首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Amounts of soluble histones in cells are tightly regulated to ensure supplying them for the newly synthesized DNA and preventing the toxic effect of excess histones. Prior to incorporation into chromatin, newly synthesized histones H3 and H4 are highly acetylated in pre-deposition complex, wherein H4 is di-acetylated at Lys-5 and Lys-12 residues by histone acetyltransferase-1 (Hat1), but their role in histone metabolism is still unclear. Here, using chicken DT 40 cytosolic extracts, we found that histones H3/H4 and their chaperone Asf1, including RbAp48, a regulatory subunit of Hat1 enzyme, were associated with Hat1. Interestingly, in HAT1-deficient cells, cytosolic histones H3/H4 fractions on sucrose gradient centrifugation, having a sedimentation coefficient of 5–6S in DT40 cells, were shifted to lower molecular mass fractions, with Asf1. Further, sucrose gradient fractionation of semi-purified tagged Asf1-complexes showed the presence of Hat1, RbAp48 and histones H3/H4 at 5–6S fractions in the complexes. These findings suggest the possible involvement of Hat1 in regulating cytosolic H3/H4 pool mediated by Asf1-containing cytosolic H3/H4 pre-deposition complex.  相似文献   

2.
We report the crystal structure of the yeast protein Hpa2 in complex with acetyl coenzyme A (AcCoA) at 2.4 A resolution and without cofactor at 2.9 A resolution. Hpa2 is a member of the Gcn5-related N-acetyltransferase (GNAT) superfamily, a family of enzymes with diverse substrates including histones, other proteins, arylalkylamines and aminoglycosides. In vitro, Hpa2 is able to acetylate specific lysine residues of histones H3 and H4 with a preference for Lys14 of histone H3. Hpa2 forms a stable dimer in solution and forms a tetramer upon binding AcCoA. The crystal structure reveals that the Hpa2 tetramer is stabilized by base-pair interactions between the adenine moieties of the bound AcCoA molecules. These base-pairs represent a novel method of stabilizing an oligomeric protein structure. Comparison of the structure of Hpa2 with those of other GNAT superfamily members illustrates a remarkably conserved fold of the catalytic domain of the GNAT family even though members of this family share low levels of sequence homology. This comparison has allowed us to better define the borders of the four sequence motifs that characterize the GNAT family, including a motif that is not discernable in histone acetyltransferases by sequence comparison alone. We discuss implications of the Hpa2 structure for the catalytic mechanism of the GNAT enzymes and the opportunity for multiple histone tail modification created by the tetrameric Hpa2 structure.  相似文献   

3.
4.
Histone tail post-translational modifications (acetylation, methylation, phosphorylation, ubiquitination and ADP-ribosylation) regulate many cellular processes. Among these modifications, phosphorylation, methylation and acetylation have already been described in trypanosomatid histones. Bromodomains, together with chromodomains and histone-binding SANT domains, were proposed to be responsible for “histone code” reading. The Trypanosoma cruzi genome encodes four coding sequences (CDSs) that contain a bromodomain, named TcBDF1-4. Here we show that one of those, TcBDF2, is expressed in discrete regions inside the nucleus of all the parasite life cycle stages and binds H4 and H2A purified histones from T. cruzi. Immunolocalization experiments using both anti-histone H4 acetylated peptides and anti-TcBDF2 antibodies determined that TcBDF2 co-localizes with histone H4 acetylated at lysines K10 and K14. TcDBF2 and K10 acetylated H4 interaction was confirmed by co-immunoprecipitation. It is also shown that TcBDF2 was accumulated after UV irradiation of T. cruzi epimastigotes. These results suggest that TcBDF2 could be taking part in a chromatin remodelling complex in T. cruzi.  相似文献   

5.
DEAE-Sepharose chromatography of plasmodial extracts of the myxomycete Physarum polycephalum reveals the presence of multiple histone acetyltransferases and histone deacetylases. Five putative histone acetyltransferases and histone deacetylases. Five putative histone acetyltransferase forms with different substrate specificity can be discriminated: one enzyme which acetylates all core histones and four enzymes with a preference for each of H3, H2A, H2B or H4. Two histone deacetylases, HD1 and HD2, can be discriminated. They differ with respect to substrate specificity and pH-dependence. The substrate specificity of histone deacetylases is determined using HPLC-purified individual core histone species. The order of acetylated substrate preference is H2A>>H3≥H4> H2B for HD1, H3>H2A>H4 for HD2, respectively; HD2 is inactive with H2B as substrate.  相似文献   

6.
We previously reported the activities and modes of action of arginine (Arg)-rich histones H3 and H4 against Gram-negative bacteria. In the present study, we investigated the properties of the Arg-rich histones against Gram-positive bacteria in comparison with those of lysine (Lys)-rich histone H2B. In a standard microdilution assay, calf thymus histones H2B, H3, and H4 showed growth inhibitory activity against Staphylococcus aureus with minimum effective concentration values of 4.0, 4.0, and 5.6 μM, respectively. Laser confocal microscopic analyses revealed that both the Arg-rich and Lys-rich histones associated with the surface of S. aureus. However, while the morphology of S. aureus treated with histone H2B appeared intact, those treated with the histones H3 and H4 closely resembled each other, and the cells were blurred. Electrophoretic mobility shift assay results revealed these histones have binding affinity to lipoteichoic acid (LTA), one of major cell surface components of Gram-positive bacteria. Scanning electron microscopic analyses demonstrated that while histone H2B elicited no obvious changes in cell morphology, histones H3 and H4 disrupted the cell membrane structure with bleb formation in a manner similar to general antimicrobial peptides. Consequently, our results suggest that bacterial cell surface LTA initially attracts both the Arg- and Lys-rich histones, but the modes of antimicrobial action of these histones are different; the former involves cell membrane disruption and the latter involves the cell integrity disruption.  相似文献   

7.
本文用离体心脏灌流技术研究了丁酸钠对~3H-乙酰基参入大鼠心脏细胞核纽蛋白的影响。用蔗糖梯度离心将大鼠离体灌流心脏的细胞核分为心肌的和非心肌的,分别提取组蛋白。尿素-丙烯酰胺凝胶电泳将组蛋白分为五个组分。其比放射性测定的结果表明,~3H-乙酰基只参入核心组蛋白,程度为H_3>H_(2b)>H_4>H_(2a)。Triton-尿素-丙烯酰胺凝胶电泳图放射自显影结果显示,无论心肌细胞核还是非心肌细胞核,在丁酸钠为1m mol/L情况下,组蛋白H_3又可见三个亚组分(H_(3_1)、H_(3_2)及H_(3_3)),H_4可分出四个亚组分(H_(4_1)、H_(4_2)、H_(4_3)及H_(4_4));其总组蛋白乙酰化程度减低至对照组数值的60%。“冷追击”实验的结果提示,丁酸钠引起高乙酰化组蛋白的积蓄,确是通过其对组蛋白脱乙酰基过程的抑制作用而实现的。  相似文献   

8.

Background

Inactivation of glucocorticoid hormones and p44/42 mitogen-activated protein kinase (MAPK) is thought to be important in small intestinal maturation and expression of genes related to intestinal differentiation and functions.

Methods

We investigated target genes induced by co-treatment for 48 h with a glucocorticoid hormone agonist, dexamethasone (Dex), and a p44/42 MAPK inhibitor, PD98059 (PD), in a small intestine-like cell line (Caco-2) using microarray analysis. We also investigated whether expression changes of the target genes induced by the co-treatment are associated with histone modifications around these genes.

Results

Co-treatment of Caco-2 cells with Dex and PD enhanced several genes related to intestinal differentiation and functions such as SCNN1A, FXYD3, LCT and LOX. Induction of the SCNN1A gene was associated with increased presence of acetylated histone H3 and H4 and di-methylated histone H3 at lysine (K) 4 around the transcribed region of the gene, and induction of the FXYD3 gene was associated with increased presence of acetylated histones H3 and H4 from the promoter/enhancer to the transcribed region of the gene. Induction of LCT and LOX genes was associated with increased presence of acetylated histone H4 on the promoter/enhancer region of the genes.

Conclusions

Histone acetylation and/or histone H3 K4 methylation around the promoter/enhancer or/and transcribed regions of target genes are associated with induction of the genes by co-treatment with Dex and PD in Caco-2 cells.

General significance

The histone code is specific to each gene with respect to induction by glucocorticoid hormone and inhibition of p44/42 MAPK in Caco-2 cells.  相似文献   

9.
To understand epigenetic regulation of neurotrophins in Neuro-2a mouse neuroblastoma cells, we investigated the alteration of CpG methylation of brain-derived neurotrophic factor (BDNF) promoter I and neurotrophin-3 (NT-3) promoter IB and that of histone modification in Neuro-2a cells. Bisulfite genomic sequencing showed that the CpG sites of BDNF promoter I were methylated in non-treated Neuro-2a cells and demethylated following 5-aza-2′-deoxycytidine (5-aza-dC) treatment. In contrast, methylation status of the NT-3 promoter IB did not change by 5-aza-dC treatment in Neuro-2a cells. Furthermore, we demonstrated that BDNF exon I-IX mRNA was induced by trichostatin A (TSA) treatment. However, NT-3 exon IB-II mRNA was not induced by TSA treatment. Chromatin immunoprecipitation assays showed that the levels of acetylated histones H3 and H4 on BDNF promoter I were increased by TSA. These results demonstrate that DNA methylation and/or histone modification regulate BDNF gene expression, but do not regulate NT-3 gene expression in Neuro-2a cells.  相似文献   

10.
11.
It is shown that histones are the nuclear proteins present in spermatozoa of the horseshoe crab Limmulus polyphemus, an arthropod which is considered a living fossil. They have been characterized and found to be closely related to calf thymus histones. The only difference is the presence of an additional histone in small amounts (2?3% of the whole histones) which has intermediate properties between H1 and H2b.  相似文献   

12.
13.
Phosphorylation of the C-terminal end of histone H2A.X is the most characterized histone post-translational modification in DNA double-stranded breaks (DSB). DNA-dependent protein kinase (DNA-PK) is one of the three phosphatidylinositol 3 kinase-like family of kinase members that is known to phosphorylate histone H2A.X during DNA DSB repair. There is a growing body of evidence supporting a role for histone acetylation in DNA DSB repair, but the mechanism or the causative relation remains largely unknown. Using bacterially expressed recombinant mutants and stably and transiently transfected cell lines, we find that DNA-PK can phosphorylate Thr-136 in addition to Ser-139 both in vitro and in vivo. Furthermore, the phosphorylation reaction is not inhibited by the presence of H1, which in itself is a substrate of the reaction. We also show that, in contrast to previous reports, the ability of the enzyme to phosphorylate these residues is not affected by the extent of acetylation of the core histones. In vitro assembled nucleosomes and HeLa S3 native oligonucleosomes consisting of non-acetylated and acetylated histones are equally phosphorylated by DNA-PK. We demonstrate that the apparent differences in the extent of phosphorylation previously observed can be accounted for by the differential chromatin solubility under the MgCl2 concentrations required for the phosphorylation reaction in vitro. Finally, we show that although H2A.X does not affect nucleosome conformation, it has a de-stabilizing effect that is enhanced by the DNA-PK-mediated phosphorylation and results in an impaired histone H1 binding.  相似文献   

14.
The molar proportions and relative rates of synthesis of histones in normal and hypophysectomized rat testis seminiferous epithelial cells were determined. After hypophysectomy the molar proportions of histones H1, H2B and (H2A + protein A24) in seminiferous epithelial cells of rat testis increased while their corresponding variants TH1-x, TH2B-x and X2 decreased, but the molar proportions of major-class histones (i.e., sum of subfractions) remained relatively constant and similar to the proportions in somatic cells. The apparent molar proportions of the labeled histones, determined immediately after 2-h periods of [3H]leucine incorporation, were much higher relative to H4 than the proportions of total histones determined by dye binding. The values, however, approached the molar proportions of total histones when rats were killed 11 days after the [3H]leucine injection. Two-dimensional gel electrophoresis confirmed that the high initial molar proportions relative to H4 by [3H]leucine incorporation were not due to the possible contamination by highly-labeled non-histone proteins. The specific activity of histone H4 relative to the specific activity of DNA, determined immediately after 3-h periods of [3H]leucine and [14C]thymidine incorporations was similar to the value when rats were killed 13 days after the injections. It is proposed that histones of seminiferous epithelial cells are synthesized disproportionally relative to H4 and in excess of the quantities required for polynucleosome assembly. The excess histones are subsequently displaced or degraded slowly.  相似文献   

15.
16.
17.
Heterochromatin at yeast telomeres and silent mating (HM) loci represses adjacent genes and is formed by the binding and spreading of silencing information regulators (SIR proteins) along histones. This involves the interaction between the C terminus of SIR3 and the N terminus of histone H4. Since H4 is hypoacetylated in heterochromatin we wished to determine whether acetylation is involved in regulating the contacts between SIR3 and H4. Binding of H4 peptide (residues 1-34) acetylated at lysines Lys-5, Lys-8, Lys-12, and Lys-16 to an immobilized SIR3 protein fragment (residues 510-970) was investigated using surface plasmon resonance. We find that acetylation of H4 lysines reduces binding (K(a)) of H4 to SIR3 in a cumulative manner so that the fully acetylated peptide binding is decreased approximately 50-fold relative to unacetylated peptide. Thus, by affecting SIR3-H4 binding, acetylation may regulate the formation of heterochromatin. These data help explain the hypoacetylated state of histone H4 in heterochromatin of eukaryotes.  相似文献   

18.
19.
Two similar histone acetyltransferases have been separated from rat liver nuclei and purified 500-fold. Both enzymes also acetylate spermidine and spermine but diamines are not acetylated. Both enzymes preferentially acetylate histone 3; among the remaining histones H2A and H2B are good substrates, whereas H1 and histone 4 are poor substrates. Apparent Michaelis constants for spermidine were about 2 × 10?4m; apparent Michaelis constants for acetyl coenzyme A were 1.5 × 10?5 and 10?5m for enzymes A and B, respectively. At low concentrations DNA inhibits histone acetylation by enzyme A (50% inhibition at 25 μg/ml DNA). Enzyme B is relatively insensitive to DNA. This suggests the possibility of separate intranuclear localization of the two enzymes.  相似文献   

20.
Tagai C  Morita S  Shiraishi T  Miyaji K  Iwamuro S 《Peptides》2011,32(10):2003-2009
There is growing evidence of the antimicrobial properties of histones and histone-derived peptides; however, most of them are specific to lysine (Lys)-rich histones (H1, H2A, and H2B). In the present study, we focused on arginine (Arg)-rich histones (H3 and H4) and investigated their antimicrobial properties in comparison with those of histone H2B. In a standard microdilution assay, calf thymus histones H2B, H3, and H4 showed growth inhibitory activity against the bacterial outer membrane protease T (OmpT) gene-expressing Escherichia coli strain JCM5491 with calculated 50% growth inhibitory concentrations of 3.8, 10, and 12.7 μM, respectively. A lysate prepared from the JCM5491 cells was capable of strongly, moderately, and slightly fragmenting histones H2B, H3, and H4, respectively. While the lysate prepared from the cells of the ompT-deleted E. coli strain BL21(DE3) did not digest these histones, the ompT-transformed BL21(DE3), termed BL21/OmpT+, cell lysate digested the histones more strongly than the JCM5491 cell lysate. Laser confocal and scanning electron microscopic analyses demonstrated that while histone H2B penetrated the cell membrane of JCM5491 or BL21/OmpT+ cells, histones H3 and H4 remained on the cell surface and subsequently disrupted the cell membrane structure with bleb formation in a manner similar to general antimicrobial peptides. The BL21(DE3) cells treated with each histone showed no bleb formation, but cell integrity was affected and the cell surface was corrugated. Consequently, it is suggested that OmpT is involved in the antimicrobial properties of Arg- and Lys-rich histones and that the modes of antimicrobial action of these histones are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号