an HA-Nrf2 expression plasmid had elevated HA-Nrf2, HO-1, and NQO1 in response to S-(-)equol exposure. S-(-)equol treatment affected Nrf2 mRNA only slightly but significantly increased HO-1 and NQO1 mRNA. The pretreatment of cells with specific ER inhibitors or PI3K/Akt (ICI182,780 and LY294002) increased Nrf2, HO-1, and NQO1 protein, impaired nuclear translocation of HA-Nrf2, and decreased ARE-luciferase activity. Identical experiments were conducted with daidzein, which had effects similar to S-(-)equol. In addition, DPN treatment (an ERβ agonist) induced the ARE-luciferase reporter gene, promoting Nrf2 nuclear translocation. Cell pretreatment with an ERβ antagonist (PHTPP) impaired S-(-)equol-induced Nrf2 activation. Pre-incubation of cells followed by co-treatment with S-(-)equol significantly improved cell survival in response to H2O2 or tBHP and reduced apoptotic and TUNEL-positively-stained cells. Notably, the ability of S-(-)equol to protect against H2O2-induced cell apoptosis was attenuated in cells transfected with an siRNA against Nrf2. Thus, beneficial effects of S-(-)equol with respect to cytoprotective antioxidant gene activation may represent a novel strategy to prevent and treat cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号