首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tenofovir (TFV) has been widely used for pre-exposure prophylaxis of HIV-1 infection with mixed results. While the use of TFV in uninfected individuals for prevention of HIV-1 acquisition is actively being investigated, the possible consequences of TFV exposure for the HIV-target cells and the mucosal microenvironment are unknown. In the current study, we evaluated the effects of TFV treatment on blood-derived CD4+ T cells, monocyte-derived macrophages and dendritic cells (DC). Purified HIV-target cells were treated with different concentrations of TFV (0.001-1.0 mg/ml) for 2 to 24hr. RNA was isolated and RT-PCR was performed to compare the levels of mRNA expression of nucleotidases and pro-inflammatory cytokine genes (MIP3α, IL-8 and TNFα) in the presence or absence of TFV. We found that TFV increases 5’-ecto-nucleotidase (NT5E) and inhibits mitochondrial nucleotidase (NT5M) gene expression and increases 5’ nucleotidase activity in macrophages. We also observed that TFV stimulates the expression and secretion of IL-8 by macrophages, DC, and activated CD4+ T cells and increases the expression and secretion of MIP3α by macrophages. In contrast, TFV had no effect on TNFα secretion from macrophages, DC and CD4+ T cells. Our results demonstrate that TFV alters innate immune responses in HIV-target cells with potential implications for increased inflammation at mucosal surfaces. As new preventive trials are designed, these findings should provide a foundation for understanding the effects of TFV on HIV-target cells in microbicide trials.  相似文献   

2.
Oral fibroblasts as well as keratinocytes are thought to influence host inflammatory responses against Candida albicans. However, little is known about chemokine expressions in oral fibroblasts against C. albicans infection. We therefore examined whether C. albicans induced several chemokines including fractalkine/CX3CL1 (CX3CL1), a unique chemokine that has properties of both chemoattractants and adhesion molecules, in fibroblasts and keratinocytes. The addition of C. albicans live cells to human immortalized oral keratinocytes (RT7) resulted in increases in the mRNA levels of multiple chemokines, but not of CX3CL1. In contrast, live and heat-killed C. albicans caused an increase in CX3CL1 mRNA and protein expression in human immortalized oral fibroblasts (GT1). CX3CL1 mRNA expression in GT1 cells was also enhanced by stimulation with a nonalbicans species of Candida. Further, the CX3CL1 chemokine domain showed antifungal activity against C. albicans. CX3CL1 secreted by oral fibroblasts appears to play an important role in the oral immune response to C. albicans infection.  相似文献   

3.
We compared the surface envelope glycoprotein distribution and the budding polarity of four RNA viruses in Fischer rat thyroid (FRT) cells and in CaCo-2 cells derived from a human colon carcinoma. Whereas both FRT and CaCo-2 cells sort similarly influenza hemagglutinin and vesicular stomatitis virus (VSV) G protein, respectively, to apical and basolateral membrane domains, they differ in their handling of two togaviruses, Sindbis and Semliki Forest virus (SFV). By conventional EM Sindbis virus and SFV were shown to bud apically in FRT cells and basolaterally in CaCo-2 cells. Consistent with this finding, the distribution of the p62/E2 envelope glycoprotein of SFV, assayed by immunoelectronmicroscopy and by domain-selective surface biotinylation was predominantly apical on FRT cells and basolateral on CaCo-2 cells. We conclude that a given virus and its envelope glycoprotein can be delivered to opposite membrane domains in epithelial cells derived from different tissues. The tissue specificity in the polarity of virus budding and viral envelope glycoprotein distribution indicate that the sorting machinery varies considerably between different epithelial cell types.  相似文献   

4.
Membrane microdomains (“lipid rafts”) enriched in glycosylphosphatidylinositol (GPI)-anchored proteins, glycosphingolipids, and cholesterol have been implicated in events ranging from membrane trafficking to signal transduction. Although there is biochemical evidence for such membrane microdomains, they have not been visualized by light or electron microscopy. To probe for microdomains enriched in GPI- anchored proteins in intact cell membranes, we used a novel form of digital microscopy, imaging fluorescence resonance energy transfer (FRET), which extends the resolution of fluorescence microscopy to the molecular level (<100 Å). We detected significant energy transfer between donor- and acceptor-labeled antibodies against the GPI-anchored protein 5′ nucleotidase (5′ NT) at the apical membrane of MDCK cells. The efficiency of energy transfer correlated strongly with the surface density of the acceptor-labeled antibody. The FRET data conformed to theoretical predictions for two-dimensional FRET between randomly distributed molecules and were inconsistent with a model in which 5′ NT is constitutively clustered. Though we cannot completely exclude the possibility that some 5′ NT is in clusters, the data imply that most 5′ NT molecules are randomly distributed across the apical surface of MDCK cells. These findings constrain current models for lipid rafts and the membrane organization of GPI-anchored proteins.  相似文献   

5.
Medulloblastoma (MB) is the most common malignant brain tumor in children and occurs mainly in the cerebellum. Important intracellular signaling molecules, such those present in the Sonic Hedgehog and Wnt pathways, are involved in its development and can also be employed to determine tumor grade and prognosis. Ectonucleotidases, particularly ecto-5′NT/CD73, are important enzymes in the malignant process of different tumor types regulating extracellular ATP and adenosine levels. Here, we investigated the activity of ectonucleotidases in three malignant human cell lines: Daoy and ONS76, being representative of primary MB, and the D283 cell line, derived from a metastatic MB. All cell lines secreted ATP into the extracellular medium while hydrolyze poorly this nucleotide, which is in agreement with the low expression and activity of pyrophosphate/phosphodiesterase, NTPDases and alkaline phosphatase. The analysis of AMP hydrolysis showed that Daoy and ONS76 completely hydrolyzed AMP, with parallel adenosine production (Daoy) and inosine accumulation (ONS76). On the other hand, D283 cell line did not hydrolyze AMP. Moreover, primary MB tumor cells, Daoy and ONS76 express the ecto-5′NT/CD73 while D283 representative of a metastatic tumor, revealed poor expression of this enzyme, while the ecto-adenosine deaminase showed higher expression in D283 compared to Daoy and ONS76 cells. Nuclear beta-catenin has been suggested as a marker for MB prognosis. Further it can promotes expression of ecto-5′NT/CD73 and suppression of adenosine deaminase. It was observed that Daoy and ONS76 showed greater nuclear beta-catenin immunoreactivity than D283, which presented mainly cytoplasmic immunoreactivity. In summary, the absence of ecto-5′NT/CD73 in the D283 cell line, a metastatic MB phenotype, suggests that high expression levels of this ectonucleotidase could be correlated with a poor prognosis in patients with MB.  相似文献   

6.
A bioreactor with a column of flocculated cells of the moderate halophile Micrococcus varians subsp. halophilus which adsorbed the halophilic nuclease H was designed to be used in the production of 5′ nucleotides from RNA. A remarkable characteristic of the flocculated cells was that they preferentially adsorbed much exogenous nuclease, excluding adsorbed 5′ nucleotidase. Furthermore, desalting treatment of the flocculated cells in the presence of 2% MgSO4 · 7H2O gave rise to selective inactivation of 5′ nucleotidase without the loss of nuclease H activity, and 5′-guanylic acid was produced with the bioreactor.  相似文献   

7.
Myocardium consists of diverse cell types suggesting a role for cell-cell interaction in maintaining the structural and functional integrity of the heart. Cardiac fibroblasts are the source of extracellular matrix, growth factors and cytokines in the heart and their interactions with cardiac myocytes are recognized. Their effects on biological responses of endothelial cells, however, are vastly unexplored. Proliferation of endothelial cells is an essential stage of angiogenesis and contributes to development of coronary collaterals. This study was designed to evaluate the effect of soluble factors produced by cardiac fibroblasts on endothelial cell proliferation. Human cardiac fibroblast-conditioned medium (CF-CM) caused a significant increase (47%, P < 0.0001) in DNA synthesis in human umbilical vein endothelial cells (HUVEC), as determined by [(3)H]thymidine incorporation. This effect was dependent on de novo protein synthesis and activation of MAP kinases. Consistently, CF-CM induced the expression and activation of ERK2 in HUVEC. The CF-CM from which heparin-binding proteins were removed, had a significantly enhanced stimulatory effect on DNA synthesis in HUVEC compared to that of 'whole CF-CM'. Western analysis showed the presence of VEGF, bFGF, PDGF, TGF-beta(1), fibronectin and thrombospondin-1 in whole CF-CM. The individual immunodepletion of each factor from whole CF-CM showed that all were necessary for full activity of CF-CM. CF-CM caused a significant reversal of hypoxia-induced inhibition of DNA synthesis and enhanced expression of survival-associated protein, Bcl(2), in HUVEC. Together, these data show that cardiac fibroblasts release inhibitory and stimulatory factors, the net effect of which is an enhancement of DNA synthesis in endothelial cells. These results point to the role that cardiac fibroblasts may play in angiogenesis in the heart.  相似文献   

8.
Local estradiol production within breast tissue is maintained by the aromatase cytochrome P450arom complex, which has been localized primarily to the stromal component of tumors but also has been detected in the breast epithelial cells. Paracrine interactions between stromal and epithelial components of the breast are critical to the sustained growth and progression of breast tumors. Maintenance of the differentiated state, including hormone and growth factor responsiveness, requires extracellular matrix proteins as substrata for cells. This research has focused on developing a cell culture system that more closely mimics in vivo interactions in order to dissect actual paracrine signaling between these two cell types. Human fibroblasts were isolated from breast tissue and were maintained in a cell culture system grown on plastic support or on a collagen I support matrix. The collagen I matrix model supports cell maintenance and subsequent differentiation on collagen rather than maximal proliferation, therefore allowing for a more accurate environment for the study of hormonal control and cellular communication. Initial experiments compared aromatase activity of patient fibroblasts grown on plastic versus collagen I using the tritiated water release method. Constitutive aromatase activity was found to be lower when cells were grown on a collagen gel for 4–7 days (7.7 fold lower) using DMEM/F12 containing 10% dextran coated charcoal stripped serum. However, fibroblasts grown on collagen I appeared to be significantly more responsive to stimulation by 100 nM dexamethasone (plastic: 6.0 fold induction, collagen: 33.2 fold induction) when pretreated for 12 h prior to measurement of aromatase activity. In an effort to examine paracrine interactions between the stromal and epithelial cells in breast tissue, experiments using conditioned media from fibroblast cultures were performed. Testosterone administration to fibroblasts results in the production of estradiol into the media in sufficient concentrations to elicit an increase in pS2 expression when the conditioned media is administered to MCF-7 cells. The addition of a potent aromatase inhibitor resulted in a complete suppression of fibroblast-derived estrogens and showed only a modest increase in pS2 expression. Culturing breast fibroblasts and epithelial cells on extracellular matrix allows for a more meaningful examination of the paracrine interactions between these cell types within the context of an appropriate extracellular environment. This study highlights the need for evaluation of gene expression in cell culture systems that accurately reflect the tissue microenvironment.  相似文献   

9.
Flattening of the normal mouse and human fibroblasts and of the epithelial cells (lines from rat liver IAR-2, trachea of calf foetus FBT and mouse kidney MPTR) was studied on isolated extracellular matrix (EM) formed by human fibroblasts in culture has been studied. EM consisted of fibers, usually parallel to each other. Flattening of the fibroblasts on EM was slower and less even than on glass. Separate processes formed in place of a ring lamella and those processes gradually stretched which were parallel to the EM fibers. Within 24 h fibroblasts were stretched and oriented along the EM fibers. At the EM-glass boundary fibroblasts migrated from EM to glass. Epithelial cells also flattened on EM more slowly and unequally on EM than on glass. Within 24 h, the IAR-2 and FBT cells were less flattened than on glass, acquired a disc-like shape with uneven contours and, sometimes, an oval shape. MPTR cells and their colonies were oriented and stretched along the EM fibers.  相似文献   

10.
Caveolae are small, flask-shaped, non-clathrin coated invaginations of the plasma membrane of many mammalian cells. Caveolae have a coat that includes caveolin. They have been implicated in numerous cellular processes, including potocytosis. Since the human folate receptor (hFR) and other glycosyl-phosphatidylinositol GPI)-tailed proteins have been co-localized to caveolae, we studied the caveolin role in the hFR function by transfecting hFR and/or caveolin cDNA into Fisher rat thyroid epithelial (FRT) cells that normally do not express detectable levels of either protein. We isolated and characterized stable clones as follows: they express (1) high levels of caveolin alone, (2) hFR and caveolin, or (3) hFR alone. We discovered that hFR is correctly processed, sorted, and anchored by a GPI tail to the plasma membrane in FRT cells. No difference in the total folic acid binding or cell surface folic acid binding activity were found between the FRT cells that were transfected with hFR, or cells that were transfected with hFR and caveolin. The hFR that was expressed on the cell surface of clones that were transfected with hFR was also sensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) release, and incorporated radiolabeled ethanolamine that supports the attachment of a GPI-tail on hFR. We conclude that the processing, sorting, and function of hFR is independent on the caveolin expression in FRT cells.  相似文献   

11.
Eotaxin-3 (CCL26) is a CC chemokine that signals exclusively via the CCR3 receptor and has eosinophil-selective chemoattractant activity. Comparison of Eotaxin-1 (CCL11) and Eotaxin-2 (CCL24), demonstrates differences in their expression profiles, cell specificity and effector kinetics, implying distinct biological actions. But little data in this regard have been reported for Eotaxin-3. We aimed to analyse the effect of Th2 cytokines and glucocorticoids on Eotaxin-3 mRNA expression in human lung epithelial cells and dermal fibroblasts; cells implicated in the pathogenesis of allergic asthma and allergic dermatitis respectively. Eotaxin-3 mRNA levels in primary dermal fibroblasts and NCI-H727 lung epithelial cells were determined by Northern hybridization. In contrast to Eotaxin-1, Eotaxin-3 mRNA expression was not detected in unstimulated cells. The Th2 cytokines IL-4 and IL-13 induced Eotaxin-3 expression in a time and dose dependent manner, with IL-4 demonstrating a 100-fold greater potency. Unlike Eotaxin-1, Eotaxin-3 mRNA expression was not induced by either tumour necrosis factor (TNF)-alpha or interleukin (IL)-1 beta alone. Both IL-4 and IL-13 acted synergistically with TNF-alpha in superinducing Eotaxin-3 mRNA expression. Dexamethasone pre-treatment diminished induction of Eotaxin-3 mRNA expression. We conclude that modulation of Eotaxin-3 mRNA expression by Th(2) cytokines is different from that of Eotaxin-1 and Eotaxin-2, further supporting a distinct biological role for Eotaxin-3.  相似文献   

12.
L A Freeman  H G Herrod 《Blut》1984,49(5):389-393
Ecto 5' nucleotidase (5' NT) activity and T lymphocyte colony formation (TLCF) are both reputed to be markers for lymphocyte maturation. In order to determine whether these two expressions of lymphocyte activity are related, we compared 5' NT activity with the TLC forming capacity of mononuclear cells from three study groups: normal adults, cord blood, and patients with immunodeficiencies. Despite individual examples of correlation between these two measurements, there was poor overall correlation in any of the groups studied. Although both measurements may reflect maturation of certain cellular activities, these are unlikely to be related.  相似文献   

13.
Acyloxydiene–Fe(CO)3 complexes act as enzyme-triggered CO-releasing molecules (ET-CORMs) and can deliver CO intracellularly via esterase-mediated hydrolysis. The protective properties of structurally different ET-CORMs on hypothermic preservation damage and their ability to inhibit VCAM-1 expression were tested on cultured human umbilical vein endothelial cells (HUVEC) and renal proximal tubular epithelial cells (PTEC) using a structure–activity approach. Cytotoxicity of ET-CORMs, protection against hypothermic preservation damage, and inhibition of VCAM-1 expression were assessed. Cytotoxicity of 2-cyclohexenone and 1,3-cyclohexanedione-derived ET-CORMs was more pronounced in HUVEC compared to PTEC and was dependent on the position and type of the ester (acyloxy) substituent(s) (acetate>pivalate>palmitate). Protection against hypothermic preservation injury was only observed for 2-cyclohexenone-derived ET-CORMs and was not mediated by the ET-CORM decomposition product 2-cyclohexenone itself. Structural requirements for protection by these ET-CORMs were different for HUVEC and PTEC. Protection was affected by the nature of the ester functionality in both cell lines. VCAM-1 expression was inhibited by both 2-cyclohexenone- and 1,3-cyclohexanedione-derived ET-CORMs. 2-Cyclohexenone, but not 1,3-cyclohexanedione, also inhibited VCAM-1 expression. We demonstrate that structural alterations of ET-CORMs significantly affect their biological activity. Our data also indicate that different ET-CORMs behave differently in various cell types (epithelial vs endothelial). These findings warrant further studies not only to elucidate the structure–activity relation of ET-CORMs in mechanistic terms but also to assess if structural optimization will yield ET-CORMs with restricted cell specificity.  相似文献   

14.
Genetically modified animals have many poten-tial applications in basic research, human medicine and agriculture. Pronuclear DNA microinjection has been almost the only practical means of producing transgenic animals during the last 20 years, but the low efficiency (1%—5%)[1] of this method has actu-ally been the obstacle that hampered its further appli-cation in animal biotechnology. The birth of Dolly[2], the first somatically cloned animal, made it possible to produce transgenic animals b…  相似文献   

15.
The present study examined the effects of genetic manipulation to the donor cell and different types of transgenic donor cells on developmental potential of bovine nuclear transfer (NT) embryos. Four types of bovine somatic cells, including granulosa cells, fetal fibroblasts, fetal oviduct epithelial cells and fetal ovary epithelial cells, were transfected with a plasmid (pCE-EGFP-Ires-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation. After 14 days selection with 800 μg/mL G418, transgenic cell lines from each type of somatic cells were obtained. Nontransgenic granulosa cells and all 4 types of transgenic somatic cells were used as nuclear donor to produce transgenic embryos by NT. There was no significant difference in development rates to the blastocyst stage for NT embryos from transgenic and nontransgenic granulosa cells (44.6% and 42.8%, respectively), and transfer of NT embryos derived from transgenic and nontransgenic granulosa cells to recipients resulted in similar pregnancy rates on day 90 (19% and 25%, respectively). The development rates to the blastocyst stage of NT embryos were significantly different among different types of transgenic donor cells (P<0.05). Blastocyst rates from fetal oviduct epithelial cell and granulosa cell (49.1% and 44.6%, respectively) were higher than those from fetal fibroblast (32.7%) and fetal ovary epithelial cell (22.5%). These results suggest that (i) genetic manipulation to donor cells has no negative effect on in vitro and early in vivo developmental competence of bovine NT embryos and (ii) granulosa and fetal oviduct epithelial cells can be used to produce transgenic bovine NT embryos more efficiently. In addition, GFP can be used to select transgenic NT embryos as a non-invasive selective marker.  相似文献   

16.
17.
The appearance of oncofetal fibronectin (FFN) in cervical and vaginal secretions is predictive of human labor. Levels of FFN in amnion increase with the onset of labor in rhesus monkeys. Since glucocorticoid (GC) levels in serum and amniotic fluid increase in association with parturition, we compared GC-mediated regulation of FFN expression in cultures of amnion epithelial cells and fibroblasts isolated from human and baboon amnions. Cells were maintained with and without dexamethasone (DEX), and levels of FFN in the conditioned media were determined by ELISA. We observed that DEX treatment suppressed FFN levels in both human and baboon amnion epithelial cells, whereas it increased FFN levels in amnion fibroblasts. DEX treatment reduced FFN levels in cytotrophoblasts from human placenta and increased FFN levels in placental fibroblasts. Northern blots revealed that DEX reduced levels of fibronectin (FN) mRNA in amnion epithelial cells and cytotrophoblasts, whereas it increased FN mRNA in amnion and placental fibroblasts. We conclude that GC differentially regulates FFN expression in epithelial and mesenchymal cells from amnion and placenta. In addition, this pattern of cell type-specific FFN regulation by GC is conserved in human and nonhuman primates and may be responsible for parturition-dependent changes in FFN expression in gestational tissues.  相似文献   

18.
1. The dephosphorylation of 3′-AMP, 3′-dAMP, 3′-CMP and 3′-dCMP was studied in the postmicrosomal supernatant of rat spleen and liver. In both organs 3′-AMP and 3′-dAMP were dephosphorylated at an appreciable rate, in both the presence and the absence of Mg2+. The pH optimum for this dephosphorylation was in the range 4.5–5.0. 3′-CMP and 3′-dCMP were very slowly degraded, though the activity towards 3′-dCMP increased somewhat in the presence of Mg2+. The optimum pH for this Mg2+-dependent dephosphorylation was 5.5–6.0. 2. The rate of dephosphorylation of 3′-AMP and 3′-dAMP per mg of protein was about 5 times as high in spleen as in liver. 3. The dephosphorylation of 3′-AMP could be ascribed to a single enzyme with pH optimum about 4.5. The activity towards 3′-dAMP could be resolved into one component coinciding with the 3′-dAMP-degrading enzyme, and one Mg2+-requiring component probably identical with the soluble deoxyinosine-activated nucleotidase. The dephosphorylation of 3′-dCMP seemed to be performed only by the latter enzyme. 4. The enzyme dephosphorylating 3′-AMP was purified 200-fold from the postmicrosomal supernatant and its physical and catalytic properties were compared with those of acid nucleotidase (EC 3.1.3.31) purified from rat liver lysosomes. The two enzymes were identical in all properties tested (substrate specificity, Km, molecular weight, response to phosphatase inhibitors), but some of the data differed from earlier reports on the acid nucleotidase. 5. The subcellular localization of the acid nucleotidase, its relationship to the acid phosphatase(s) and its role in the breakdown of nucleic acid constituents are discussed.  相似文献   

19.
20.
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory infection in infants and young children and causes disease in the elderly and persons with compromised cardiac, pulmonary, or immune systems. Despite the high morbidity rates of RSV infection, no highly effective treatment or vaccine is yet available. The RSV G protein is an important contributor to the disease process. A conserved CX3C chemokine-like motif in G likely contributes to the pathogenesis of disease. Through this motif, G protein binds to CX3CR1 present on various immune cells and affects immune responses to RSV, as has been shown in the mouse model of RSV infection. However, very little is known of the role of RSV CX3C-CX3CR1 interactions in human disease. In this study, we use an in vitro model of human RSV infection comprised of human peripheral blood mononuclear cells (PBMCs) separated by a permeable membrane from human airway epithelial cells (A549) infected with RSV with either an intact CX3C motif (CX3C) or a mutated motif (CX4C). We show that the CX4C virus induces higher levels of type I/III interferon (IFN) in A549 cells, increased IFN-α and tumor necrosis factor alpha (TNF-α) production by human plasmacytoid dendritic cells (pDCs) and monocytes, and increased IFN-γ production in effector/memory T cell subpopulations. Treatment of CX3C virus-infected cells with the F(ab′)2 form of an anti-G monoclonal antibody (MAb) that blocks binding to CX3CR1 gave results similar to those with the CX4C virus. Our data suggest that the RSV G protein CX3C motif impairs innate and adaptive human immune responses and may be important to vaccine and antiviral drug development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号