首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Autophagy has been intensively studied in herpes simplex virus type 1 (HSV-1), a human alphaherpesvirus. The HSV-1 genome encodes a well-known neurovirulence protein called ICP34.5. When the gene encoding this protein is deleted from the genome, the virus is markedly less virulent when injected into the brains of animal models. Subsequent characterization of ICP34.5 established that the neurovirulence protein interacts with BECN1, thereby inhibiting autophagy and facilitating viral replication in the brain. However, an ortholog of the ICP34.5 gene is lacking in the genomes of other closely related alphaherpesviruses, such as varicella-zoster virus (VZV). Further, autophagosomes are easily identified in the exanthem (rash) that is the hallmark of both VZV diseases—varicella and herpes zoster. Inhibition of autophagy leads to diminished VZV titers. Finally, no block is detected in studies of autophagic flux following VZV infection. Thus autophagy appears to be proviral during VZV infection while antiviral during HSV-1 infection. Because divergence to this degree is extremely unusual for 2 closely related herpesviruses, we postulate that VZV has accommodated its infectious cycle to benefit from autophagic flux, whereas HSV-1 has captured cellular immunomodulatory genes to inhibit autophagy.  相似文献   

2.
S Wang  J M Vos 《Journal of virology》1996,70(12):8422-8430
We have developed a miniviral vector, pH300, based on the human herpesviruses 1 and 4, herpes simplex virus type 1 (HSV-1), and Epstein-Barr virus (EBV), carrying EBV sequences for plasmid episomal maintenance and HSV-1 sequences for amplification and packaging in multimeric form into HSV-1 capsids in the presence of a helper virus and helper cell line. A reporter gene, the bacterial lacZ gene, which expressed beta-galactosidase, was inserted into the multiple cloning site of pH300 to make pH300-lac. The packaged pH300-lac DNA was very efficient in infecting human cells in tissue culture. The pH300-lac miniviral stock was used to infect in vitro various human cell types derived from breast cancer, lung cancer, and liver cancer. Up to 95% of cells were infected and expressed beta-galactosidase activity after exposure to viral stock at a multiplicity of infection of 3. There was essentially no apparent cytotoxicity after infection of cultured cells in vitro. To test in vivo gene delivery, human liver tumor cells preimplanted subcutaneously in nude mice and injected in situ with pH300-lac showed high efficiency of ectopic gene expression. The pH300 miniviral vector is a simple and effective gene transfer system which shows potential for gene therapy of cancer and inherited diseases.  相似文献   

3.
Human cytomegalovirus (HCMV) infection can lead to congenital hearing loss and mental retardation. Upon immune suppression, reactivation of latent HCMV or primary infection increases morbidity in cancer, transplantation, and late stage AIDS patients. Current treatments include nucleoside analogues, which have significant toxicities limiting their usefulness. In this study we screened a panel of synthetic heparin-binding peptides for their ability to prevent CMV infection in vitro. A peptide designated, p5+14 exhibited ~ 90% reduction in murine CMV (MCMV) infection. Because negatively charged, cell-surface heparan sulfate proteoglycans (HSPGs), serve as the attachment receptor during the adsorption phase of the CMV infection cycle, we hypothesized that p5+14 effectively competes for CMV adsorption to the cell surface resulting in the reduction in infection. Positively charged Lys residues were required for peptide binding to cell-surface HSPGs and reducing viral infection. We show that this inhibition was not due to a direct neutralizing effect on the virus itself and that the peptide blocked adsorption of the virus. The peptide also inhibited infection of other herpesviruses: HCMV and herpes simplex virus 1 and 2 in vitro, demonstrating it has broad-spectrum antiviral activity. Therefore, this peptide may offer an adjunct therapy for the treatment of herpes viral infections and other viruses that use HSPGs for entry.  相似文献   

4.
5.
Herpes simplex virus type 1 (HSV-1) virions, like those of all herpesviruses, contain a proteinaceous layer termed the tegument that lies between the nucleocapsid and viral envelope. The HSV-1 tegument is composed of at least 20 different viral proteins of various stoichiometries. VP22, the product of the U(L)49 gene, is one of the most abundant tegument proteins and is conserved among the alphaherpesviruses. Although a number of interesting biological properties have been attributed to VP22, its role in HSV-1 infection is not well understood. In the present study we have generated both a U(L)49-null virus and its genetic repair and characterized their growth in both cultured cells and the mouse cornea. While single-step growth analyses indicated that VP22 is dispensable for virus replication at high multiplicities of infection (MOIs), analyses of plaque morphology and intra- and extracellular multistep growth identified a role for VP22 in viral spread during HSV-1 infection at low MOIs. Specifically, VP22 was not required for either virion infectivity or cell-cell spread but was required for accumulation of extracellular virus to wild-type levels. We found that the absence of VP22 also affected virion composition. Intracellular virions generated by the U(L)49-null virus contained reduced amounts of ICP0 and glycoproteins E and D compared to those generated by the wild-type and U(L)49-repaired viruses. In addition, viral spread in the mouse cornea was significantly reduced upon infection with the U(L)49-null virus compared to infection with the wild-type and U(L)49-repaired viruses, identifying a role for VP22 in viral spread in vivo as well as in vitro.  相似文献   

6.
Stem cells hold indefinite self-renewable capability that can be differentiated into all desired cell types.Based on their plasticity potential,they are divided into totipotent(morula stage cells),pluripotent(embryonic stem cells),multipotent(hematopoietic stem cells,multipotent adult progenitor stem cells,and mesenchymal stem cells[MSCs]),and unipotent(progenitor cells that differentiate into a single lineage)cells.Though bone marrow is the primary source of multipotent stem cells in adults,other tissues such as adipose tissues,placenta,amniotic fluid,umbilical cord blood,periodontal ligament,and dental pulp also harbor stem cells that can be used for regenerative therapy.In addition,induced pluripotent stem cells also exhibit fundamental properties of self-renewal and differentiation into specialized cells,and thus could be another source for regenerative medicine.Several diseases including neurodegenerative diseases,cardiovascular diseases,autoimmune diseases,virus infection(also coronavirus disease 2019)have limited success with conventional medicine,and stem cell transplantation is assumed to be the best therapy to treat these disorders.Importantly,MSCs,are by far the best for regenerative medicine due to their limited immune modulation and adequate tissue repair.Moreover,MSCs have the potential to migrate towards the damaged area,which is regulated by various factors and signaling processes.Recent studies have shown that extracellular calcium(Ca2+)promotes the proliferation of MSCs,and thus can assist in transplantation therapy.Ca2+signaling is a highly adaptable intracellular signal that contains several components such as cell-surface receptors,Ca2+channels/pumps/exchangers,Ca2+buffers,and Ca2+sensors,which together are essential for the appropriate functioning of stem cells and thus modulate their proliferative and regenerative capacity,which will be discussed in this review.  相似文献   

7.
8.
《Seminars in Virology》1994,5(3):249-258
As with all herpesviruses, human cytomegalovirus (HCMV) can establish lifelong persistence after primary infection, with reactivation occurring often as a result of immunosuppression. Unfortunately, the lack of a latent model system for HCMV has meant that the mechanism by which the virus persists in the healthy carrier and the molecular events associated with reactivation are still unclear. However, analyses of cell types in vivo which carry virus and their extent of viral gene expression as well as their permissiveness for in vitro infection have begun to give insight into these mechanisms.  相似文献   

9.
We describe the use of herpesvirus promoters to regulate the expression of a Sindbis virus replicon (SINrep/LacZ). We isolated cell lines that contain the cDNA of SINrep/LacZ under the control of a promoter from a herpesvirus early gene which requires regulatory proteins encoded by immediate-early genes for expression. Wild-type Sindbis virus and replicons derived from this virus cause death of most vertebrate cells, but the cells discussed here grew normally and expressed the replicon and β-galactosidase only after infection with a herpesvirus. Vero cell lines in which the expression of SINrep/LacZ was regulated by the herpes simplex virus type 1 (HSV-1) infected-cell protein 8 promoter were generated. One Vero cell line (V3-45N) contained, in addition to the SINrep/LacZ cDNA, a Sindbis virus-defective helper cDNA which provides the structural proteins for packaging the replicon. Infection of V3-45N cells with HSV-1 resulted in the production of packaged SINrep/LacZ replicons. HSV-1 induction of the Sindbis virus replicon and packaging and spread of the replicon led to enhanced expression of the reporter gene, suggesting that this type of cell could be used to develop sensitive assays to detect herpesviruses. We also isolated a mink lung cell line that was transformed with SINrep/LacZ cDNA under the control of the promoter from the human cytomegalovirus (HCMV) early gene UL45. HCMV carries out an abortive infection in mink lung cells, but it was able to induce the SINrep/LacZ replicon. These results, and those obtained with an HSV-1 mutant, demonstrate that this type of signal amplification system could be valuable for detecting herpesviruses for which a permissive cell culture system is not available.  相似文献   

10.
The virucidal effect of peppermint oil, the essential oil of Mentha piperita, against herpes simplex virus was examined. The inhibitory activity against herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) was tested in vitro on RC-37 cells using a plaque reduction assay. The 50% inhibitory concentration (IC50) of peppermint oil for herpes simplex virus plaque formation was determined at 0.002% and 0.0008% for HSV-1 and HSV-2, respectively. Peppermint oil exhibited high levels of virucidal activity against HSV-1 and HSV-2 in viral suspension tests. At noncytotoxic concentrations of the oil, plaque formation was significantly reduced by 82% and 92% for HSV-1 and HSV-2, respectively. Higher concentrations of peppermint oil reduced viral titers of both herpesviruses by more than 90%. A clearly time-dependent activity could be demonstrated, after 3 h of incubation of herpes simplex virus with peppermint oil an antiviral activity of about 99% could be demonstrated. In order to determine the mode of antiviral action of the essential oil, peppermint oil was added at different times to the cells or viruses during infection. Both herpesviruses were significantly inhibited when herpes simplex virus was pretreated with the essential oil prior to adsorption. These results indicate that peppermint oil affected the virus before adsorption, but not after penetration into the host cell. Thus this essential oil is capable to exert a direct virucidal effect on HSV. Peppermint oil is also active against an acyclovir resistant strain of HSV-1 (HSV-1-ACV(res)), plaque formation was significantly reduced by 99%. Considering the lipophilic nature of the oil which enables it to penetrate the skin, peppermint oil might be suitable for topical therapeutic use as virucidal agent in recurrent herpes infection.  相似文献   

11.
Herpes simplex virus type 1 (HSV-1) infection results in lifelong chronic infection of trigeminal ganglion (TG) neurons, also referred to as neuronal HSV-1 latency, with periodic reactivation leading to recrudescent herpetic disease in some persons. HSV-1 proteins are expressed in a temporally coordinated fashion during lytic infection, but their expression pattern during latent infection is largely unknown. Selective retention of HSV-1 reactive T-cells in human TG suggests their role in controlling reactivation by recognizing locally expressed HSV-1 proteins. We characterized the HSV-1 proteins recognized by virus-specific CD4 and CD8 T-cells recovered from human HSV-1–infected TG. T-cell clusters, consisting of both CD4 and CD8 T-cells, surrounded neurons and expressed mRNAs and proteins consistent with in situ antigen recognition and antiviral function. HSV-1 proteome-wide scans revealed that intra-TG T-cell responses included both CD4 and CD8 T-cells directed to one to three HSV-1 proteins per person. HSV-1 protein ICP6 was targeted by CD8 T-cells in 4 of 8 HLA-discordant donors. In situ tetramer staining demonstrated HSV-1-specific CD8 T-cells juxtaposed to TG neurons. Intra-TG retention of virus-specific CD4 T-cells, validated to the HSV-1 peptide level, implies trafficking of viral proteins from neurons to HLA class II-expressing non-neuronal cells for antigen presentation. The diversity of viral proteins targeted by TG T-cells across all kinetic and functional classes of viral proteins suggests broad HSV-1 protein expression, and viral antigen processing and presentation, in latently infected human TG. Collectively, the human TG represents an immunocompetent environment for both CD4 and CD8 T-cell recognition of HSV-1 proteins expressed during latent infection. HSV-1 proteins recognized by TG-resident T-cells, particularly ICP6 and VP16, are potential HSV-1 vaccine candidates.  相似文献   

12.
人巨细胞病毒的分子克隆及其特异性DNA探针的制备   总被引:6,自引:0,他引:6  
王柳  刘学礼 《生物技术》1994,4(4):33-35,5
从人巨细胞病毒(HCMV)培养物中提取HCMV并抽提其DNA,经限制性内切酶BamHI完全消化后,与质粒pBluescript-SK重组建立了HCMV的DNA文库,从此文库。中随机筛选出两个重组质粒(pCMV-1和pCMV-2),用BamHI分析证明其中所含的病毒DNA片段的大小分别为1.0kb和7.5kb,将这两种质粒大量扩增纯化后,用光生物素进行标记作为探针,证明其只与HCMV反应,与正常人细胞DNA及Ⅰ型和Ⅱ型单纯疤疹病毒DNA无交叉反应。  相似文献   

13.
Cassady KA 《Journal of virology》2005,79(14):8707-8715
Human cytomegalovirus (HCMV) attachment and entry stimulates the expression of cellular interferon-inducible genes, many of which target important cellular functions necessary for viral replication. Double-stranded RNA-dependent host protein kinase (PKR) is an interferon-inducible gene product that limits viral replication by inhibiting protein translation in the infected cell. It was anticipated that HCMV encodes gene products that facilitate the evasion of this PKR-mediated antiviral response. Using a deltagamma1 34.5 herpes simplex virus type 1 (HSV-1) recombinant that triggers PKR-mediated protein synthesis shutoff, experiments identified an HCMV gene product expressed in the initial hours of infection that allows continued protein synthesis in the infected cell. Recombinant HSV-1 viruses expressing either the HCMV TRS1 or IRS1 protein demonstrate that either of these HCMV gene products allows the deltagamma1 34.5 recombinant viruses to evade PKR-mediated protein shutoff and maintain late viral protein synthesis.  相似文献   

14.
Viral therapy of cancer (viral oncolysis) is dependent on selective destruction of the tumor tissue compared with healthy tissues. Several factors, including receptor expression, extracellular components, and intracellular mechanisms, may influence viral oncolysis. In the present work, we studied the potential oncolytic activity of herpes simplex virus type 1 (HSV-1), using an organ culture system derived from colon carcinoma and healthy colon tissues of mouse and human origin. HSV-1 infected normal colons ex vivo at a very low efficiency, in contrast to high-efficiency infection of colon carcinoma tissue. In contrast, adenoviral and lentiviral vectors infected both tissues equally well. To investigate the mechanisms underlying the preferential affinity of HSV-1 for the carcinoma tissue, intracellular and extracellular factors were investigated. Two extracellular components, collagen and mucin molecules, were found to restrict HSV-1 infectivity in the healthy colon. The mucin layer of the healthy colon binds to HSV-1 and thereby blocks viral interaction with the epithelial cells of the tissue. In contrast, colon carcinomas express small amounts of collagen and mucin molecules and are thus permissive to HSV-1 infection. In agreement with the ex vivo system, HSV-1 injected into a mouse colon carcinoma in vivo significantly reduced the volume of the tumor. In conclusion, we describe a novel mechanism of viral selectivity for malignant tissues that is based on variance of the extracellular matrix between tumor and healthy tissues. These insights may facilitate new approaches to the application of HSV-1 as an oncolytic virus.  相似文献   

15.
Mesenchymal stem cells (MSCs) are considered a potential tool for cell based regenerative therapy due to their immunomodulatory property, differentiation potentials, trophic activity as well as large donor pool. Poor engraftment and short term survival of transplanted MSCs are recognized as major limitations which were linked to early cellular ageing, loss of chemokine markers during ex vivo expansion, and hyper-immunogenicity to xeno-contaminated MSCs. These problems can be minimized by ex vivo expansion of MSCs in hypoxic culture condition using well defined or xeno-free media i.e., media supplemented with growth factors, human serum or platelet lysate. In addition to ex vivo expansion in hypoxic culture condition using well defined media, this review article describes the potentials of transient adaptation of expanded MSCs in autologous serum supplemented medium prior to transplantation for long term regenerative benefits. Such transient adaptation in autologous serum supplemented medium may help to increase chemokine receptor expression and tissue specific differentiation of ex vivo expanded MSCs, thus would provide long term regenerative benefits.  相似文献   

16.
Human herpesviruses are important causes of potentially severe chronic infections for which T cells are believed to be necessary for control. In order to examine the role of virus-specific CD8 T cells against Varicella Zoster Virus (VZV), we generated a comprehensive panel of potential epitopes predicted in silico and screened for T cell responses in healthy VZV seropositive donors. We identified a dominant HLA-A*0201-restricted epitope in the VZV ribonucleotide reductase subunit 2 and used a tetramer to analyze the phenotype and function of epitope-specific CD8 T cells. Interestingly, CD8 T cells responding to this VZV epitope also recognized homologous epitopes, not only in the other α-herpesviruses, HSV-1 and HSV-2, but also the γ-herpesvirus, EBV. Responses against these epitopes did not depend on previous infection with the originating virus, thus indicating the cross-reactive nature of this T cell population. Between individuals, the cells demonstrated marked phenotypic heterogeneity. This was associated with differences in functional capacity related to increased inhibitory receptor expression (including PD-1) along with decreased expression of co-stimulatory molecules that potentially reflected their stimulation history. Vaccination with the live attenuated Zostavax vaccine did not efficiently stimulate a proliferative response in this epitope-specific population. Thus, we identified a human CD8 T cell epitope that is conserved in four clinically important herpesviruses but that was poorly boosted by the current adult VZV vaccine. We discuss the concept of a “pan-herpesvirus” vaccine that this discovery raises and the hurdles that may need to be overcome in order to achieve this.  相似文献   

17.
McMahon R  Walsh D 《Journal of virology》2008,82(20):10218-10230
Quiescent infection of cultured cells with herpes simplex virus type 1 (HSV-1) provides an important, amenable means of studying the molecular mechanics of a nonproductive state that mimics key aspects of in vivo latency. To date, establishing high-multiplicity nonproductive infection of human cells with wild-type HSV-1 has proven challenging. Here, we describe simple culture conditions that established a cell state in normal human diploid fibroblasts that supported efficient quiescent infection using wild-type virus and exhibited many important properties of the in vivo latent state. Despite the efficient production of immediate early (IE) proteins ICP4 and ICP22, the latter remained unprocessed, and viral late gene products were only transiently and inefficiently produced. This low level of virus activity in cultures was rapidly suppressed as the nonproductive state was established. Entry into quiescence was associated with inefficient production of the viral trans-activating protein ICP0, and the accumulation of enlarged nuclear PML structures normally dispersed during productive infection. Lytic replication was rapidly and efficiently restored by exogenous expression of HSV-1 ICP0. These findings are in agreement with previous models in which quiescence was established with HSV mutants disrupted in their expression of IE gene products that included ICP0 and, importantly, provide a means to study cellular mechanisms that repress wild-type viral functions to prevent productive replication. We discuss this model in relation to existing systems and its potential as a simple tool to study the molecular mechanisms of quiescent infection in human cells using wild-type HSV-1.  相似文献   

18.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.  相似文献   

19.
Human gamma herpesviruses, including Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), are capable of inducing tumors, particularly in in immune-compromised individuals. Due to the stringent host tropism, rodents are resistant to infection by human gamma herpesviruses, creating a significant barrier for the in vivo study of viral genes that contribute to tumorigenesis. The closely-related murine gamma herpesvirus 68 (γHV68) efficiently infects laboratory mouse strains and establishes robust persistent infection without causing apparent disease. Here, we report that a recombinant γHV68 carrying the KSHV G protein-coupled receptor (kGPCR) in place of its murine counterpart induces angiogenic tumors in infected mice. Although viral GPCRs are conserved in all gamma herpesviruses, kGPCR potently activated downstream signaling and induced tumor formation in nude mouse, whereas γHV68 GPCR failed to do so. Recombinant γHV68 carrying kGPCR demonstrated more robust lytic replication ex vivo than wild-type γHV68, although both viruses underwent similar acute and latent infection in vivo. Infection of immunosuppressed mice with γHV68 carrying kGPCR, but not wild-type γHV68, induced tumors in mice that exhibited angiogenic and inflammatory features shared with human Kaposi’s sarcoma. Immunohistochemistry staining identified abundant latently-infected cells and a small number of cells supporting lytic replication in tumor tissue. Thus, mouse infection with a recombinant γHV68 carrying kGPCR provides a useful small animal model for tumorigenesis induced by a human gamma herpesvirus gene in the setting of a natural course of infection.  相似文献   

20.
Using the cis-acting human cytomegalovirus (HCMV) packaging elements (pac 1 and pac 2) as DNA probes, specific DNA-protein complexes were detected by electrophoretic mobility shift assay (EMSA) in both HCMV-infected cell nuclear extracts and recombinant baculovirus-infected cell extracts containing the HCMV p130 (pUL56) protein. DNA-binding proteins, which were common in uninfected and infected cell extracts, were also detected. Mutational analysis showed that only the AT-rich core sequences in these cis-acting motifs, 5′-TAAAAA-3′ (pac 1) and 5′-TTTTAT-3′ (pac 2), were required for specific DNA-protein complex formation. The specificity of the DNA-protein complexes was confirmed by EMSA competition. Furthermore, a specific endonuclease activity was found to be associated with lysates of baculovirus-infected cells expressing recombinant p130 (rp130). This nuclease activity was time dependent, related to the amount of rp130 in the assay, and ATP independent. Nuclease activity remained associated with rp130 after partial purification by sucrose gradient centrifugation, suggesting that this activity is a property of HCMV p130. We propose a possible involvement of p130 in HCMV DNA packaging.Human cytomegalovirus (HCMV), one of eight human herpesviruses, can cause serious illness in neonates as well as in immunocompromised adults (2). For example, transplant and AIDS patients may develop life-threatening diseases as a consequence of primary infection or reactivation of latent infection. Present therapeutic approaches are limited, and new strategies that may result from a better understanding of the molecular events involved in viral maturation are needed.The HCMV virion consists of an envelope, an amorphous tegument, and an icosahedral nucleocapsid, which is assembled in the nuclei of infected cells. The precise molecular events of HCMV capsid assembly and subsequent DNA packaging are not well understood. It is generally accepted that viral DNA is packaged into a procapsid consisting of major capsid protein (UL86), minor capsid protein (UL85), minor capsid protein-binding protein (UL46), smallest capsid protein (UL47/48), assembly protein (UL80.5), and proteinase precursor protein (UL80a) (8). The assembly protein is removed during DNA insertion. It is unclear how the concatenated viral DNA contacts empty capsids and is cleaved and packaged into the capsid.Recent studies with herpes simplex virus type 1 (HSV-1) mutants that were temperature sensitive suggest that cleavage of the concatenated DNA does not occur in the absence of packaging (1). One possible model would be the involvement of cleavage packaging protein(s) which could facilitate incorporation of DNA into the procapsid by attaching to a specific motif within the viral genome. With HSV-1, the UL36 gene product (ICP1) and a smaller protein (possibly encoded by UL37) are part of a complex that recognizes the HSV-specific a sequence and are required for cleavage and packaging of viral DNA from concatemers (6, 7). In addition, the HSV-1 ICP 18.5 (UL28) gene product and the pseudorabies virus (PrV) homolog (16) were also reported to play an important role in DNA packaging (1, 14). Addison et al. (1) demonstrated that empty capsids were observed under conditions nonpermissive for the expression of the HSV-1 ICP 18.5 gene product. The HSV-1 ICP 18.5 mutants failed to cleave concatenated viral DNA in noncomplementing cells, suggesting that cleavage and packaging require ICP 18.5. Similar results were reported by Mettenleiter et al. (14) for PrV mutant protein. These observations suggest that the HSV-1 UL36, UL37, and UL28 gene products are involved in cleavage and packaging of concatenated viral DNA.In a recent study, we identified and partially characterized the gene product of HCMV UL56 (4). The HCMV UL56 gene product of 130 kDa is the homolog of the HSV-1 UL28 gene product. It is therefore postulated that UL56 possesses properties comparable to those of HSV-1 UL28, implying an involvement in cleavage and packaging of DNA. The HCMV genomic a sequence is a short sequence located at both termini of the genome and repeated in an inverted orientation at the L-S junction. The a sequence plays a key role in replication as a cis-acting signal for cleavage and packaging of progeny viral DNA and circularization of the viral genome. The HCMV a sequence contains two conserved motifs, pac 1 and pac 2, which are required for cleavage and packaging of the viral DNA (18). Both sequence motifs are located on one side of the cleavage site. The pac 1 and pac 2 motifs have an AT-rich core flanked by a GC-rich sequence. During the initial step of viral DNA packaging, a capsid-associated protein may bind to the pac sequences and may be involved in cleavage of the viral DNA concatemer.In this study, electrophoretic mobility shift assays (EMSAs) were performed with DNA probes spanning the region of these cis-acting elements. These studies demonstrate that specific proteins from HCMV-infected nuclear extracts or baculovirus-UL56-infected cell extracts bind to the pac motifs. Using affinity-purified monospecific antibodies, we show that p130 is present in specific DNA-protein complexes containing the pac motifs of the viral genome. Furthermore, evidence is presented for a sequence-specific endonuclease activity of recombinant HCMV p130, using circular plasmid DNA bearing the a sequence as a substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号