首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein tyrosine phosphatase 1B (PTP-1B) is a ubiquitously expressed cytosolicphosphatase best known for its role in insulin signaling. Despite the fact that it is highlyexpressed in hematopoietic tissues and has been shown to downregulate cytokinereceptor signaling, no physiological role for PTP-1B in immune regulation had beenreported. Our recent results show that the absence of PTP-1B affects murinemyelopoiesis through increased phosphorylation of the CSF-1 receptor tyrosine kinase.Here we further discuss the role of PTP-1B in monocyte/macrophage differentiation aswell as the implications of our findings in the context of PTP-1B inhibitors.  相似文献   

2.

Background

Myeloid-derived suppressor cells (MDSCs) are innate immune cells capable of suppressing T-cell responses. We previously reported the presence of MDSCs with a granulocytic phenotype in the synovial fluid (SF) of mice with proteoglycan (PG)-induced arthritis (PGIA), a T cell-dependent autoimmune model of rheumatoid arthritis (RA). However, the limited amount of SF-MDSCs precluded investigations into their therapeutic potential. The goals of this study were to develop an in vitro method for generating MDSCs similar to those found in SF and to reveal the therapeutic effect of such cells in PGIA.

Methods

Murine bone marrow (BM) cells were cultured for 3 days in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). The phenotype of cultured cells was analyzed using flow cytometry, microscopy, and biochemical methods. The suppressor activity of BM-MDSCs was tested upon co-culture with activated T cells. To investigate the therapeutic potential of BM-MDSCs, the cells were injected into SCID mice at the early stage of adoptively transferred PGIA, and their effects on the clinical course of arthritis and PG-specific immune responses were determined.

Results

BM cells cultured in the presence of GM-CSF, IL-6, and G-CSF became enriched in MDSC-like cells that showed greater phenotypic heterogeneity than MDSCs present in SF. BM-MDSCs profoundly inhibited both antigen-specific and polyclonal T-cell proliferation primarily via production of nitric oxide. Injection of BM-MDSCs into mice with PGIA ameliorated arthritis and reduced PG-specific T-cell responses and serum antibody levels.

Conclusions

Our in vitro enrichment strategy provides a SF-like, but controlled microenvironment for converting BM myeloid precursors into MDSCs that potently suppress both T-cell responses and the progression of arthritis in a mouse model of RA. Our results also suggest that enrichment of BM in MDSCs could improve the therapeutic efficacy of BM transplantation in RA.  相似文献   

3.
PTP1B−/− mice are resistant to diet-induced obesity due to leptin hypersensitivity and consequent increased energy expenditure. We aimed to determine the cellular mechanisms underlying this metabolic state. AMPK is an important mediator of leptin''s metabolic effects. We find that α1 and α2 AMPK activity are elevated and acetyl-coenzyme A carboxylase activity is decreased in the muscle and brown adipose tissue (BAT) of PTP1B−/− mice. The effects of PTP1B deficiency on α2, but not α1, AMPK activity in BAT and muscle are neuronally mediated, as they are present in neuron- but not muscle-specific PTP1B−/− mice. In addition, AMPK activity is decreased in the hypothalamic nuclei of neuronal and whole-body PTP1B−/− mice, accompanied by alterations in neuropeptide expression that are indicative of enhanced leptin sensitivity. Furthermore, AMPK target genes regulating mitochondrial biogenesis, fatty acid oxidation, and energy expenditure are induced with PTP1B inhibition, resulting in increased mitochondrial content in BAT and conversion to a more oxidative muscle fiber type. Thus, neuronal PTP1B inhibition results in decreased hypothalamic AMPK activity, isoform-specific AMPK activation in peripheral tissues, and downstream gene expression changes that promote leanness and increased energy expenditure. Therefore, the mechanism by which PTP1B regulates adiposity and leptin sensitivity likely involves the coordinated regulation of AMPK in hypothalamus and peripheral tissues.Protein tyrosine phosphatase 1B (PTP1B) belongs to a family of tyrosine phosphatases with diverse roles in eukaryotes (2, 4). PTP1B attenuates insulin signaling by dephosphorylating the insulin receptor (19, 22, 61) and possibly IRS-1 (9, 23) and leptin signaling by dephosphorylating JAK2, which phosphorylates the leptin receptor and associated substrates (10, 45, 67). PTP1B-deficient mice are insulin hypersensitive, lean, and resistant to diet-induced obesity (20, 36) due, at least in part, to increased energy expenditure (36). The leanness can be explained by the absence of PTP1B in neurons, because neuron-specific PTP1B−/− mice also have reduced body weight and adiposity and increased energy expenditure (6). In contrast, muscle- and liver-specific PTP1B-deficient mice have normal body weight with improved insulin sensitivity, whereas adipose-PTP1B-deficient mice have increased body weight (6, 15, 16). These data suggest that PTP1B in peripheral tissues such as muscle and liver is an important mediator of peripheral insulin sensitivity, whereas PTP1B in the nervous system plays a critical role in regulating energy expenditure and adiposity (6).The adipocyte-derived hormone leptin plays an essential role in regulating energy homeostasis by acting on multiple tissues, most importantly the hypothalamus, to regulate food intake and energy expenditure (1). PTP1B−/− mice have enhanced basal and leptin-stimulated hypothalamic STAT3 phosphorylation and are hypersensitive to leptin''s effect on food intake and body weight (10, 67). The overexpression of PTP1B in heterologous cells dose dependently reduces the leptin-induced phosphorylation of JAK2 and STAT3 and inhibits leptin-stimulated STAT3-dependent reporter gene activation (10, 35, 39, 67). These and other data established that enhanced leptin sensitivity contributes to the leanness in PTP1B−/− mice. We sought to determine the cellular mechanisms underlying the altered energy homeostasis in the setting of PTP1B deficiency.AMP-activated protein kinase (AMPK) is a major mediator of leptin''s metabolic effects (43, 44). AMPK is a fuel-sensing enzyme complex activated by cellular stresses that increase AMP or deplete ATP, including hypoxia, ischemia, glucose deprivation, uncouplers of oxidative phosphorylation, exercise, and muscle contraction (66). AMPK also is activated by the antidiabetic drugs metformin (68) and the thiazolidinediones (21). Mechanisms involved in AMPK activation include (i) the binding of AMP to an allosteric site on the γ subunit, which renders the holoenzyme resistant to inactivating serine phosphatases and also may have direct allosteric effects on kinase activity (55), and (ii) phosphorylation by upstream AMPK kinases of the α (catalytic) subunits on Thr172, which is essential for kinase activity (29). Once activated, AMPK phosphorylates multiple downstream substrates, leading to the inhibition of ATP-utilizing pathways, such as fatty acid synthesis, and the activation of ATP-generating pathways, including fatty acid oxidation (34).The phosphorylation of acetyl coenzyme A (acetyl-CoA) carboxylase (ACC) by AMPK results in the inhibition of ACC activity, decreased malonyl-CoA content, and a subsequent increase in fatty acid oxidation in skeletal muscle caused by the disinhibition of carnitine palmitoyltransferase 1 (27, 52, 62). The leptin stimulation of muscle fatty acid oxidation is mediated by AMPK (44). AMPK also is an important regulator of muscle mitochondrial biogenesis and function (7, 37, 48, 58, 63). This may, in part, be mediated by peroxisome proliferator-activated receptor γ (PPARγ)-coactivator 1α (PGC-1α), because AMPK induces the expression and phosphorylation of PGC-1α, which regulates mitochondrial biogenesis and muscle fiber type (31).In addition to a role for AMPK in leptin action in peripheral tissues, the inhibition of hypothalamic AMPK activity by leptin plays an important role in mediating leptin''s effect on food intake and energy homeostasis (43). This appears to involve neurons that express neuropeptide Y (NPY) and agouti-related peptide (AgRP), since the expression of constitutively active AMPK in the basomedial hypothalamus augments NPY/AgRP expression (43). Furthermore, the deletion of the AMPK α2 catalytic subunit specifically in these neurons results in leanness, whereas deletion in proopiomelanocortin (POMC)-expressing neurons results in mild obesity (13).To determine whether alterations in AMPK contribute to increased energy expenditure and leanness in PTP1B−/− mice, we investigated the AMPK pathway in peripheral tissues and hypothalamus. We demonstrate that the global absence of PTP1B alters AMPK and downstream biological processes in multiple tissues, and that neuronal PTP1B regulates AMPK activity in peripheral tissues in an isoform-specific manner. Our data establish a novel link between PTP1B and AMPK, two signaling molecules that are critical in the regulation of energy homeostasis.  相似文献   

4.
Protein tyrosine phosphatases (PTPases) have been suggestedto modulate the insulin receptor signal transduction pathways.Westudied PTPases in Psammomys obesus, an animal model of nutritionallyinduced insulin resistance. No changes in the proteinexpression level of src homology PTPase 2 (SHP-2) (muscle, liver)or leukocyte antigen receptor (LAR) (liver) were detected. In contrast,the expression level of PTPase 1B (PTP 1B) in the skeletalmuscle, but not in liver, was increased by 83% in the diabetic animals,compared with a diabetes-resistant line. However, PTP 1B–specific activity (activity/protein) significantly decreased (50% to56%) in skeletal muscle of diabetic animals, compared with boththe diabetes-resistant line and diabetes-prone animals. In addition,PTP 1B activity was inversely correlated to serum glucose level(r = –.434, P < .02). These findings suggest that PTP 1B, thoughoverexpressed, is not involved in the susceptibility to insulin resistancein Psammomys obesus and is secondarily attenuated byhyperglycemia or other factors in the diabetic milieu.  相似文献   

5.
本文探讨了阿勒泰黄芪不同提取物对蛋白酪氨酸磷酸酯酶1B(PTP1B)的抑制作用.采用分光光度法测定了提取物中的黄酮和皂苷含量;通过体外酶促动力学方法检测了不同提取物对PTP1B的影响,并确定了抑制类型;并采用氧化酶法检测了阿勒泰黄芪提取物对细胞利用葡萄糖能力的作用.结果表明,阿勒泰黄芪8种提取物(E1 ~8)中黄酮含量分别为5.09、10.46、3.58、3.23、53.91、21.77、5.76和7.49 mg/mL,其中E1、E2、E6、E7、E8皂苷含量分别为16.53、27.45、21.90、10.21和8.96 mg/mL;各提取物对PTP1B活性均表现出抑制作用,其中E1、E2、E7、E8的IC50分别为34.8、4.7、7.35和7.15 μg/mL,E1、E7和E8是竞争性抑制,E2是混合型竞争性抑制.E1、E2、E5、E7和E8较明显的提高了CHO-K1细胞对葡萄糖的利用.提示皂苷可能是阿勒泰黄芪抑制PTP1B活性的主要物质,通过PTP1B途径有效了提高细胞利用葡萄糖的能力.本研究为阿勒泰黄芪开发为防治糖尿病及改善胰岛素抵抗的药物或保健品提供实验依据.  相似文献   

6.
We have recently shown that protein tyrosine phosphatase 1B (PTP1B) associates with the docking protein p130Cas in 3Y1 rat fibroblasts. This interaction is mediated by a proline-rich sequence on PTP1B and the SH3 domain on p130Cas. Expression of wild-type PTP1B (WT-PTP1B), but not a catalytically competent, proline-to-alanine point mutant that cannot bind p130Cas (PA-PTP1B), causes substantial tyrosine dephosphorylation of p130Cas (F. Liu, D. E. Hill, and J. Chernoff, J. Biol. Chem. 271:31290–31295, 1996). Here we demonstrate that WT-, but not PA-PTP1B, inhibits transformation of rat 3Y1 fibroblasts by v-crk, -src, and -ras, but not by v-raf. These effects on transformation correlate with the phosphorylation status of p130Cas and two proteins that are associated with p130Cas, Paxillin and Fak. Expression of WT-PTP1B reduces formation of p130Cas-Crk complexes and inhibits mitogen-activated protein kinase activation by Src and Crk. These data show that transformation suppression by PTP1B requires a functional SH3 ligand and suggest that p130Cas may represent an important physiological target of PTP1B in cells.  相似文献   

7.
ER-bound PTP1B is expressed in hippocampal neurons, and accumulates among neurite contacts. PTP1B dephosphorylates ß-catenin in N-cadherin complexes ensuring cell-cell adhesion. Here we show that endogenous PTP1B, as well as expressed GFP-PTP1B, are present in dendritic spines of hippocampal neurons in culture. GFP-PTP1B overexpression does not affect filopodial density or length. In contrast, impairment of PTP1B function or genetic PTP1B-deficiency leads to increased filopodia-like dendritic spines and a reduction in mushroom-like spines, while spine density is unaffected. These morphological alterations are accompanied by a disorganization of pre- and post-synapses, as judged by decreased clustering of synapsin-1 and PSD-95, and suggest a dynamic synaptic phenotype. Notably, levels of ß-catenin-Tyr-654 phosphorylation increased ∼5-fold in the hippocampus of adult PTP1B−/− (KO) mice compared to wild type (WT) mice and this was accompanied by a reduction in the amount of ß-catenin associated with N-cadherin. To determine whether PTP1B-deficiency alters learning and memory, we generated mice lacking PTP1B in the hippocampus and cortex (PTP1Bfl/fl–Emx1-Cre). PTP1Bfl/fl–Emx1-Cre mice displayed improved performance in the Barnes maze (decreased time to find and enter target hole), utilized a more efficient strategy (cued), and had better recall compared to WT controls. Our results implicate PTP1B in structural plasticity within the hippocampus, likely through modulation of N-cadherin function by ensuring dephosphorylation of ß-catenin on Tyr-654. Disruption of hippocampal PTP1B function or expression leads to elongation of dendritic filopodia and improved learning and memory, demonstrating an exciting novel role for this phosphatase.  相似文献   

8.
Myeloid-derived suppressor cells (MDSCs) are potent suppressors of T cell immunity in tumors and inflammatory diseases. They are identified by surface expression of CD11b+Gr1+ in mice, and CD11b+Gr1+ cells accumulate in the livers of obese mice. However, many myeloid cells share these CD11b+Gr1+ markers. Accordingly, the aim of this study was to identify the authentic phenotype of MDSCs and investigate their functions in non-alcoholic fatty liver disease (NAFLD). C57BL/6J mice were divided into 2 diet groups: a normal control group and high-fat group to induce NAFLD. We demonstrated that monocytic CD11b+Gr1dim cells could be further divided into 2 populations based on side scatter (SSC) during flow cytometry. We found that SSClowCD11b+Gr1dim cells accumulated in the livers of NAFLD mice over time, and that these cells were recruited by the chemokine CCL2 and its receptor CCR2 and might expand in the liver via macrophage colony-stimulating factor stimulation. Furthermore, SSClowCD11b+Gr1dim cells had a strong suppressive ability on T cells; this effect was not observed for SSChighCD11b+Gr1dim cells, and was dependent on nitric oxide production by inducible nitric oxide synthase. Our findings demonstrate that SSClowCD11b+Gr1dim cells represent authentic MDSCs in NAFLD livers, and might serve an important negative feedback function in liver inflammation.  相似文献   

9.
1.In cells of epithelial origin the protein tyrosine phosphatase PTP-BL is predominantly localized at the apical membrane of polarized cells. This large submembranous multidomain PTP is also expressed in cells of neuronal origin. We studied the localization of PTP-BL in mouse neuroblastoma cells utilizing EGFP-tagged versions of the protein. 2. In proliferating Neuro-2a cells, immunofluorescence and immuno-electron microscopy revealed a submembranous FERM domain-dependent localization at cell-cell boundaries for EGFP-PTP-BL. Additionally, significant amounts of EGFP-PTP-BL are located in the cytoplasm as well as in nuclei. Upon serum depletion-induced differentiation of Neuro-2a cells, a partial shift of EGFP-PTP-BL from a cortical localization to cytoskeleton-like F-actin-positive structures is observed. Parallel biochemical studies corroborate this finding and reveal a serum depletion-induced shift of EFGP-PTP-BL from a membrane(-associated) fraction to an NP40-soluble cytoskeletal fraction. 3. Different pools of PTP-BL-containing protein complexes can be discerned in neuronal cells, reflecting distinct molecular microenvironments in which PTP-BL may exert its function.  相似文献   

10.
Reversing the function of immune suppressor cells may improve the efficacy of cancer therapy. Here, we have isolated a novel polysaccharide MPSSS (577.2 Kd) from Lentinus edodes and examined its effects on differentiation and function of myeloid-derived suppressor cells (MDSCs). MPSSS is composed of glucose (75.0%), galactose (11.7%), mannose (7.8%), and xylose (0.4%). In vivo, it inhibits the growth of McgR32 tumor cells, which is correlated with a reduced percentage of MDSCs in peripheral blood. In vitro, it induces both morphological and biophysical changes in MDSCs. Importantly, MPSSS up-regulates MHC II and F4/80 expression on MDSCs, and reverses their inhibition effect on CD4+ T cells in a dose-dependent manner. The mechanism study shows that MPSSS may stimulate MDSCs through a MyD88 dependent NF-κB signaling pathway. Together, we demonstrated for the first time that MPSSS stimulates the differentiation of MDSCs and reverses its immunosuppressive functions, shedding new light on developing novel anti-cancer strategies by targeting MDSCs.  相似文献   

11.
Myeloid-derived suppressor cells (MDSCs) have been characterized in several disease settings, especially in many tumor systems. Compared to their involvement in tumor microenvironments, however, MDSCs have been less well studied in their responses to infectious disease processes, in particular to retroviruses that induce immunodeficiency. Here, we demonstrate for the first time the development of a highly immunosuppressive MDSC population that is dependent on infection by the LP-BM5 retrovirus, which causes murine acquired immunodeficiency. These MDSCs express a cell surface marker signature (CD11b+ Gr-1+ Ly6C+) characteristic of monocyte-type MDSCs. Such MDSCs profoundly inhibit immune responsiveness by a cell dose- and substantially inducible nitric oxide synthase (iNOS)-dependent mechanism that is independent of arginase activity, PD-1–PD-L1 expression, and interleukin 10 (IL-10) production. These MDSCs display levels of immunosuppressive function in parallel with the extent of disease in LP-BM5-infected wild-type (w.t.) versus knockout mouse strains that are differentially susceptible to pathogenesis. These MDSCs suppressed not only T-cell but also B-cell responses, which are an understudied target for MDSC inhibition. The MDSC immunosuppression of B-cell responses was confirmed by the use of purified B responder cells, multiple B-cell stimuli, and independent assays measuring B-cell expansion. Retroviral load measurements indicated that the suppressive Ly6Glow/± Ly6C+ CD11b+-enriched MDSC subset was positive for LP-BM5, albeit at a significantly lower level than that of nonfractionated splenocytes from LP-BM5-infected mice. These results, including the strong direct MDSC inhibition of B-cell responsiveness, are novel for murine retrovirus-induced immunosuppression and, as this broadly suppressive function mirrors that of the LP-BM5-induced disease syndrome, support a possible pathogenic effector role for these retrovirus-induced MDSCs.  相似文献   

12.
13.
Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein, molecular chaperone, and a component of the translocon. We discovered a novel interaction between the calnexin cytoplasmic domain and UBC9, a SUMOylation E2 ligase, which modified the calnexin cytoplasmic domain by the addition of SUMO. We demonstrated that calnexin interaction with the SUMOylation machinery modulates an interaction with protein tyrosine phosphatase 1B (PTP1B), an ER-associated protein tyrosine phosphatase involved in the negative regulation of insulin and leptin signaling. We showed that calnexin and PTP1B form UBC9-dependent complexes, revealing a previously unrecognized contribution of calnexin to the retention of PTP1B at the ER membrane. This work shows that the SUMOylation machinery links two ER proteins from divergent pathways to potentially affect cellular protein quality control and energy metabolism.  相似文献   

14.
目的:初步探讨甲壳胺诱导人肝癌Hep G2细胞凋亡的信号转导机制。方法:采用酶联免疫法,动态检测甲壳胺作用于Hep G2细胞后,细胞膜相及胞浆内的蛋白酪氨酸激酶(PTK)及蛋白酪氨酸磷酸酶(PTP)活性的变化。结果:甲壳胺可以抑制Hep G2细胞内的PTK活性,并呈一定的浓度依赖性;甲壳胺作用Hep G2细胞后,随着PTK活性的减弱,PTP的活性也短暂下降。结论:甲壳胺诱导Hep G2细胞凋亡时,涉及到PTK的活性改变。观察到膜相蛋白中PTK的活性改变早于胞浆蛋白,提示可能存在一个信号的跨膜转运过程;同时伴有PTP的活性变化,可能反映了胞内蛋白酪氨酸残基的磷酸化与去磷酸化即时调节机制。  相似文献   

15.
Protein tyrosine phosphatase PTPN13, also known as PTP-BL in mice, represents a large multi-domain non-transmembrane scaffolding protein that contains five consecutive PDZ domains. Here, we report the solution structures of the extended murine PTPN13 PDZ3 domain in its apo form and in complex with its physiological ligand, the carboxy-terminus of protein kinase C-related kinase-2 (PRK2), determined by multidimensional NMR spectroscopy. Both in its ligand-free state and when complexed to PRK2, PDZ3 of PTPN13 adopts the classical compact, globular D/E fold. PDZ3 of PTPN13 binds five carboxy-terminal amino acids of PRK2 via a groove located between the EB-strand and the DB-helix. The PRK2 peptide resides in the canonical PDZ3 binding cleft in an elongated manner and the amino acid side chains in position P0 and P-2, cysteine and aspartate, of the ligand face the groove between EB-strand and DB-helix, whereas the PRK2 side chains of tryptophan and alanine located in position P-1 and P-3 point away from the binding cleft. These structures are rare examples of selective class III ligand recognition by a PDZ domain and now provide a basis for the detailed structural investigation of the promiscuous interaction between the PDZ domains of PTPN13 and their ligands. They will also lead to a better understanding of the proposed scaffolding function of these domains in multi-protein complexes assembled by PTPN13 and could ultimately contribute to low molecular weight antagonists that might even act on the PRK2 signaling pathway to modulate rearrangements of the actin cytoskeleton.  相似文献   

16.
X linked lymphoproliferative disease (XLP) is an inherited immunodeficiency resulting from mutations in the gene encoding the slam associated protein (SAP). One of the defining characteristics of XLP is extreme susceptibility to infection with Epstein-Barr virus (EBV), a gammaherpesvirus belonging to the genus Lymphocryptovirus, often resulting in fatal infectious mononucleosis (FIM). However, infection of SAP deficient mice with the related Murine gammaherpesvirus 68 (MHV68), a gammaherpesvirus in the genus Rhadinovirus, does not recapitulate XLP. Here we show that MHV68 inefficiently establishes latency in B cells in SAP deficient mice due to insufficient CD4 T cell help during the germinal center response. Although MHV68 infected B cells can be found in SAP-deficient mice, significantly fewer of these cells had a germinal center phenotype compared to SAP-sufficient mice. Furthermore, we show that infected germinal center B cells in SAP-deficient mice fail to proliferate. This failure to proliferate resulted in significantly lower viral loads, and likely accounts for the inability of MHV68 to induce a FIM-like syndrome. Finally, inhibiting differentiation of T follicular helper (TFH) cells in SAP-sufficient C57Bl/6 mice resulted in decreased B cell latency, and the magnitude of the TFH response directly correlated with the level of infection in B cells. This requirement for CD4 T cell help during the germinal center reaction by MHV68 is in contrast with EBV, which is thought to be capable of bypassing this requirement by expressing viral proteins that mimic signals provided by TFH cells. In conclusion, the outcome of MHV68 infection in mice in the setting of loss of SAP function is distinct from that observed in SAP-deficient patients infected with EBV, and may identify a fundamental difference between the strategies employed by the rhadinoviruses and lymphocryptoviruses to expand B cell latency during the early phase of infection.  相似文献   

17.

Background

Artemisinin analogue SM934 was previously reported to possess immunosuppressive properties. The aim of this study was to determine the effects and the underlying mechanisms of SM934 in murine experimental autoimmune encephalomyelitis (EAE).

Methods

Female C57BL/6 mice immunized with MOG35–55 were treated with or without SM934, then the clinical scores and other relevant parameters were assessed. Th1, Th17 and regulatory T (Treg) cell profiles were determined through ELISA, qRT-PCR, flow cytometry and BrdU incorporation assay. The effects of SM934 on Th1, Th17 and Treg cells differentiation were explored through intracellular staining and flow cytometry examination.

Results

In vivo, administration of SM934 significantly inhibited the development of EAE and suppressed the elevation of serum IL-17. Ex vivo, upon antigen-recall stimulation, IL-2, IFN-γ, IL-17 and IL-6 production were decreased, whereas IL-10 and TGF-β production were increased from the splenocytes isolated from SM934-treated mice. Consistently, both flow cytometry and qRT-PCR results showed that SM934 treatment significantly increased the Treg, while strongly suppressed the Th17 and Th1, responses in the peripheral. Furthermore, in the spinal lesion, SM934 treatment dramatically decreased the infiltration of CD4+ T cells, within which the Treg cells percentage was enlarged, whereas the Th17, but not Th1 percentage, was significantly decreased comparing with the vehicle-treated groups. Finally, both BrdU incorporation and in vitro Treg differentiation assays revealed that SM934 treatment could directly promote the expansion of Treg cells in vivo and in vitro.

Conclusion

Taken together, this study demonstrated that SM934 treatment could ameliorate the murine EAE disease, which might be mediated by inducing Treg differentiation and expansion.  相似文献   

18.
目的探讨吡格列酮对db/db小鼠骨骼肌蛋白酪氨酸磷酸酶1B(protein tyrosine phosphatase 1B,PTP1B)表达水平的影响。方法将20只4周龄db/db小鼠随机分为两组(吡格列酮组和db/db对照组),每组10只,分别给予吡格列酮10mg/kg.d和安慰剂灌胃。另设10只同周龄db/m小鼠,给予安慰剂灌胃作为非糖尿病对照(db/m对照组)。每周监测体重、血糖,4周后用蛋白印迹法检测各组小鼠骨骼肌组织中PTP1B蛋白含量。结果db/db组小鼠骨骼肌PTP1B表达显著高于db/m组,给予吡格列酮干预,血糖、胰岛素抵抗指数显著低于db/db组(P〈0.05),骨骼肌PTP1B表达水平亦显著降低(P〈0.05)。结论吡格列酮改善胰岛素抵抗,可能与降低骨骼肌PTP1B蛋白表达有关。  相似文献   

19.
The evolutionarily conserved target of rapamycin complex 1 (TORC1) controls growth-related processes such as protein, nucleotide, and lipid metabolism in response to growth hormones, energy/ATP levels, and amino acids. Its deregulation is associated with cancer, type 2 diabetes, and obesity. Among other substrates, mammalian TORC1 directly phosphorylates and inhibits the phosphatidate phosphatase lipin-1, a central enzyme in lipid metabolism that provides diacylglycerol for the synthesis of membrane phospholipids and/or triacylglycerol as neutral lipid reserve. Here, we show that yeast TORC1 inhibits the function of the respective lipin, Pah1, to prevent the accumulation of triacylglycerol. Surprisingly, TORC1 regulates Pah1 in part indirectly by controlling the phosphorylation status of Nem1 within the Pah1-activating, heterodimeric Nem1-Spo7 protein phosphatase module. Our results delineate a hitherto unknown TORC1 effector branch that controls lipin function in yeast, which, given the recent discovery of Nem1-Spo7 orthologous proteins in humans, may be conserved.  相似文献   

20.
Protein tyrosine phosphatase B (PtpB) is one of the virulence factors secreted into the host cell by Mycobacterium tuberculosis. PtpB attenuates host immune defenses by interfering with signal transduction pathways in macrophages and, therefore, it is considered a promising target for the development of novel anti-tuberculosis drugs. Here we report the discovery of natural compound inhibitors of PtpB among an in house library of more than 800 natural substances by means of a multidisciplinary approach, mixing in silico screening with enzymatic and kinetics studies and MS assays. Six natural compounds proved to inhibit PtpB at low micromolar concentrations (< 30 µM) with Kuwanol E being the most potent with K i = 1.6 ± 0.1 µM. To the best of our knowledge, Kuwanol E is the most potent natural compound PtpB inhibitor reported so far, as well as it is the first non-peptidic PtpB inhibitor discovered from natural sources. Compounds herein identified may inspire the design of novel specific PtpB inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号