首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infants are protected from a severe respiratory syncytial virus (RSV) infection in the first months of life by maternal antibodies or by prophylactically administered neutralizing antibodies. Efforts are under way to produce RSV-specific antibodies with increased neutralizing capacity compared to the currently licensed palivizumab. While clearly beneficial during primary infections, preexisting antibodies might affect the onset of adaptive immune responses and the ability to resist subsequent RSV infections. Therefore, we addressed the question of how virus neutralizing antibodies influence the priming of subsequent adaptive immune responses. To test a possible role of the neonatal Fc receptor (FcRn) in this process, we compared the responses in C57BL/6 wild-type (WT) and FcRn−/− mice. We observed substantial virus-specific T-cell priming and B-cell responses in mice primed with RSV IgG immune complexes resulting in predominantly Th1-type CD4+ T-cell and IgG2c antibody responses upon live-virus challenge. RSV-specific CD8+ T cells were primed as well. Activation of these adaptive immune responses was independent of FcRn. Thus, neutralizing antibodies that localize to the airways and prevent infection-related routes of antigen processing can still facilitate antigen presentation of neutralized virus particles and initiate adaptive immune responses against RSV.  相似文献   

2.
Asthma is a chronic inflammatory airway disease characterized by airway hyperreactivity, increased mucus production, and reversible airway contraction. Asthma is a complex genetic trait caused by environmental factors in genetically predisposed individuals. The transportation of maternal antigen-specific IgG via amniotic fluid, placenta and breast milk plays an important role in passive immunity. First, to examine whether maternal passive immunity by the transportation of antigen-specific IgG via FcRn regulates allergic airway inflammation, ovalbumin-immunized FcRn+/− female mice were bred with FcRn−/− male mice to evaluate the degree of ovalbumin-induced allergic airway inflammation of FcRn−/− offspring. Maternal passive immunity regulated allergic airway inflammation in an FcRn-dependent manner. Second, to examine the role of maternal antigen-specific IgG1 injection into mothers, we intravenously injected ovalbumin-specific IgG1 into wild-type or FcRn+/− mice immediately after they gave birth. The offspring were sensitized and challenged with ovalbumin. Antigen-specific IgG1 administered to lactating mice reduced allergic airway inflammation in their offspring in an FcRn-dependent manner. Last, to exclude the factor of maternal passive immunity other than ovalbumin-specific IgG1, we administered ovalbumin-specific IgG1 orally to offspring after birth. Oral administration of ovalbumin-specific IgG1 to offspring during the lactating period prevented the development of allergic airway inflammation in an FcRn-dependent manner. These data show that the transfer of maternal antigen-specific IgG regulates the development of allergic airway inflammation early in life in an FcRn-dependent manner.  相似文献   

3.
The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG''s variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG''s serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.  相似文献   

4.
Microbial infections of the central nervous system (CNS) are often associated with local accumulation of antibody (Ab)-secreting cells (ASC). By providing a source of Ab at the site of infection, CNS-localized ASC play a critical role in acute viral control and in preventing viral recrudescence. Following coronavirus-induced encephalomyelitis, the CNS accumulation of ASC is chemokine (C-X-C motif) receptor 3 (CXCR3) dependent. This study demonstrates that CNS-expressed CXCR3 ligand CXCL10 is the critical chemokine regulating ASC accumulation. Impaired ASC recruitment in CXCL10−/− but not CXCL9−/− mice was consistent with reduced CNS IgG and κ-light chain mRNA and virus-specific Ab. Moreover, the few ASC recruited to the CNS in CXCL10−/− mice were confined to the vasculature, distinct from the parenchymal localization in wild-type and CXCL9−/− mice. However, neither CXCL9 nor CXCL10 deficiency diminished neutralizing serum Ab, supporting a direct role for CXCL10 in ASC migration. T cell accumulation, localization, and effector functions were also not affected in either CXCL9−/− or CXCL10−/− mice, consistent with similar control of infectious virus. There was also no evidence for dysregulation of chemokines or cytokines involved in ASC regulation. The distinct roles of CXCL9 and CXCL10 in ASC accumulation rather coincided with their differential localization. While CXCL10 was predominantly expressed by astrocytes, CXCL9 expression was confined to the vasculature/perivascular spaces. These results suggest that CXCL10 is critical for two phases: recruitment of ASC to the CNS vasculature and ASC entry into the CNS parenchyma.  相似文献   

5.
The neonatal Fc receptor, FcRn, is responsible for the long half-life of IgG molecules in vivo and is a potential therapeutic target for the treatment of autoimmune diseases. A family of peptides comprising the consensus motif GHFGGXY, where X is preferably a hydrophobic amino acid, was shown previously to inhibit the human IgG:human FcRn protein-protein interaction (Mezo, A. R., McDonnell, K. A., Tan Hehir, C. A., Low, S. C., Palombella, V. J., Stattel, J. M., Kamphaus, G. D., Fraley, C., Zhang, Y., Dumont, J. A., and Bitonti, A. J. (2008) Proc. Natl. Acad. Sci. U.S.A., 105, 2337–2342). Herein, the x-ray crystal structure of a representative monomeric peptide in complex with human FcRn was solved to 2.6 Å resolution. The structure shows that the peptide binds to human FcRn at the same general binding site as does the Fc domain of IgG. The data correlate well with structure-activity relationship data relating to how the peptide family binds to human FcRn. In addition, the x-ray crystal structure of a representative dimeric peptide in complex with human FcRn shows how the bivalent ligand can bridge two FcRn molecules, which may be relevant to the mechanism by which the dimeric peptides inhibit FcRn and increase IgG catabolism in vivo. Modeling of the peptide:FcRn structure as compared with available structural data on Fc and FcRn suggest that the His-6 and Phe-7 (peptide) partially mimic the interaction of His-310 and Ile-253 (Fc) in binding to FcRn, but using a different backbone topology.  相似文献   

6.
We have recently demonstrated that MAP kinase phosphatase 2 (MKP-2) deficient C57BL/6 mice, unlike their wild-type counterparts, are unable to control infection with the protozoan parasite Leishmania mexicana. Increased susceptibility was associated with elevated Arginase-1 levels and reduced iNOS activity in macrophages as well as a diminished TH1 response. By contrast, in the present study footpad infection of MKP-2−/− mice with L. major resulted in a healing response as measured by lesion size and parasite numbers similar to infected MKP-2+/+ mice. Analysis of immune responses following infection demonstrated a reduced TH1 response in MKP-2−/− mice with lower parasite specific serum IgG2b levels, a lower frequency of IFN-γ and TNF-α producing CD4+ and CD8+ T cells and lower antigen stimulated spleen cell IFN-γ production than their wild-type counterparts. However, infected MKP-2−/− mice also had similarly reduced levels of antigen induced spleen and lymph node cell IL-4 production compared with MKP-2+/+ mice as well as reduced levels of parasite-specific IgG1 in the serum, indicating a general T cell hypo-responsiveness. Consequently the overall TH1/TH2 balance was unaltered in MKP-2−/− compared with wild-type mice. Although non-stimulated MKP-2−/− macrophages were more permissive to L. major growth than macrophages from MKP-2+/+ mice, reflecting their reduced iNOS and increased Arginase-1 expression, LPS/IFN-γ activation was equally effective at controlling parasite growth in MKP-2−/− and MKP-2+/+ macrophages. Consequently, in the absence of any switch in the TH1/TH2 balance in MKP-2−/− mice, no significant change in disease phenotype was observed.  相似文献   

7.
RIPK3 partially protects against disease caused by influenza A virus (IAV) infection in the mouse model. Here, we compared the immune protection of active vaccination with a universal influenza A vaccine candidate based on the matrix protein 2 ectodomain (M2e) and of passive immunization with anti-M2e IgG antibodies in wild type and Ripk3−/− mice. We observed that the protection against IAV after active vaccination with M2e viral antigen is lost in Ripk3−/− mice. Interestingly, M2e-specific serum IgG levels induced by M2e vaccination were not significantly different between wild type and Ripk3−/− vaccinated mice demonstrating that the at least the humoral immune response was not affected by the absence of RIPK3 during active vaccination. Moreover, following IAV challenge, lungs of M2e vaccinated Ripk3/− mice revealed a decreased number of immune cell infiltrates and an increased accumulation of dead cells, suggesting that phagocytosis could be reduced in Ripk3−/− mice. However, neither efferocytosis nor antibody-dependent phagocytosis were affected in macrophages isolated from Ripk3/− mice. Likewise following IAV infection of Ripk3−/− mice, active vaccination and infection resulted in decreased presence of CD8+ T-cells in the lung. However, it is unclear whether this reflects a deficiency in vaccination or an inability following infection. Finally, passively transferred anti-M2e monoclonal antibodies at higher dose than littermate wild type mice completely protected Ripk3−/− mice against an otherwise lethal IAV infection, demonstrating that the increased sensitivity of Ripk3−/− mice could be overcome by increased antibodies. Therefore we conclude that passive immunization strategies with monoclonal antibody could be useful for individuals with reduced IAV vaccine efficacy or increased IAV sensitivity, such as may be expected in patients treated with future anti-inflammatory therapeutics for chronic inflammatory diseases such as RIPK inhibitors.Subject terms: Infection, Viral infection

  相似文献   

8.
Rotavirus is a major cause of pediatric diarrheal illness worldwide. To explore the role of organized intestinal lymphoid tissues in infection by and immunity to rotavirus, lymphotoxin alpha-deficient (LTα−/−) mice that lack Peyer''s patches and mesenteric lymph nodes were orally infected with murine rotavirus. Systemic rotavirus was cleared within 10 days in both LTα−/− and wild-type mice, and both strains developed early and sustained serum antirotavirus antibody responses. However, unlike wild-type mice, which resolved the intestinal infection within 10 days, LTα−/− mice shed fecal virus for approximately 50 days after inoculation. The resolution of fecal virus shedding occurred concurrently with induction of intestinal rotavirus-specific IgA in both mouse strains. Induction of intestinal rotavirus-specific IgA in LTα−/− mice correlated with the (late) appearance of IgA-producing plasma cells in the small intestine. This, together with the absence of rotavirus-specific serum IgA, implies that secretory rotavirus-specific IgA was produced locally. These findings indicate that serum IgG responses are insufficient and imply that local intestinal IgA responses are important for the clearance of rotavirus from intestinal tissues. Furthermore, they show that while LTα-dependent lymphoid tissues are important for the generation of IgA-producing B cells in the intestine, they are not absolutely required in the setting of rotavirus infection. Moreover, the induction of local IgA-producing B cell responses can occur late after infection and in an LTα-independent manner.  相似文献   

9.
T cell recirculation through extralymphoid tissues is essential to immune surveillance, host defense and inflammation. In this process, T cells enter the tissue from the blood and subsequently leave via the afferent lymph. In the absence of inflammation, T cells require CCR7 expression to egress from the skin or lung, which is consistent with the constitutive expression of the CCR7 ligand CCL21 on lymphatic endothelium. However, during chronic inflammation alternative chemoattractants come into play, allowing Ccr7-deficient (Ccr7−/−) T cells to egress efficiently from affected skin. As T cell egress from inflamed sites is a potential control point of the inflammatory response, we aimed to determine alternative T cell exit receptors using a mouse and a sheep model. We show that CCR7+ and CCR7 T cells exiting from the chronically inflamed skin were highly responsive to the CXCR4 ligand CXCL12, which was induced in the lymphatics in the inflamed site. Based on these findings, we hypothesized that CXCR4 mediates T cell egress from inflamed skin. However, pharmacological inhibition of CXCR4 did not affect the tissue egress of wildtype or Ccr7−/− CD4 and CD8 T cells after adoptive transfer into chronically inflamed skin. Similarly, adoptively transferred Cxcr4−/− Ccr7−/− and Ccr7−/− T cells egressed from the inflamed skin equally well. Based on these data, we conclude that, while CXCR4 might play an essential role for other cell types that enter the afferent lymphatics, it is dispensable for T cell egress from the chronically inflamed skin.  相似文献   

10.
11.
The neonatal Fc receptor (FcRn) regulates the serum half-life of both IgG and albumin through a pH-dependent mechanism that involves salvage from intracellular degradation. Therapeutics and diagnostics built on IgG, Fc, and albumin fusions are frequently evaluated in rodents regarding biodistribution and pharmacokinetics. Thus, it is important to address cross-species ligand reactivity with FcRn, because in vivo testing of such molecules is done in the presence of competing murine ligands, both in wild type (WT) and human FcRn (hFcRn) transgenic mice. Here, binding studies were performed in vitro using enzyme-linked immunosorbent assay and surface plasmon resonance with recombinant soluble forms of human (shFcRnWT) and mouse (smFcRnWT) receptors. No binding of albumin from either species was observed at physiological pH to either receptor. At acidic pH, a 100-fold difference in binding affinity was observed. Specifically, smFcRnWT bound human serum albumin with a KD of ∼90 μm, whereas shFcRnWT bound mouse serum albumin with a KD of 0.8 μm. shFcRnWT ignored mouse IgG1, and smFcRnWT bound strongly to human IgG1. The latter pair also interacted at physiological pH with calculated affinity in the micromolar range. In all cases, binding of albumin and IgG from either species to both receptors were additive. Cross-species albumin binding differences could partly be explained by non-conserved amino acids found within the α2-domain of the receptor. Such distinct cross-species FcRn binding differences must be taken into consideration when IgG- and albumin-based therapeutics and diagnostics are evaluated in rodents for their pharmacokinetics.  相似文献   

12.
The neonatal Fc receptor (FcRn) plays a pivotal role in IgG homeostasis, i.e., it salvages IgG antibodies from lysosomal degradation following fluid-phase pinocytosis, thus preventing rapid systemic elimination of IgG. Recombinant therapeutic antibodies are typically composed of human or humanized sequences, and their biodistribution, or tissue distribution, is often studied in murine models, although, the effect of FcRn on tissue distribution of human IgG in rodents has not been investigated. In this report, an 125I-labeled human IgG1 antibody was studied in both wild type C57BL/6 (WT) and FcRn knockout (KO) mice. Total radioactivity in both plasma and tissues (0–96hr post-dose) was measured by gamma-counting. Plasma exposure of human IgG1 were significantly lower in FcRn KO mice, which is consistent with the primary function of FcRn. Differences in biodistribution of human IgG to selected tissues were also observed. Among the tissue examined, the fat, skin and muscle showed a decrease in tissue-to-blood (T/B) exposure ratio of human IgG1 in FcRn KO mice comparing to the WT mice, while the liver, spleen, kidney, and lung showed an increase in the T/B exposure ratio in FcRn KO mice. A time-dependent change in the T/B ratios of human IgG1 was also observed for many tissues in FcRn KO mice. These results suggest that, in addition to its role in IgG elimination, FcRn may also play a role in antibody biodistribution.  相似文献   

13.
Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain the diversity in affinity found in IgG variants, such as the YTE mutant (M252Y,S254T,T256E), which increases affinity to FcRn by up to 10×. Here we compare hydrogen exchange measurements at pH 7.0 and pH 5.5 with and without FcRn bound with surface plasmon resonance estimates of dissociation constants and FcRn affinity chromatography. The combination of experimental results demonstrates that differences between an IgG and its cognate YTE mutant vary with their pH-sensitive dynamics prior to binding FcRn. The conformational dynamics of these two molecules are nearly indistinguishable upon binding FcRn. We present evidence that pH-induced destabilization in the CH2/3 domain interface of IgG increases binding affinity by breaking intramolecular H-bonds and increases side-chain adaptability in sites that form intermolecular contacts with FcRn. Our results provide new insights into the mechanism of pH-dependent affinity in IgG-FcRn interactions and exemplify the important and often ignored role of intrinsic conformational dynamics in a protein ligand, to dictate affinity for biologically important receptors.  相似文献   

14.
Pathogenesis in the Rpe65−/− mouse model of Leber''s congenital amaurosis (LCA) is characterized by a slow and progressive degeneration of the rod photoreceptors. On the opposite, cones degenerate rapidly at early ages. Retinal degeneration in Rpe65 −/− mice, showing a null mutation in the gene encoding the retinal pigment epithelium 65-kDa protein (Rpe65), was previously reported to depend on continuous activation of a residual transduction cascade by unliganded opsin. However, the mechanisms of apoptotic signals triggered by abnormal phototransduction remain elusive. We previously reported that activation of a Bcl-2-dependent pathway was associated with apoptosis of rod photoreceptors in Rpe65−/− mice during the course of the disease. In this study we first assessed whether activation of Bcl-2-mediated apoptotic pathway was dependent on constitutive activation of the visual cascade through opsin apoprotein. We then challenged the direct role of pro-apoptotic Bax protein in triggering apoptosis of rod and cone photoreceptors.Quantitative PCR analysis showed that increased expression of pro-apoptotic Bax and decreased level of anti-apoptotic Bcl-2 were restored in Rpe65−/−/Gnat1−/− mice lacking the Gnat1 gene encoding rod transducin. Moreover, photoreceptor apoptosis was prevented as assessed by TUNEL assay. These data indicate that abnormal activity of opsin apoprotein induces retinal cell apoptosis through the Bcl-2-mediated pathway. Following immunohistological and real-time PCR analyses, we further observed that decreased expression of rod genes in Rpe65-deficient mice was rescued in Rpe65−/−/Bax−/− mice. Histological and TUNEL studies confirmed that rod cell demise and apoptosis in diseased Rpe65−/− mice were dependent on Bax-induced pathway. Surprisingly, early loss of cones was not prevented in Rpe65−/−/Bax−/− mice, indicating that pro-apoptotic Bax was not involved in the pathogenesis of cone cell death in Rpe65-deficient mice.This is the first report, to our knowledge, that a single genetic mutation can trigger two independent apoptotic pathways in rod and cone photoreceptors in Rpe65-dependent LCA disease. These results highlight the necessity to investigate and understand the specific death signaling pathways committed in rods and cones to develop effective therapeutic approaches to treat RP diseases.  相似文献   

15.
Small RNAs play important roles in the establishment and maintenance of heterochromatin structures. We show the presence of telomere specific small RNAs (tel-sRNAs) in mouse embryonic stem cells that are ∼24 nucleotides in length, Dicer-independent, and 2′-O-methylated at the 3′ terminus. The tel-sRNAs are asymmetric with specificity toward telomere G-rich strand, and evolutionarily conserved from protozoan to mammalian cells. Furthermore, tel-sRNAs are up-regulated in cells that carry null mutation of H3K4 methyltransferase MLL (Mll(−/−)) and down-regulated in cells that carry null mutations of histone H3K9 methyltransferase SUV39H (Suv39h1/h2(−/−)), suggesting that they are subject to epigenetic regulation. These results support that tel-sRNAs are heterochromatin associated pi-like small RNAs.  相似文献   

16.
From a screening of several Kluyveromyces strains, the yeast Kluyveromyces marxianus CBS 6556 was selected for a study of the parameters relevant to the commercial production of inulinase (EC 3.2.1.7). This yeast exhibited superior properties with respect to growth at elevated temperatures (40 to 45°C), substrate specificity, and inulinase production. In sucrose-limited chemostat cultures growing on mineral medium, the amount of enzyme decreased from 52 U mg of cell dry weight−1 at D = 0.1 h−1 to 2 U mg of cell dry weight−1 at D = 0.8 h−1. Experiments with nitrogen-limited cultures further confirmed that synthesis of the enzyme is negatively controlled by the residual sugar concentration in the culture. High enzyme activities were observed during growth on nonsugar substrates, indicating that synthesis of the enzyme is a result of a derepression/repression mechanism. A substantial part of the inulinase produced by K. marxianus was associated with the cell wall. The enzyme could be released from the cell wall via a simple chemical treatment of cells. Results are presented on the effect of cultivation conditions on the distribution of the enzyme. Inulinase was active with sucrose, raffinose, stachyose, and inulin as substrates and exhibited an S/I ratio (relative activities with sucrose and inulin) of 15 under standard assay conditions. The enzyme activity decreased with increasing chain length of the substrate.  相似文献   

17.

Background

Guanylate Cyclase C (GC-C; Gucy2c) is a transmembrane receptor expressed in intestinal epithelial cells. Activation of GC-C by its secreted ligand guanylin stimulates intestinal fluid secretion. Familial mutations in GC-C cause chronic diarrheal disease or constipation and are associated with intestinal inflammation and infection. Here, we investigated the impact of GC-C activity on mucosal immune responses.

Methods

We utilized intraperitoneal injection of lipopolysaccharide to elicit a systemic cytokine challenge and then measured pro-inflammatory gene expression in colonic mucosa. GC-C+/+ and GC-C−/− mice were bred with interleukin (IL)-10 deficient animals and colonic inflammation were assessed. Immune cell influx and cytokine/chemokine expression was measured in the colon of wildtype, IL-10−/−, GC-C+/+IL-10−/− and GC-C−/−IL-10−/− mice. GC-C and guanylin production were examined in the colon of these animals and in a cytokine-treated colon epithelial cell line.

Results

Relative to GC-C+/+ animals, intraperitoneal lipopolysaccharide injection into GC-C−/− mice increased proinflammatory gene expression in both whole colon tissue and in partially purified colonocyte isolations. Spontaneous colitis in GC-C−/−IL-10−/− animals was significantly more severe relative to GC-C+/+IL-10−/− mice. Unlike GC-C+/+IL-10−/− controls, colon pathology in GC-C−/−IL-10−/− animals was apparent at an early age and was characterized by severely altered mucosal architecture, crypt abscesses, and hyperplastic subepithelial lesions. F4/80 and myeloperoxidase positive cells as well as proinflammatory gene expression were elevated in GC-C−/−IL-10−/− mucosa relative to control animals. Guanylin was diminished early in colitis in vivo and tumor necrosis factor α suppressed guanylin mRNA and protein in intestinal goblet cell-like HT29-18-N2 cells.

Conclusions

The GC-C signaling pathway blunts colonic mucosal inflammation that is initiated by systemic cytokine burst or loss of mucosal immune cell immunosuppression. These data as well as the apparent intestinal inflammation in human GC-C mutant kindred underscore the importance of GC-C in regulating the response to injury and inflammation within the gut.  相似文献   

18.
GABA type A receptors (GABAAR), the brain''s major inhibitory neurotransmitter receptors, are the targets for many general anesthetics, including volatile anesthetics, etomidate, propofol, and barbiturates. How such structurally diverse agents can act similarly as positive allosteric modulators of GABAARs remains unclear. Previously, photoreactive etomidate analogs identified two equivalent anesthetic-binding sites in the transmembrane domain at the β+ subunit interfaces, which also contain the GABA-binding sites in the extracellular domain. Here, we used R-[3H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB), a potent stereospecific barbiturate anesthetic, to photolabel expressed human α1β3γ2 GABAARs. Protein microsequencing revealed that R-[3H]mTFD-MPAB did not photolabel the etomidate sites at the β+ subunit interfaces. Instead, it photolabeled sites at the α+ and γ+ subunit interfaces in the transmembrane domain. On the (+)-side, α1M3 was labeled at Ala-291 and Tyr-294 and γ2M3 at Ser-301, and on the (−)-side, β3M1 was labeled at Met-227. These residues, like those in the etomidate site, are located at subunit interfaces near the synaptic side of the transmembrane domain. The selectivity of R-etomidate for the β+ interface relative to the α++ interfaces was >100-fold, whereas that of R-mTFD-MPAB for its sites was >50-fold. Each ligand could enhance photoincorporation of the other, demonstrating allosteric interactions between the sites. The structural heterogeneity of barbiturate, etomidate, and propofol derivatives is accommodated by varying selectivities for these two classes of sites. We hypothesize that binding at any of these homologous intersubunit sites is sufficient for anesthetic action and that this explains to some degree the puzzling structural heterogeneity of anesthetics.  相似文献   

19.
20.
While glyco-engineered monoclonal antibodies (mAbs) with improved antibody-dependent cell-mediated cytotoxicity (ADCC) are reaching the market, extensive efforts have also been made to improve their pharmacokinetic properties to generate biologically superior molecules. Most therapeutic mAbs are human or humanized IgG molecules whose half-life is dependent on the neonatal Fc receptor FcRn. FcRn reduces IgG catabolism by binding to the Fc domain of endocytosed IgG in acidic lysosomal compartments, allowing them to be recycled into the blood. Fc-engineered mAbs with increased FcRn affinity resulted in longer in vivo half-life in animal models, but also in healthy humans. These Fc-engineered mAbs were obtained by alanine scanning, directed mutagenesis or in silico approach of the FcRn binding site. In our approach, we applied a random mutagenesis technology (MutaGenTM) to generate mutations evenly distributed over the whole Fc sequence of human IgG1. IgG variants with improved FcRn-binding were then isolated from these Fc-libraries using a pH-dependent phage display selection process. Two successive rounds of mutagenesis and selection were performed to identify several mutations that dramatically improve FcRn binding. Notably, many of these mutations were unpredictable by rational design as they were located distantly from the FcRn binding site, validating our random molecular approach. When produced on the EMABling® platform allowing effector function increase, our IgG variants retained both higher ADCC and higher FcRn binding. Moreover, these IgG variants exhibited longer half-life in human FcRn transgenic mice. These results clearly demonstrate that glyco-engineering to improve cytotoxicity and protein-engineering to increase half-life can be combined to further optimize therapeutic mAbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号