首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poloxamer 188 NF (national formulary (NF) grade of P-188) improves cardiac muscle function in the mdx mouse and golden retriever muscular dystrophy models. However in vivo effects on skeletal muscle have not been reported. We postulated that P-188 NF might protect diaphragm muscle membranes from contraction-induced injury in mdx and mdx/utrophin-/- (dko) muscular dystrophy models. In the first study 7-month old mdx mice were treated for 22 weeks with subcutaneous (s.c.) injections of saline or P-188 NF at 3 mg/Kg. In the second, dkos were treated with saline or P-188 NF (1 mg/Kg) for 8 weeks beginning at age 3 weeks. Prednisone was the positive control in both studies. Respiratory function was monitored using unrestrained whole body plethysmography. P-188 NF treatment affected several respiratory parameters including tidal volume/BW and minute volume/BW in mdx mice. In the more severe dko model, P-188 NF (1 mg/Kg) significantly slowed the decline in multiple respiratory parameters compared with saline-treated dko mice. Prednisone’s effects were similar to those seen with P-188 NF. Diaphragms from P-188 NF or prednisone treated mdx and dko mice showed signs of muscle fiber protection including less centralized nuclei, less variation in fiber size, greater fiber density, and exhibited a decreased amount of collagen deposition. P-188 NF at 3 mg/Kg s.c. also improved parameters of systolic and diastolic function in mdx mouse hearts. These results suggest that P-188 NF may be useful in treating respiratory and cardiac dysfunction, the leading causes of death in Duchenne muscular dystrophy patients.  相似文献   

2.
3.
旨在筛选定量PCR检测不同骨骼肌纤维类型的稳定内参基因,为骨骼肌的能量和糖代谢等功能研究提供基础数据.试验选用6周龄小鼠,采集腓肠肌(Gastrocnemius muscle,GAS)、比目鱼肌(Soleus,SOL)、胫骨前肌(Tibialis anterior muscle,TA)和趾长伸肌(Extensor di...  相似文献   

4.

Background

Myostatin inhibition is a promising therapeutic strategy to maintain muscle mass in a variety of disorders, including the muscular dystrophies, cachexia, and sarcopenia. Previously described approaches to blocking myostatin signaling include injection delivery of inhibitory propeptide domain or neutralizing antibodies.

Methodology/Principal Findings

Here we describe a unique method of myostatin inhibition utilizing recombinant adeno-associated virus to overexpress a secretable dominant negative myostatin exclusively in the liver of mice. Systemic myostatin inhibition led to increased skeletal muscle mass and strength in control C57 Bl/6 mice and in the dystrophin-deficient mdx model of Duchenne muscular dystrophy. The mdx soleus, a mouse muscle more representative of human fiber type composition, demonstrated the most profound improvement in force production and a shift toward faster myosin-heavy chain isoforms. Unexpectedly, the 11-month-old mdx diaphragm was not rescued by long-term myostatin inhibition. Further, mdx mice treated for 11 months exhibited cardiac hypertrophy and impaired function in an inhibitor dose–dependent manner.

Conclusions/Significance

Liver-targeted gene transfer of a myostatin inhibitor is a valuable tool for preclinical investigation of myostatin blockade and provides novel insights into the long-term effects and shortcomings of myostatin inhibition on striated muscle.  相似文献   

5.
Mitochondrial Genome Mutation in Cell Death and Aging   总被引:6,自引:0,他引:6  
This article reviews the concept, molecular genetics, and pathology of cell death and agingin relation to mitochondrial genome mutation. Accumulating evidence emphasizes the role ofgenetic factors in the development of naturally occurring cell death and aging. The ATPrequired for a cell's biological activity is almost exclusively produced by mitochondria. Eachmitochondrion possesses its own DNA (mtDNA) that codes essential subunits of themitochondrial energy-transducing system. Recent studies confirm that mtDNA is unexpectedly fragileto hydroxyl radical damage, hence to the oxygen stress. Cellular mtDNA easily fragmentsinto over a hundred-types of deleted mtDNA during the life of an individual. Cumulativeaccumulation of these oxygen damages and deletions in mtDNA results in a defective energytransducing system and in bioenergetic crisis. The crisis leads cells to the collapse ofmitochondrial trans-membrane potential, to the release of the apoptotic protease activating factors intocytosol, to uncontrolled cell death, to tissue degeneration and atrophy, and to aging. Thetotal base sequencing of mtDNA among individuals revealed that germ-line point mutationstransmitted from ancestors accelerate the somatic oxygen damages and mutations in mtDNAleading to phenotypic expression of premature aging and degenerative diseases. A practicalsurvey of point mutations will be useful for genetic diagnosis in predicting the life-span ofan individual.  相似文献   

6.
The CeO2 NPs are increasingly used in industry but the environmental release of these NPs and their subsequent behavior and biological effects are currently unclear. This study evaluates for the first time the effects of CeO2 NPs on the survival and the swimming performance of two cladoceran species, Daphnia similis and Daphnia pulex after 1, 10 and 100 mg.L−1 CeO2 exposures for 48 h. Acute toxicity bioassays were performed to determine EC50 of exposed daphnids. Video-recorded swimming behavior of both daphnids was used to measure swimming speeds after various exposures to aggregated CeO2 NPs. The acute ecotoxicity showed that D. similis is 350 times more sensitive to CeO2 NPs than D. pulex, showing 48-h EC50 of 0.26 mg.L−1 and 91.79 mg.L−1, respectively. Both species interacted with CeO2 NPs (adsorption), but much more strongly in the case of D. similis. Swimming velocities (SV) were differently and significantly affected by CeO2 NPs for both species. A 48-h exposure to 1 mg.L−1 induced a decrease of 30% and 40% of the SV in D. pulex and D. similis, respectively. However at higher concentrations, the SV of D. similis was more impacted (60% off for 10 mg.L−1 and 100 mg.L−1) than the one of D. pulex. These interspecific toxic effects of CeO2 NPs are explained by morphological variations such as the presence of reliefs on the cuticle and a longer distal spine in D. similis acting as traps for the CeO2 aggregates. In addition, D. similis has a mean SV double that of D. pulex and thus initially collides with twice more NPs aggregates. The ecotoxicological consequences on the behavior and physiology of a CeO2 NPs exposure in daphnids are discussed.  相似文献   

7.

Objective

Tools to better evaluate the impact of therapy on nerve and muscle disease are needed. Electrical impedance myography (EIM) is sensitive to neuromuscular disease progression as well as to therapeutic interventions including myostatin inhibition and antisense oligonucleotide-based treatments. Whether the technique identifies the impact of electrical muscle stimulation (EMS) is unknown.

Methods

Ten wild-type (wt) C57B6 mice and 10 dystrophin-deficient (mdx) mice underwent 2 weeks of 20 min/day EMS on left gastrocnemius and sham stimulation on the right gastrocnemius. Multifrequency EIM data and limb girth were obtained before and at the conclusion of the protocol. Muscle weight, in situ force measurements, and muscle fiber histology were also assessed at the conclusion of the study.

Results

At the time of sacrifice, muscle weight was greater on the EMS-treated side than on the sham-stimulated side (p = 0.018 for wt and p = 0.007 for mdx). Similarly, in wt animals, EIM parameters changed significantly compared to baseline (resistance (p = 0.009), reactance (p = 0.0003) and phase (p = 0.002); these changes were due in part to reductions in the EIM values on the EMS-treated side and elevations on the sham-simulated side. Mdx animals showed analogous but non-significant changes (p = 0.083, p = 0.064, and p = 0.57 for resistance, reactance and phase, respectively). Maximal isometric force trended higher on the stimulated side in wt animals only (p = 0.06). Myofiber sizes in wt animals were also larger on the stimulated side than on the sham-stimulated side (p = 0.034); no significant difference was found in the mdx mice (p = 0.79).

Conclusion

EIM is sensitive to stimulation-induced muscle alterations in wt animals; similar trends are also present in mdx mice. The mechanisms by which these EIM changes develop, however, remains uncertain. Possible explanations include longer-term trophic effects and shorter-term osmotic effects.  相似文献   

8.
9.
Orienting visual attention allows us to properly select relevant visual information from a noisy environment. Despite extensive investigation of the orienting of visual attention in infancy, it is unknown whether and how stimulus characteristics modulate the deployment of attention from birth to 4 months of age, a period in which the efficiency in orienting of attention improves dramatically. The aim of the present study was to compare 4-month-old infants’ and newborns’ ability to orient attention from central to peripheral stimuli that have the same or different attributes. In Experiment 1, all the stimuli were dynamic and the only attribute of the central and peripheral stimuli to be manipulated was face orientation. In Experiment 2, both face orientation and motion of the central and peripheral stimuli were contrasted. The number of valid trials and saccadic latency were measured at both ages. Our results demonstrated that the deployment of attention is mainly influenced by motion at birth, while it is also influenced by face orientation at 4-month of age. These findings provide insight into the development of the orienting visual attention in the first few months of life and suggest that maturation may be not the only factor that determines the developmental change in orienting visual attention from birth to 4 months.  相似文献   

10.
The effects of aging on lipid absorption, particularly on fatty acid glycerophospholipid and triacylglycerol esterification, were investigated in 2.5-,12- and 24-month-old mice and rats. Two intestinal mucosa microsomal enzymes, involved in the dietary fatty acid absorption, were assayed:acylCoA:2-monoacylglycerol acyltransferase and acylCoA:1-lysophosphatidylcholine acyltransferase. In both mice and rats, the activities of both enzymes varied with the nature of the acyl-CoA. Indeed acylCoa:2-monoacylglycerol acyltransferase activities were significantly higher with oleoyl-CoA and linoleoyl-CoA than with palmitoyl-CoA and arachidonoyl-CoA, while acylCoA:1-lysophosphatidylcholine acyltransferase activities were highest with arachidonoyl-CoA. AcylCoA:2-monoacylglycerol acyltransferase activity did not decrease significantly with aging in mice or rats, whatever the acyl-CoA used. In contrast, acylCoA:1-lysophosphatidylcholine acyltransferase activity in the 24-month-old rats was significantly lower (−47 %) than in 2.5-month-old rats, with oleoyl-CoA, linoleoyl-CoA and arachidonoyl-CoA. Simultaneously we observed that less glycerophospholipid esterification of oleic and linoleic acid occurs in older rats than in 2.5-month-old rats.  相似文献   

11.
A growing number of proteins with extracellular leucine-rich repeats (eLRRs) have been implicated in directing neuronal connectivity. We previously identified a novel family of eLRR proteins in mammals: the Elfns are transmembrane proteins with 6 LRRs, a fibronectin type-3 domain and a long cytoplasmic tail. The recent discovery that Elfn1 protein, expressed postsynaptically, can direct the elaboration of specific electrochemical properties of synapses between particular cell types in the hippocampus strongly reinforces this hypothesis. Here, we present analyses of an Elfn1 mutant mouse line and demonstrate a functional requirement for this gene in vivo. We first carried out detailed expression analysis of Elfn1 using a β-galactosidase reporter gene in the knockout line. Elfn1 is expressed in distinct subsets of interneurons of the hippocampus and cortex, and also in discrete subsets of cells in the habenula, septum, globus pallidus, dorsal subiculum, amygdala and several other regions. Elfn1 is expressed in diverse cell types, including local GABAergic interneurons as well as long-range projecting GABAergic and glutamatergic neurons. Elfn1 protein localises to axons of excitatory neurons in the habenula, and long-range GABAergic neurons of the globus pallidus, suggesting the possibility of additional roles for Elfn1 in axons or presynaptically. While gross anatomical analyses did not reveal any obvious neuroanatomical abnormalities, behavioural analyses clearly illustrate functional effects of Elfn1 mutation. Elfn1 mutant mice exhibit seizures, subtle motor abnormalities, reduced thigmotaxis and hyperactivity. The hyperactivity is paradoxically reversible by treatment with the stimulant amphetamine, consistent with phenotypes observed in animals with habenular lesions. These analyses reveal a requirement for Elfn1 in brain function and are suggestive of possible relevance to the etiology and pathophysiology of epilepsy and attention-deficit hyperactivity disorder.  相似文献   

12.
13.
In Duchenne muscular dystrophy (DMD), a genetic disruption of dystrophin protein expression results in repeated muscle injury and chronic inflammation. Magnetic resonance imaging shows promise as a surrogate outcome measure in both DMD and rehabilitation medicine that is capable of predicting clinical benefit years in advance of functional outcome measures. The mdx mouse reproduces the dystrophin deficiency that causes DMD and is routinely used for preclinical drug testing. There is a need to develop sensitive, non-invasive outcome measures in the mdx model that can be readily translatable to human clinical trials. Here we report the use of magnetic resonance imaging and spectroscopy techniques for the non-invasive monitoring of muscle damage in mdx mice. Using these techniques, we studied dystrophic mdx muscle in mice from 6 to 12 weeks of age, examining both the peak disease phase and natural recovery phase of the mdx disease course. T2 and fat-suppressed imaging revealed significant levels of tissue with elevated signal intensity in mdx hindlimb muscles at all ages; spectroscopy revealed a significant deficiency of energy metabolites in 6-week-old mdx mice. As the mdx mice progressed from the peak disease stage to the recovery stage of disease, each of these phenotypes was either eliminated or reduced, and the cross-sectional area of the mdx muscle was significantly increased when compared to that of wild-type mice. Histology indicates that hyper-intense MRI foci correspond to areas of dystrophic lesions containing inflammation as well as regenerating, degenerating and hypertrophied myofibers. Statistical sample size calculations provide several robust measures with the ability to detect intervention effects using small numbers of animals. These data establish a framework for further imaging or preclinical studies, and they support the development of MRI as a sensitive, non-invasive outcome measure for muscular dystrophy.  相似文献   

14.
Duchenne muscular dystrophy (DMD) caused by loss of cytoskeletal protein dystrophin is a devastating disorder of skeletal muscle. Primary deficiency of dystrophin leads to several secondary pathological changes including fiber degeneration and regeneration, extracellular matrix breakdown, inflammation, and fibrosis. Matrix metalloproteinases (MMPs) are a group of extracellular proteases that are involved in tissue remodeling, inflammation, and development of interstitial fibrosis in many disease states. We have recently reported that the inhibition of MMP-9 improves myopathy and augments myofiber regeneration in mdx mice (a mouse model of DMD). However, the mechanisms by which MMP-9 regulates disease progression in mdx mice remain less understood. In this report, we demonstrate that the inhibition of MMP-9 augments the proliferation of satellite cells in dystrophic muscle. MMP-9 inhibition also causes significant reduction in percentage of M1 macrophages with concomitant increase in the proportion of promyogenic M2 macrophages in mdx mice. Moreover, inhibition of MMP-9 increases the expression of Notch ligands and receptors, and Notch target genes in skeletal muscle of mdx mice. Furthermore, our results show that while MMP-9 inhibition augments the expression of components of canonical Wnt signaling, it reduces the expression of genes whose products are involved in activation of non-canonical Wnt signaling in mdx mice. Finally, the inhibition of MMP-9 was found to dramatically improve the engraftment of transplanted myoblasts in skeletal muscle of mdx mice. Collectively, our study suggests that the inhibition of MMP-9 is a promising approach to stimulate myofiber regeneration and improving engraftment of muscle progenitor cells in dystrophic muscle.  相似文献   

15.
Abstract: Acetylcholinesterase activities and molecular forms were studied in normal and dystrophic 129/ReJ mice, focusing on four predominantly fast-twitch muscles and the slow-twitch soleus. The asymmetric and globular forms were analyzed separately so that the effect of dystrophy on each form could be determined. This comparative study showed the following. (1) In the normal condition, each muscle exhibited a distinct distribution of the molecular forms. (2) The diversity among the fast muscles resulted mainly from variations in the proportions of the three globular forms; in contrast, these muscles showed a constant and precise A12/A8/A4 ratio. (3) The slow-twitch soleus clearly differed from the other muscles in its low acetylcholinesterase activity and distinct distribution of the molecular forms, characterized by a low level of G4 and a peculiar ratio among its asymmetric forms, resulting from a relative increase of the A8 and A4 forms. (4) In dystrophic mice, the diversity of the acetylcholin esterase distribution was lost; all the fast muscles displayed profiles exhibiting the characteristics typical of the soleus. The fast-twitch extensor digitorum longus, sternomastoid, and plantaris converged towards an identical set of acetylcholinesterase molecules. (5) In contrast, the acetylcholinesterase activity and molecular forms of the soleus were only slightly affected by the disease. These results reveal that the dystrophy modifies both categories of molecular forms of acetylcholinesterase in a very precise manner. Such complex changes, which are highly reproducible in a variety of different muscles, are unlikely to result from nonspecific reactions secondary to the disease.  相似文献   

16.
Age-related changes in various tissues have been associated with the onset of a number of age-related diseases, including inflammation and cancer. Bladder cancer, for instance, is a disease that mainly afflicts middle-aged or elderly people and is mostly of urothelial origin. Although research on age-related changes of long-lived post-mitotic cells such as neurons is rapidly progressing, nothing is known about age-related changes in the urothelium of the urinary bladder, despite all the evidence confirming the important role of oxidative stress in urinary bladder pathology. The purpose of this study was thus to investigate the oxidative status and age-related changes in urothelial cells of the urinary bladder of young (2 months) and aging (20 months) mice by means of various methods. Our results demonstrated that healthy young urothelium possesses a powerful antioxidant defence system that functions as a strong defence barrier against reactive species. In contrast, urothelial cells of aging bladder show significantly decreased total antioxidant capacity and significantly increased levels of lipid peroxides (MDA) and iNOS, markers of oxidative stress. Our study demonstrates for the first time that ultrastructural alterations in mitochondria and accumulation of lipofuscin, known to be one of the aging pigments, can clearly be found in superficial urothelial cells of the urinary bladder in aging mice. Since the presence of lipofuscin in the urothelium has not yet been reported, we applied various methods to confirm our finding. Our results reveal changes in the oxidative status and structural alterations to superficial urothelial cells similar to those of other long-lived post-mitotic cells.  相似文献   

17.
Mosaic Variegated Aneuploidy (MVA) syndrome is a rare autosomal recessive disorder characterized by inaccurate chromosome segregation and high rates of near-diploid aneuploidy. Children with MVA syndrome die at an early age, are cancer prone, and have progeroid features like facial dysmorphisms, short stature, and cataracts. The majority of MVA cases are linked to mutations in BUBR1, a mitotic checkpoint gene required for proper chromosome segregation. Affected patients either have bi-allelic BUBR1 mutations, with one allele harboring a missense mutation and the other a nonsense mutation, or mono-allelic BUBR1 mutations combined with allelic variants that yield low amounts of wild-type BubR1 protein. Parents of MVA patients that carry single allele mutations have mild mitotic defects, but whether they are at risk for any of the pathologies associated with MVA syndrome is unknown. To address this, we engineered a mouse model for the nonsense mutation 2211insGTTA (referred to as GTTA) found in MVA patients with bi-allelic BUBR1 mutations. Here we report that both the median and maximum lifespans of the resulting BubR1 +/GTTA mice are significantly reduced. Furthermore, BubR1 +/GTTA mice develop several aging-related phenotypes at an accelerated rate, including cataract formation, lordokyphosis, skeletal muscle wasting, impaired exercise ability, and fat loss. BubR1 +/GTTA mice develop mild aneuploidies and show enhanced growth of carcinogen-induced tumors. Collectively, these data demonstrate that the BUBR1 GTTA mutation compromises longevity and healthspan, raising the interesting possibility that mono-allelic changes in BUBR1 might contribute to differences in aging rates in the general population.  相似文献   

18.
Foraging host individuals can defend against fecal–orally transmitted parasites by avoiding feces‐contaminated patches, which has been widely documented among ungulates. However, it remains unclear whether smaller‐sized hosts (e.g., mice), with their high metabolism and constant needs for energy acquisition, can afford the same behavioral strategy. In this study, we used laboratory and field experiments to test whether feces‐contaminated patches are avoided by the Taiwan field mice Apodemus semotus. In the laboratory experiment, wild‐caught mice whose parasitic infection was not manipulated were given two options to forage from feces‐contaminated and uncontaminated patches. These naturally infected mice spent less time in feces‐contaminated than uncontaminated patches. In the field experiment, we reduced gastrointestinal parasite load of randomly chosen mice via anthelmintic treatment. Whereas the untreated mice did not discriminate among food patches with different levels of parasitism risk (i.e., high‐ or low‐risk patches containing conspecific feces of high or low parasite egg counts, no‐feces patches containing no feces), the treated mice spent less time in feces‐contaminated patches than in no‐feces patches. Similar to the larger‐sized ungulates, we demonstrated here that small mammals can also exhibit fecal‐avoidance foraging. Furthermore, such behavior may be influenced by both environmental parasitism risk and host infection status, which has implications in host–parasite transmission dynamics, namely the selective use of uncontaminated patches by the less‐infected (treated) mice may drive parasites to aggregate within the infected portion of a host population.  相似文献   

19.
Previous studies have shown that calpains are autolytically cleaved during the disease process of mdx dystrophy, a mouse model for Duchenne muscular dystrophy, indicating that calpains may be activated and play a role in proteolysis that occurs in muscular dystrophy (J. Biol. Chem.270(18), 10909–10914, 1995). In the present study, we investigated the location of calpain in dystrophic muscle fibers over the course of mdx dystrophy, to relate the protease distribution to its state of activation, and to determine whether calpain translocation was an early event in mdx dystrophy. Immunolabeling of healthy, fully differentiated muscle fibers showed calpain present throughout the cytosol, but more concentrated near the plasma membrane. However, degenerating mdx fibers did not contain higher concentrations of calpain at the plasma membrane and showed only a homogeneous, cytosolic distribution. Calpain distribution was similarly diffuse in young myotubes and regenerating fibers with increased cytosolic concentration in early myotubes. Calpain distribution in adult mdx tissue was similar to that occurring in healthy, fully differentiated fibers, although adult mdx fibers displayed higher concentrations of membrane-associated calpain than those observed in C57 controls. The association of calpain with the plasma membrane was verified by immunoblots of isolated sarcolemmal membrane from adult mdx and control muscle which showed calpain present predominantly in the cytosol along with some membrane association. Thus, changes in calpain distribution coincide with changes in enzymatic cleavage over the course of mdx dystrophy shown previously. Furthermore, the stages of pathology at which calpain cleavage is least coincides with those stages when calpain is most concentrated at the cell membrane, suggesting that calpain is retained in an inactive form at the plasma membrane.  相似文献   

20.
Duchenne Muscular Dystrophy (DMD) is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM) decreased [Ca2+]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca2+]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB) fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca2+]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91phox/p47phox NOX2 subunits) and pro-apoptotic (Bax) genes in mdx diaphragm muscles and lowered serum creatine kinase (CK) levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca2+]r in mdx skeletal muscle cells. The results in this work open new perspectives towards possible targets for pharmacological approaches to treat DMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号