首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an unpredictably changing environment, phenotypic variability may evolve as a “bet-hedging” strategy. We examine here two models for evolutionarily stable phenotype distributions resulting from stabilizing selection with a randomly fluctuating optimum. Both models include overlapping generations, either survival of adults or a dormant propagule pool. In the first model (mixed-strategies model) we assume that individuals can produce offspring with a distribution of phenotypes, in which case, the evolutionarily stable population always consists of a single genotype. We show that there is a unique evolutionarily stable strategy (ESS) distribution that does not depend on the amount of generational overlap, and that the ESS distribution generically is discrete rather than continuous; that is, there are distinct classes of offspring rather than a continuous distribution of offspring phenotypes. If the probability of extreme fluctuations in the optimum is sufficiently small, then the ESS distribution is monomorphic: a single type fitted to the mean environment. At higher levels of variability, the ESS distribution is polymorphic, and we find stability conditions for dimorphic distributions. For an exponential or similarly broad-tailed distribution of the optimum phenotype, the ESS consists of an infinite number of distinct phenotypes. In the second model we assume that an individual produces offspring with a single, genetically determined phenotype (pure-strategies model). The ESS population then contains multiple genotypes when the environmental variance is sufficiently high. However the phenotype distributions are similar to those in the mixed-strategies model: discrete, with an increasing number of distinct phenotypes as the environmental variance increases.  相似文献   

2.
The cultural transmission of acquired variation: Effects on genetic fitness   总被引:1,自引:0,他引:1  
In a cultural species individuals acquire some aspects of their phenotypes by imitating conspecifics. Presumably, cultural transmission has some adaptive function in such species. Some authors have suggested that one such function may be the ability to transmit phenotypes that have been modified by learning or some other form of phenotypic plasticity. To examine this hypothesis we have compared the genetic fitness of cultural and noncultural individuals in three different models. In each model the environment is assumed to be variable, either in space or time, and learning modifies each individual's phenotype so as to increase the individual's fitness in the local environment. Cultural individuals transmit the modified phenotype to their offspring, while noncultural individuals do not. The models are different in the following ways: two models assume a dichotomous phenotype, one in a temporally varying environment and one in a spatially varying environment; the third model assumes a quantitative phenotype in a temporally variable environment. The two models which assume a temporally varying environment yield similar results. Genetic transmission is favored in highly autocorrelated environments while cultural transmission in environments with intermediate autocorrelation. In the spatially varying model cultural transmission is always favored.  相似文献   

3.
Larval dispersal can connect distant subpopulations, with important implications for marine population dynamics and persistence, biodiversity conservation and fisheries management. However, different dispersal pathways may affect the final phenotypes, and thus the performance and fitness of individuals that settle into subpopulations. Using otolith microchemical signatures that are indicative of ‘dispersive’ larvae (oceanic signatures) and ‘non-dispersive’ larvae (coastal signatures), we explore the population-level consequences of dispersal-induced variability in phenotypic mixtures for the common triplefin (a small reef fish). We evaluate lipid concentration and otolith microstructure and find that ‘non-dispersive’ larvae (i) have greater and less variable lipid reserves at settlement (and this variability attenuates at a slower rate), (ii) grow faster after settlement, and (iii) experience similar carry-over benefits of lipid reserves on post-settlement growth relative to ‘dispersive’ larvae. We then explore the consequences of phenotypic mixtures in a metapopulation model with two identical subpopulations replenished by variable contributions of ‘dispersive’ and ‘non-dispersive’ larvae and find that the resulting phenotypic mixtures can have profound effects on the size of the metapopulation. We show that, depending upon the patterns of connectivity, phenotypic mixtures can lead to larger metapopulations, suggesting dispersal-induced demographic heterogeneity may facilitate metapopulation persistence.  相似文献   

4.
Evolutionary branching occurs when a population with a unimodal phenotype distribution diversifies into a multimodally distributed population consisting of two or more strains. Branching results from frequency-dependent selection, which is caused by interactions between individuals. For example, a population performing a social task may diversify into a cooperator strain and a defector strain. Branching can also occur in multi-dimensional phenotype spaces, such as when two tasks are performed simultaneously. In such cases, the strains may diverge in different directions: possible outcomes include division of labor (with each population performing one of the tasks) or the diversification into a strain that performs both tasks and another that performs neither. Here we show that the shape of the population’s phenotypic distribution plays a role in determining the direction of branching. Furthermore, we show that the shape of the distribution is, in turn, contingent on the direction of approach to the evolutionary branching point. This results in a distribution–selection feedback that is not captured in analytical models of evolutionary branching, which assume monomorphic populations. Finally, we show that this feedback can influence long-term evolutionary dynamics and promote the evolution of division of labor.  相似文献   

5.
Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative abundance of phenotypes in the population, we are in the realm of evolutionary game theory. Evolutionary game theory is a general approach that can describe the competition of species in an ecosystem, the interaction between hosts and parasites, between viruses and cells, and also the spread of ideas and behaviours in the human population. In this perspective, we review the recent advances in evolutionary game dynamics with a particular emphasis on stochastic approaches in finite sized and structured populations. We give simple, fundamental laws that determine how natural selection chooses between competing strategies. We study the well-mixed population, evolutionary graph theory, games in phenotype space and evolutionary set theory. We apply these results to the evolution of cooperation. The mechanism that leads to the evolution of cooperation in these settings could be called ‘spatial selection’: cooperators prevail against defectors by clustering in physical or other spaces.  相似文献   

6.
Evolutionary models of continuous traits are developed. The models are based on the ideas that: (1) the phenotype is the result of the interaction between genotype and environment; (2) the phenotype is the object of natural selection; (3) not only the genotype but also environmental variables and even phenotypes can be directly transmitted. The phenotype of an offspring at birth is a linear combination of its genotypic value, the phenotypic values of its parents, and their environmental values, all measured on the phenotypic scale. The genetic effects are additive polygenic, and a mutation contribution to the within family variance is admitted.—The values of the offspring phenotype and environment before selection are each linear combinations of these values at birth, the coefficients defining what we call "development." Selection is mostly stabilizing of the Gaussian type, but directional selection is introduced using a Gaussian fitness function with a large variance and a mean far from the current population.—Assortative mating for both phenotype and environment are considered. The analysis in all cases is made by iteration of the means, variances and covariances of the trivariate random variable (genotype, phenotype, environment) whose changes over time completely specify the evolution. In most cases numerical methods are used. The problems of estimating the relative roles of each of the variates in the parents in determining the variates in the offspring are discussed. The major results concern the relative magnitudes of the variances and correlations of the three variates, genotype, phenotype and environment, in a variety of selective, developmental and assorting situations with complex transmission in which G-(genetic), F-(phenotypic), E-(environment) inheritance mechanisms operate jointly. The transmission rules and development patterns (i.e., interactions between phenotype and environment during development) are of major importance in determining qualitative features of the equilibrium distribution.  相似文献   

7.
Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single‐locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype‐phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype‐phenotype relationship frequency dependent, resulting in the appearance of negative frequency‐dependent selection, while additive MGEs contribute a component of parent‐of‐origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be “available” to the evolving population.  相似文献   

8.
Causes of phenotypic variation are fundamental to evolutionary ecology because they influence the traits acted upon by natural selection. One such cause of phenotypic variation is a maternal effect, which is the influence of the environment experienced by a female (and her corresponding phenotype) on the phenotype of her offspring (independent of the offspring’s genotype). While maternal effects are well documented, the longevity and fitness impact of these effects remains unclear because it is difficult to follow free-living individuals through their reproductive lifetimes. For long-lived species, it has been suggested that maternal effects are masked by environmental variables acting on offspring in years following the period of dependence. Our objective was to use indirect measures of maternal condition to determine if maternal effects have long-lasting influences on male offspring in two species of cervid. Because antlers are sexually selected, we used measures of antler size at time of death, 1.5–21.5 years after gestation to investigate maternal effects. We quantified antler size of 11,000 male elk and mule deer born throughout the intermountain western US (6 states) over nearly 30 years. Maternal condition during development was estimated indirectly using a suite of abiotic variables known to influence condition of cervids (i.e., winter severity, spring and summer temperature, and spring and summer precipitation). Antler size of male cervids was significantly associated with our indirect measure of maternal condition during gestation and lactation. Assuming the correctness of our indirect measure, our findings demonstrate that antler size is a sexually selected trait that is influenced–into adulthood–by maternal condition. This link emphasizes the importance of considering inherited environmental effects when interpreting population dynamics or examining reproductive success of long-lived organisms.  相似文献   

9.
Together with the avoidance of any negative impact of inbreeding, preservation of genetic variability for life‐history traits that could undergo future selective pressure is a major issue in endangered species management programmes. However, most of these programmes ignore that, apart from the direct action of genes on such traits, parents, as contributors of offspring environment, can influence offspring performance through indirect parental effects (when parental genotype and phenotype exerts environmental influences on offspring phenotype independently of additive genetic effects). Using quantitative genetic models, we estimated the additive genetic variance for juvenile survival in a population of the endangered Cuvier's gazelle kept in captivity since 1975. The dataset analyzed included performance recording for 700 calves and a total pedigree of 740 individuals. Results indicated that in this population juvenile survival harbors significant additive genetic variance. The estimates of heritability obtained were in general moderate (0.115–0.457) and not affected by the inclusion of inbreeding in the models. Maternal genetic contribution to juvenile survival seems to be of major importance in this gazelle's population as well. Indirect genetic and indirect environmental effects assigned to mothers (i.e., maternal genetic and maternal permanent environmental effects) roughly explain a quarter of the total variance estimated for the trait analyzed. These findings have major evolutionary consequences for the species as show that offspring phenotypes can evolve strictly through changes in the environment provided by mothers. They are also relevant for the captive breeding programme of the species. To take into account, the contribution that mothers have on offspring phenotype through indirect genetic effects when designing pairing strategies might serve to identify those females with better ability to recruit, and, additionally, to predict reliable responses to selection in the captive population.  相似文献   

10.
To maximize long-term average reproductive success, individuals can diversify the phenotypes of offspring produced within a reproductive event by displaying the ‘coin-flipping’ tactic. Wild boar (Sus scrofa scrofa) females have been reported to adopt this tactic. However, whether the magnitude of developmental plasticity within a litter depends on stochasticity in food resources has not been yet investigated. From long-term monitoring, we found that juvenile females produced similar-sized fetuses within a litter independent of food availability. By contrast, adult females adjusted their relative allocation to littermates to the amount of food resources, by providing a similar allocation to all littermates in years of poor food resources but producing highly diversified offspring phenotypes within a litter in years of abundant food resources. By minimizing sibling rivalry, such a plastic reproductive tactic allows adult wild boar females to maximize the number of littermates for a given breeding event.  相似文献   

11.
Selective genotyping of individuals from the two tails of the phenotypic distribution of a population provides a cost efficient alternative to analysis of the entire population for genetic mapping. Past applications of this approach have been confounded by the small size of entire and tail populations, and insufficient marker density, which result in a high probability of false positives in the detection of quantitative trait loci (QTL). We studied the effect of these factors on the power of QTL detection by simulation of mapping experiments using population sizes of up to 3,000 individuals and tail population sizes of various proportions, and marker densities up to one marker per centiMorgan using complex genetic models including QTL linkage and epistasis. The results indicate that QTL mapping based on selective genotyping is more powerful than simple interval mapping but less powerful than inclusive composite interval mapping. Selective genotyping can be used, along with pooled DNA analysis, to replace genotyping the entire population, for mapping QTL with relatively small effects, as well as linked and interacting QTL. Using diverse germplasm including all available genetics and breeding materials, it is theoretically possible to develop an “all-in-one plate” approach where one 384-well plate could be designed to map almost all agronomic traits of importance in a crop species. Selective genotyping can also be used for genomewide association mapping where it can be integrated with selective phenotyping approaches. We also propose a breeding-to-genetics approach, which starts with identification of extreme phenotypes from segregating populations generated from multiple parental lines and is followed by rapid discovery of individual genes and combinations of gene effects together with simultaneous manipulation in breeding programs.  相似文献   

12.
Maternal effects, where the conditions experienced by mothers affect the phenotype of their offspring, are widespread in nature and have the potential to influence population dynamics. However, they are very rarely included in models of population dynamics. Here, we investigate a recently discovered maternal effect, where maternal food availability affects the feeding rate of offspring so that well-fed mothers produce fast-feeding offspring. To understand how this maternal effect influences population dynamics, we explore novel predator–prey models where the consumption rate of predators is modified by changes in maternal prey availability. We address the ‘paradox of enrichment'', a theoretical prediction that nutrient enrichment destabilizes populations, leading to cycling behaviour and an increased risk of extinction, which has proved difficult to confirm in the wild. Our models show that enriched populations can be stabilized by maternal effects on feeding rate, thus presenting an intriguing potential explanation for the general absence of ‘paradox of enrichment'' behaviour in natural populations. This stabilizing influence should also reduce a population''s risk of extinction and vulnerability to harvesting.  相似文献   

13.
Many organisms exhibit phenotypic plasticity; producing alternate phenotypes depending on the environment. Individuals can be plastic (intragenerational or direct plasticity), wherein individuals of the same genotype produce different phenotypes in response to the environments they experience. Alternatively, an individual's phenotype may be under the control of its parents, usually the mother (transgenerational or indirect plasticity), so that mother's genotype determines the phenotype produced by a given genotype of her offspring. Under what conditions does plasticity evolve to have intragenerational as opposed to transgenerational genetic control? To explore this question, we present a population genetic model for the evolution of transgenerational and intragenerational plasticity. We hypothesize that the capacity for plasticity incurs a fitness cost, which is borne either by the individual developing the plastic phenotype or by its mother. We also hypothesize that individuals are imperfect predictors of future environments and their capacity for plasticity can lead them occasionally to make a low‐fitness phenotype for a particular environment. When the cost, benefit and error parameters are equal, we show that there is no evolutionary advantage to intragenerational over transgenerational plasticity, although the rate of evolution of transgenerational plasticity is half the rate for intragenerational plasticity, as predicted by theory on indirect genetic effects. We find that transgenerational plasticity evolves when mothers are better predictors of future environments than offspring or when the fitness cost of the capacity for plasticity is more readily borne by a mother than by her developing offspring. We discuss different natural systems with either direct intragenerational plasticity or indirect transgenerational plasticity and find a pattern qualitatively in accord with the predictions of our model.  相似文献   

14.
The ability of individuals to leave a current breeding area and select a future one is important, because such decisions can have multiple consequences for individual fitness, but also for metapopulation dynamics, structure, and long‐term persistence through non‐random dispersal patterns. In the wild, many colonial and territorial animal species display informed dispersal strategies, where individuals use information, such as conspecific breeding success gathered during prospecting, to decide whether and where to disperse. Understanding informed dispersal strategies is essential for relating individual behavior to subsequent movements and then determining how emigration and settlement decisions affect individual fitness and demography. Although numerous theoretical studies have explored the eco‐evolutionary dynamics of dispersal, very few have integrated prospecting and public information use in both emigration and settlement phases. Here, we develop an individual‐based model that fills this gap and use it to explore the eco‐evolutionary dynamics of informed dispersal. In a first experiment, in which only prospecting evolves, we demonstrate that selection always favors informed dispersal based on a low number of prospected patches relative to random dispersal or fully informed dispersal, except when individuals fail to discriminate better patches from worse ones. In a second experiment, which allows the concomitant evolution of both emigration probability and prospecting, we show the same prospecting strategy evolving. However, a plastic emigration strategy evolves, where individuals that breed successfully are always philopatric, while failed breeders are more likely to emigrate, especially when conspecific breeding success is low. Embedding information use and prospecting behavior in eco‐evolutionary models will provide new fundamental understanding of informed dispersal and its consequences for spatial population dynamics.  相似文献   

15.
Mutagenesis is a powerful tool used for studying gene function as well as for crop improvement. It is regaining popularity because of the development of effective and cost efficient methods for high-throughput mutation detection. Selection for semi-dwarf phenotype during green revolution has reduced genetic diversity including that for agronomically desirable traits. Most of the available mutant populations in wheat (Triticum aestivum L.) were developed in post-green revolution cultivars. Besides the identification and isolation of agronomically important alleles in the mutant population of pre-green revolution cultivar, this population can be a vital resource for expanding the genetic diversity for wheat breeding. Here we report an Ethylmethane Sulfonate (EMS) generated mutant population consisting of 4,180 unique mutant plants in a pre-green revolution spring wheat cultivar ‘Indian’. Released in early 1900s, ‘Indian’ is devoid of any known height-reducing mutations. Unique mutations were captured by proceeding with single M2 seed from each of the 4,180 M1 plants. Mutants for various phenotypic traits were identified by detailed phenotyping for altered morphological and agronomic traits on M2 plants in the greenhouse and M3 plants in the field. Of the 86 identified mutants, 75 (87%) were phenotypically stable at the M4 generation. Among the observed phenotypes, variation in plant height was the most frequent followed by the leaf morphology. Several mutant phenotypes including looped peduncle, crooked plant morphology, ‘gritty’ coleoptiles, looped lower internodes, and burnt leaf tips are not reported in other plant species. Considering the extent and diversity of the observed mutant phenotypes, this population appears to be a useful resource for the forward and reverse genetic studies. This resource is available to the scientific community.  相似文献   

16.
A challenge to ecologists and evolutionary biologists is predicting organismal responses to the anticipated changes to global ecosystems through climate change. Most evidence suggests that short-term global change may involve increasing occurrences of extreme events, therefore the immediate response of individuals will be determined by physiological capacities and life-history adaptations to cope with extreme environmental conditions. Here, we consider the role of hormones and maternal effects in determining the persistence of species in altered environments. Hormones, specifically steroids, are critical for patterning the behaviour and morphology of parents and their offspring. Hence, steroids have a pervasive influence on multiple aspects of the offspring phenotype over its lifespan. Stress hormones, e.g. glucocorticoids, modulate and perturb phenotypes both early in development and later into adulthood. Females exposed to abiotic stressors during reproduction may alter the phenotypes by manipulation of hormones to the embryos. Thus, hormone-mediated maternal effects, which generate phenotypic plasticity, may be one avenue for coping with global change. Variation in exposure to hormones during development influences both the propensity to disperse, which alters metapopulation dynamics, and population dynamics, by affecting either recruitment to the population or subsequent life-history characteristics of the offspring. We suggest that hormones may be an informative index to the potential for populations to adapt to changing environments.  相似文献   

17.
Between 1969 and 1977 the frequency of the blue phenotype of the dimorphic Lesser Snow Goose (Anser caerulescens caerulescens) showed a steady increase at the La Pérouse Bay colony near Churchill, Manitoba. Cooch (1961, 1963) suggested the global increase resulted from selection pressures favoring blue individuals. The selection hypothesis was evaluated by examining phenotypic differences in net fecundity. We partitioned the reproductive cycle into a series of stages, each defined by a particular index of fecundity. Despite large samples we were unable to detect any significant differences between the two maternal phenotypes in those indices that could conceivably influence population dynamics. We cannot, however, dismiss selection as the mechanism of population change, nor as a contributor to the maintenance of the polymorphism without assessing potential phenotypic differences in viability, age of maturation, and breeding propensity. These attributes are examined in the following paper (Rockwell et al., 1985).  相似文献   

18.
Repeatable behavioural traits (‘personality’) have been shown to covary with fitness, but it remains poorly understood how such behaviour–fitness relationships come about. We applied a multivariate approach to reveal the mechanistic pathways by which variation in exploratory and aggressive behaviour is translated into variation in reproductive success in a natural population of blue tits, Cyanistes caeruleus. Using path analysis, we demonstrate a key role for provisioning behaviour in mediating the link between personality and reproductive success (number of fledged offspring). Aggressive males fed their nestlings at lower rates than less aggressive individuals. At the same time, their low parental investment was associated with increased female effort, thereby positively affecting fledgling production. Whereas male exploratory behaviour was unrelated to provisioning behaviour and reproductive success, fast-exploring females fed their offspring at higher rates and initiated breeding earlier, thus increasing reproductive success. Our findings provide strong support for specific mechanistic pathways linking components of behavioural syndromes to reproductive success. Importantly, relationships between behavioural phenotypes and reproductive success were obscured when considering simple bivariate relationships, underlining the importance of adopting multivariate views and statistical tools as path analysis to the study of behavioural evolution.  相似文献   

19.
We study the evolution of dispersal rates in a two patch metapopulation model. The local dynamics in each patch are given by difference equations, which, together with the rate of dispersal between the patches, determine the ecological dynamics of the metapopulation. We assume that phenotypes are given by their dispersal rate. The evolutionary dynamics in phenotype space are determined by invasion exponents, which describe whether a mutant can invade a given resident population. If the resident metapopulation is at a stable equilibrium, then selection on dispersal rates is neutral if the population sizes in the two patches are the same, while selection drives dispersal rates to zero if the local abundances are different. With non-equilibrium metapopulation dynamics, non-zero dispersal rates can be maintained by selection. In this case, and if the patches are ecologically identical, dispersal rates always evolve to values which induce synchronized metapopulation dynamics. If the patches are ecologically different, evolutionary branching into two coexisting dispersal phenotypes can be observed. Such branching can happen repeatedly, leading to polymorphisms with more than two phenotypes. If there is a cost to dispersal, evolutionary cycling in phenotype space can occur due to the dependence of selection pressures on the ecological attractor of the resident population, or because phenotypic branching alternates with the extinction of one of the branches. Our results extend those of Holt and McPeek (1996), and suggest that phenotypic branching is an important evolutionary process. This process may be relevant for sympatric speciation.  相似文献   

20.
小型哺乳动物的母体效应及其在种群调节中的作用   总被引:1,自引:0,他引:1  
母体效应是指双亲的表型影响其后代表型的直接效应。它是子代对环境异质性的一种表型反应,亦是进化动力的一个重要来源,还可能与小型哺乳动物种群调节机制有关。以小型哺乳动物为例,介绍了母体效应的概念及其产生和发展过程,以及影响母体效应的营养和非营养因素,特别强调了光周期和激素的作用。在种群水平上,对度量母体效应的备选指标进行了评价,认为种群内个体的平均体重能较好地代表种群质量的高低;概述了衰老母体效应假说的主要内容及其在小型哺乳动物种群动态调节中的作用,即在种群数量的周期性波动过程中,母体质量的变化会影响后代的生殖和存活,甚至持续达2~3个世代,它与由种群年龄结构偏移所导致的衰老效应共同起作用,可使某些小型哺乳动物种群处于低数量期。本文还对母体效应的进化适应意义进行丁阐述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号