首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific miRNA, miR-196a, could ameliorate the pathological phenotypes of Huntington’s disease (HD) in different models, and performed high throughput screening by using the striatum of transgenic mice. In this study, we further tried to identify the potential regulatory mechanisms using different bioinformatic tools, including Database for Annotation, Visualization and Integrated Discovery (DAVID), Molecular Signatures Database (MSigDB), TargetScan and MetaCore. The results showed that miR-196a dominantly altered “ABC transporters”, “RIG-I-like receptor signaling pathway”, immune system”, “adaptive immune system”,“tissue remodeling and wound repair” and “cytoskeleton remodeling”. In addition, miR-196a also changed the expression of several well-defined pathways of HD, such as apoptosis and cell adhesion. Since these analyses showed the regulatory pathways are highly related to the modification of the cytoskeleton, we further confirmed that miR-196a could enhance the neurite outgrowth in neuroblastoma cells, suggesting miR-196a might provide beneficial functions through the alteration of cytoskeleton structures. Since impairment of the cytoskeleton has been reported in several neuronal diseases, this study will provide not only the potential working mechanisms of miR-196a but also insights for therapeutic strategies for use with different neuronal diseases.  相似文献   

2.
3.
The Huntington’s disease (HD) protein, huntingtin (HTT), is a large protein consisting of 3144 amino acids and has conserved N-terminal sequences that are followed by a polyglutamine (polyQ) repeat. Loss of Htt is known to cause embryonic lethality in mice, whereas polyQ expansion leads to adult neuronal degeneration. Whether N-terminal HTT is essential for neuronal development or contributes only to late-onset neurodegeneration remains unknown. We established HTT knock-in mice (N160Q-KI) expressing the first 208 amino acids of HTT with 160Q, and they show age-dependent HTT aggregates in the brain and neurological phenotypes. Importantly, the N-terminal mutant HTT also preferentially accumulates in the striatum, the brain region most affected in HD, indicating the importance of N-terminal HTT in selective neuropathology. That said, homozygous N160Q-KI mice are also embryonic lethal, suggesting that N-terminal HTT alone is unable to support embryonic development. Using Htt knockout neurons, we found that loss of Htt selectively affects the survival of developing neuronal cells, but not astrocytes, in culture. This neuronal degeneration could be rescued by a truncated HTT lacking the first 237 amino acids, but not by N-terminal HTT (1–208 amino acids). Also, the rescue effect depends on the region in HTT known to be involved in intracellular trafficking. Thus, the N-terminal HTT region may not be essential for the survival of developing neurons, but when carrying a large polyQ repeat, can cause selective neuropathology. These findings imply a possible therapeutic benefit of removing the N-terminal region of HTT containing the polyQ repeat to treat the neurodegeneration in HD.  相似文献   

4.
5.
Emerging studies have suggested that dysregulated long non-coding RNAs (lncRNAs) are associated with the pathogenesis of neurodegenerative diseases (NDD) including Huntington's disease (HD); however, the pathophysiological mechanism by which lncRNA dysregulation participates in HD remains to be elucidated. Here, we aim to analyse the expression of lncRNA-DNM3OS and identify the possible DNM3OS/miR-196b-5p/GAPDH pathway. PC12 cells induced by rat pheochromocytoma expressing HD gene exon 1 fragment with either 23 or 74 polyglutamine repeats fused to the green fluorescent protein (GFP) were cultured. Our results show that GAPDH and DNM3OS were upregulated in HD PC12 cells, downregulation of which lead to inhibition of aggregate formation accompanied by a decreased apoptosis rate and increased relative ROS levels and cell viability. Moreover, upregulated DNM3OS decreased the expression of miR-196b-5p by sponging, and GAPDH was a direct target of miR-196b-5p, playing an important pathogenic role in the formation of aggregates in the HD cell model. Our study uncovers a novel DNM3OS/miR-196b-5p/GAPDH pathway involved in the molecular pathogenesis of HD, which may offer a potential therapeutic strategy for HD.  相似文献   

6.
7.
Huntington disease (HD) is an inherited neurodegenerative disease caused by a CAG expansion in the HTT gene. Using yeast two-hybrid methods, we identified a large set of proteins that interact with huntingtin (HTT)-interacting proteins. This network, composed of HTT-interacting proteins (HIPs) and proteins interacting with these primary nodes, contains 3235 interactions among 2141 highly interconnected proteins. Analysis of functional annotations of these proteins indicates that primary and secondary HIPs are enriched in pathways implicated in HD, including mammalian target of rapamycin, Rho GTPase signaling, and oxidative stress response. To validate roles for HIPs in mutant HTT toxicity, we show that the Rho GTPase signaling components, BAIAP2, EZR, PIK3R1, PAK2, and RAC1, are modifiers of mutant HTT toxicity. We also demonstrate that Htt co-localizes with BAIAP2 in filopodia and that mutant HTT interferes with filopodial dynamics. These data indicate that HTT is involved directly in membrane dynamics, cell attachment, and motility. Furthermore, they implicate dysregulation in these pathways as pathological mechanisms in HD.  相似文献   

8.
9.
10.
Li XJ  Li S 《遗传学报》2012,39(6):239-245
Transgenic animal models have revealed much about the pathogenesis of age-dependent neurodegenerative diseases and proved to be a useful tool for uncovering therapeutic targets.Huntington's disease is ...  相似文献   

11.
The cascade of events that lead to cognitive decline, motor deficits, and psychiatric symptoms in patients with Huntington disease (HD) is triggered by a polyglutamine expansion in the N-terminal region of the huntingtin (HTT) protein. A significant mechanism in HD is the generation of mutant HTT fragments, which are generally more toxic than the full-length HTT. The protein fragments observed in human HD tissue and mouse models of HD are formed by proteolysis or aberrant splicing of HTT. To systematically investigate the relative contribution of the various HTT protein proteolysis events observed in vivo, we generated transgenic mouse models of HD representing five distinct proteolysis fragments ending at amino acids 171, 463, 536, 552, and 586 with a polyglutamine length of 148. All lines contain a single integration at the ROSA26 locus, with expression of the fragments driven by the chicken β-actin promoter at nearly identical levels. The transgenic mice N171-Q148 and N552-Q148 display significantly accelerated phenotypes and a shortened life span when compared with N463-Q148, N536-Q148, and N586-Q148 transgenic mice. We hypothesized that the accelerated phenotype was due to altered HTT protein interactions/complexes that accumulate with age. We found evidence for altered HTT complexes in caspase-2 fragment transgenic mice (N552-Q148) and a stronger interaction with the endogenous HTT protein. These findings correlate with an altered HTT molecular complex and distinct proteins in the HTT interactome set identified by mass spectrometry. In particular, we identified HSP90AA1 (HSP86) as a potential modulator of the distinct neurotoxicity of the caspase-2 fragment mice (N552-Q148) when compared with the caspase-6 transgenic mice (N586-Q148).  相似文献   

12.
Huntington's disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches.  相似文献   

13.
The aggregation of proteins with expanded polyglutamine (polyQ) tracts is directly relevant to the formation of neuronal intranuclear inclusions in Huntington’s disease. In vitro studies have uncovered the effects of flanking sequences as modulators of the driving forces and mechanisms of polyQ aggregation in sequence segments associated with HD. Specifically, a seventeen-residue amphipathic stretch (N17) that is directly N-terminal to the polyQ tract in huntingtin decreases the overall solubility, destabilizes nonfibrillar aggregates, and accelerates fibril formation. Published results from atomistic simulations showed that the N17 module reduces the frequency of intermolecular association. Our reanalysis of these simulation results demonstrates that the N17 module also reduces interchain entanglements between polyQ domains. These two effects, which are observed on the smallest lengthscales, are incorporated into phenomenological pair potentials and used in coarse-grained Brownian dynamics simulations to investigate their impact on large-scale aggregation. We analyze the results from Brownian dynamics simulations using the framework of diffusion-limited cluster aggregation. When entanglements prevail, which is true in the absence of N17, small spherical clusters and large linear aggregates form on distinct timescales, in accord with in vitro experiments. Conversely, when entanglements are quenched and a barrier to intermolecular associations is introduced, both of which are attributable to N17, the timescales for forming small species and large linear aggregates become similar. Therefore, the combination of a reduction of interchain entanglements through homopolymeric polyQ and barriers to intermolecular associations appears to be sufficient for providing a minimalist phenomenological rationalization of in vitro observations regarding the effects of N17 on polyQ aggregation.  相似文献   

14.
The present study describes evaluation of epigenetic regulation by a small molecule as the therapeutic potential for treatment of Huntington’s disease (HD). We identified 5-allyloxy-2-(pyrrolidin-1-yl)quinoline (APQ) as a novel SETDB1/ESET inhibitor using a combined in silico and in vitro cell based screening system. APQ reduced SETDB1 activity and H3K9me3 levels in a HD cell line model. In particular, not only APQ reduced H3K9me3 levels in the striatum but it also improved motor function and neuropathological symptoms such as neuronal size and activity in HD transgenic (YAC128) mice with minimal toxicity. Using H3K9me3-ChIP and genome-wide sequencing, we also confirmed that APQ modulates H3K9me3-landscaped epigenomes in YAC128 mice. These data provide that APQ, a novel small molecule SETDB1 inhibitor, coordinates H3K9me-dependent heterochromatin remodelling and can be an epigenetic drug for treating HD, leading with hope in clinical trials of HD.  相似文献   

15.
We report on Dutch and Iranian families with affected individuals who present with moderate to severe intellectual disability and additional phenotypes including progressive tremor, speech impairment, and behavioral problems in certain individuals. A combination of exome sequencing and homozygosity mapping revealed homozygous mutations c.484G>A (p.Gly162Arg) and c.1898C>G (p.Pro633Arg) in SLC6A17. SLC6A17 is predominantly expressed in the brain, encodes a synaptic vesicular transporter of neutral amino acids and glutamate, and plays an important role in the regulation of glutamatergic synapses. Prediction programs and 3D modeling suggest that the identified mutations are deleterious to protein function. To directly test the functional consequences, we investigated the neuronal subcellular localization of overexpressed wild-type and mutant variants in mouse primary hippocampal neuronal cells. Wild-type protein was present in soma, axons, dendrites, and dendritic spines. p.Pro633Arg altered SLC6A17 was found in soma and proximal dendrites but did not reach spines. p.Gly162Arg altered SLC6A17 showed a normal subcellular distribution but was associated with an abnormal neuronal morphology mainly characterized by the loss of dendritic spines. In summary, our genetic findings implicate homozygous SLC6A17 mutations in autosomal-recessive intellectual disability, and their pathogenic role is strengthened by genetic evidence and in silico and in vitro functional analyses.  相似文献   

16.
We have previously developed a unique 8-amino acid Aβ42 oligomer-Interacting Peptide (AIP) as a novel anti-amyloid strategy for the treatment of Alzheimer’s disease. Our lead candidate has successfully progressed from test tubes (i.e., in vitro characterization of protease-resistant D-AIP) to transgenic flies (i.e., in vivo rescue of human Aβ42-mediated toxicity via D-AIP-supplemented food). In the present study, we examined D-AIP in terms of its stability in multiple biological matrices (i.e., ex-vivo mouse plasma, whole blood, and liver S9 fractions) using MALDI mass spectrometry, pharmacokinetics using a rapid and sensitive LC-MS method, and blood brain barrier (BBB) penetrance in WT C57LB/6 mice. D-AIP was found to be relatively stable over 3 h at 37 °C in all matrices tested. Finally, label-free MALDI imaging showed that orally administered D-AIP can readily penetrate the intact BBB in both male and female WT mice. Based upon the favorable stability, pharmacokinetics, and BBB penetration outcomes for orally administered D-AIP in WT mice, we then examined the effect of D-AIP on amyloid “seeding” in vitro (i.e., freshly monomerized versus preaggregated Aβ42). Complementary biophysical assays (ThT, TEM, and MALDI-TOF MS) showed that D-AIP can directly interact with synthetic Aβ42 aggregates to disrupt primary and/or secondary seeding events. Taken together, the unique mechanistic and desired therapeutic potential of our lead D-AIP candidate warrants further investigation, that is, testing of D-AIP efficacy on the altered amyloid/tau pathology in transgenic mouse models of Alzheimer’s disease.  相似文献   

17.
Osteoporosis affects approximately 200 million people and severely affects quality of life, but the exact pathological mechanisms behind this disease remain unclear. Various miRNAs have been shown to play a predominant role in the regulation of osteoclast formation. In this study, we explored the role of miR-134-5p in osteoclastogenesis both in vivo and in vitro. We constructed an ovariectomized (OVX) mouse model and performed microarray analysis using bone tissue from OVX mice and their control counterparts. Quantitative RT-PCR data from bone tissue and bone marrow macrophages (BMMs) confirmed the decreased expression of miR-134-5p in OVX mice observed in microarray analysis. In addition, a decrease in miR-134-5p was also observed during induced osteoclastogenesis of BMMs collected from C57BL/6N mice. Through transfection with miR-134-5p agomirs and antagomirs, we found that miR-134-5p knockdown significantly accelerated osteoclast formation and cell proliferation and inhibited apoptosis. Furthermore, a luciferase reporter assay showed that miR-134-5p directly targets the integrin surface receptor gene Itgb1. Cotransfection with Itgb1 siRNA reversed the effect of the miR-134-5p antagomir in promoting osteoclastogenesis. Moreover, the abundance levels of MAPK pathway proteins phosphorylated-p38 (p-p38) and phosphorylated-ERK (p-ERK) were significantly increased after transfection with the miR-134-5p antagomir but decreased after transfection with the miR-134-5p agomir or Itgb1 siRNA, which indicated a potential relationship between the miR-134-5p/Itgb1 axis and the MAPK pathway. Collectively, these results revealed that miR-134-5p inhibits osteoclast differentiation of BMMs both in vivo and in vitro and that the miR-134-5p/Itgb1/MAPK pathway might be a potential target for osteoporosis therapy.  相似文献   

18.
We studied two unrelated boys with intellectual disability (ID) and a striking facial resemblance suggestive of a hitherto unappreciated syndrome. Exome sequencing in both families identified identical de novo mutations in PACS1, suggestive of causality. To support these genetic findings and to understand the pathomechanism of the mutation, we studied the protein in vitro and in vivo. Altered PACS1 forms cytoplasmic aggregates in vitro with concomitant increased protein stability and shows impaired binding to an isoform-specific variant of TRPV4, but not the full-length protein. Furthermore, consistent with the human pathology, expression of mutant PACS1 mRNA in zebrafish embryos induces craniofacial defects most likely in a dominant-negative fashion. This phenotype is driven by aberrant specification and migration of SOX10-positive cranial, but not enteric, neural-crest cells. Our findings suggest that PACS1 is necessary for the formation of craniofacial structures and that perturbation of its functions results in a specific syndromic ID phenotype.  相似文献   

19.
While miRs have been extensively studied in the context of malignancy and tumor progression, their functions in regulating T-cell activation are less clear. In initial studies, we found reduced levels of miR-15a/16 at 3 to 18 h post–T-cell receptor (TCR) stimulation, suggesting a role for decreased levels of this miR pair in shaping T-cell activation. To further explore this, we developed an inducible miR15a/16 transgenic mouse model to determine how elevating miR-15a/16 levels during early stages of activation would affect T-cell proliferation and to identify TCR signaling pathways regulated by this miR pair. Doxycycline (DOX)-induced expression of miR-15a/16 from 0 to 18 h post-TCR stimulation decreased ex vivo T-cell proliferation as well as in vivo antigen-specific T-cell proliferation. We also combined bioinformatics and proteomics approaches to identify the mitogen-activated protein kinase kinase 1 (MEK1) (Map2k1) as a target of miR-15a/16. MEK1 targeting by miR-15a/16 was confirmed using miR mimics that decreased Map2k1 mRNA containing the 3′-UTR target nucleotide sequence (UGCUGCUA) but did not decrease Map2k1 containing a mutated control sequence (AAAAAAAA). Phosphorylation of downstream signaling molecules, extracellular signal–regulated protein kinase 1/2 (ERK1/2) and Elk1, was also decreased by DOX-induced miR-15a/16 expression. In addition to MEK1, ERK1 was subsequently found to be targeted by miR-15a/16, with DOX-induced miR-15a/16 reducing total ERK1 levels in T cells. These findings show that TCR stimulation reduces miR-15a/16 levels at early stages of T-cell activation to facilitate increased MEK1 and ERK1, which promotes the sustained MEK1–ERK1/2–Elk1 signaling required for optimal proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号