首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rotavirus (RV) and norovirus (NoV) are the two major causes of viral gastroenteritis (GE) in children worldwide. We have developed an injectable vaccine design to prevent infection or GE induced with these enteric viruses. The trivalent combination vaccine consists of NoV capsid (VP1) derived virus-like particles (VLPs) of GI-3 and GII-4 representing the two major NoV genogroups and tubular RV recombinant VP6 (rVP6), the most conserved and abundant RV protein. Each component was produced in insect cells by a recombinant baculovirus expression system and combined in vitro. The vaccine components were administered intramuscularly to BALB/c mice either separately or in the trivalent combination. High levels of NoV and RV type specific serum IgGs with high avidity (>50%) as well as intestinal IgGs were detected in the immunized mice. Cross-reactive IgG antibodies were also elicited against heterologous NoV VLPs not used for immunization (GII-4 NO, GII-12 and GI-1 VLPs) and to different RVs from cell cultures. NoV-specific serum antibodies blocked binding of homologous and heterologous VLPs to the putative receptors, histo-blood group antigens, suggesting broad NoV neutralizing activity of the sera. Mucosal antibodies of mice immunized with the trivalent combination vaccine inhibited RV infection in vitro. In addition, cross-reactive T cell immune responses to NoV and RV-specific antigens were detected. All the responses were sustained for up to six months. No mutual inhibition of the components in the trivalent vaccine combination was observed. In conclusion, the NoV GI and GII VLPs combination induced broader cross-reactive and potentially neutralizing immune responses than either of the VLPs alone. Therefore, trivalent vaccine might induce protective immune responses to the vast majority of circulating NoV and RV genotypes.  相似文献   

2.
The signals that orchestrate the process of T cell activation are coordinated at the specialized interface that forms upon contact with an antigen presenting cell displaying a specific MHC‐associated peptide ligand, known as the immune synapse. The central role of vesicular traffic in the assembly of the immune synapse has emerged only in recent years with the finding that sustained T‐cell receptor (TCR) signaling involves delivery of TCR/CD3 complexes from an intracellular pool associated with recycling endosomes. A number of receptors as well as membrane‐associated signaling mediators have since been demonstrated to exploit this process to localize to the immune synapse. Here, we will review our current understanding of the mechanisms responsible for TCR recycling, with a focus on the intraflagellar transport system, a multimolecular complex that is responsible for the assembly and function of the primary cilium which we have recently implicated in polarized endosome recycling to the immune synapse.   相似文献   

3.
Protosappanin A (PrA), an immunosuppressive ingredient of the medicinal herb Caesalpinia sappan L, prolongs heart allograft survival in rats, possibly by impairing the function of antigen-presenting cells (APCs). We examined the effects of PrA on the maturation and function of dendritic cells (DCs), a potent class of APCs, and the downstream cell–cell and intracellular signaling pathways mediating the immunosuppressive activity of PrA. PrA inhibited LPS-stimulated maturation of Wistar rat DCs in vitro as reflected by reduced expression of costimulatory molecules (CD80 and CD86) and reduced expression of TLR4 and NF-κB, two critical signaling components for antigen recognition. PrA also enhanced the release of IL-10 and decreased the release of IL-12 from DCs, but had no effect on the production of TGF-ß. In mixed cultures, Wistar DCs pretreated with PrA impaired the proliferation of Sprague Dawley (SD) rat T cells while promoting the expansion of SD rat CD4+CD25+ regulatory T cells (Tregs). Both oral PrA treatment and infusion of PrA-pretreated Wistar DCs prolonged cardiac allograft survival (Wistar donor, SD recipient) and expanded recipient CD4+CD25+Foxp3+ Tregs. Donor spleen cells, but not spleen cells from a third rat strain (DA), supported the expansion of recipient CD4+CD25+Foxp3+ Tregs and suppressed recipient T cell proliferation. We conclude that PrA triggers a tolerogenic state in DCs that allows for the induction of alloantigen-specific Tregs and the suppression of allograft rejection in vivo.  相似文献   

4.
Our earlier study revealed that STRA6 (stimulated by retinoic acid gene 6) was up-regulated within 3 h of TCR stimulation. STRA6 is the high-affinity receptor for plasma retinol-binding protein (RBP) and mediates cellular vitamin A uptake. We generated STRA6 knockout (KO) mice to assess whether such up-regulation was critical for T-cell activation, differentiation and function. STRA6 KO mice under vitamin A sufficient conditions were fertile without apparent anomalies upon visual inspection. The size, cellularity and lymphocyte subpopulations of STRA6 KO thymus and spleen were comparable to those of their wild type (WT) controls. KO and WT T cells were similar in terms of TCR-stimulated proliferation in vitro and homeostatic expansion in vivo. Naive KO CD4 cells differentiated in vitro into Th1, Th2, Th17 as well as regulatory T cells in an analogous manner as their WT counterparts. In vivo experiments revealed that anti-viral immune responses to lymphocytic choriomeningitis virus in KO mice were comparable to those of WT controls. We also demonstrated that STRA6 KO and WT mice had similar glucose tolerance. Total vitamin A levels are dramatically lower in the eyes of KO mice as compared to those of WT mice, but the levels in other organs were not significantly affected after STRA6 deletion under vitamin A sufficient conditions, indicating that the eye is the mouse organ most sensitive to the loss of STRA6.Our results demonstrate that 1) in vitamin A sufficiency, the deletion of STRA6 in T cells does no affect the T-cell immune responses so-far tested, including those depend on STAT5 signaling; 2) STRA6-independent vitamin A uptake compensated the lack of STRA6 in lymphoid organs under vitamin A sufficient conditions in mice; 3) STRA6 is critical for vitamin A uptake in the eyes even in vitamin A sufficiency.  相似文献   

5.
Chronic stress has deleterious effects on immune function, which can lead to adverse health outcomes. However, studies investigating the impact of stress reduction interventions on immunity in clinical research have yielded divergent results, potentially stemming from differences in study design and genetic heterogeneity, among other clinical research challenges. To test the hypothesis that reducing glucocorticoid levels enhances certain immune functions, we administered influenza vaccine once (prime) or twice (boost) to mice housed in either standard control caging or environmental enrichment (EE) caging. We have shown that this approach reduces mouse corticosterone production. Compared with controls, EE mice had significantly lower levels of fecal corticosterone metabolites (FCMs) and increased splenic B and T lymphocyte numbers. Corticosterone levels were negatively associated with the numbers of CD19+ (r2 = 0.43, p = 0.0017), CD4+ (r2 = 0.28, p = 0.0154) and CD8+ cells (r2 = 0.20, p = 0.0503). Vaccinated mice showed nonsignificant differences in immunoglobulin G (IgG) titer between caging groups, although EE mice tended to exhibit larger increases in titer from prime to boost than controls; the interaction between the caging group (control versus EE) and vaccine group (prime versus boost) showed a strong statistical trend (cage-group*vaccine-group, F = 4.27, p = 0.0555), suggesting that there may be distinct effects of EE caging on primary versus secondary IgG vaccine responses. Vaccine-stimulated splenocytes from boosted EE mice had a significantly greater frequency of interleukin 5 (IL-5)-secreting cells than boosted controls (mean difference 7.7, IL-5 spot-forming units/106 splenocytes, 95% confidence interval 0.24–135.1, p = 0.0493) and showed a greater increase in the frequency of IL-5–secreting cells from prime to boost. Our results suggest that corticosterone reduction via EE caging was associated with enhanced secondary vaccine responses, but had little effect on primary responses in mice. These findings help identify differences in primary and secondary vaccine responses in relationship to stress mediators that may be relevant in clinical studies.  相似文献   

6.
IgM antibodies specific for a certain antigen can enhance antibody responses when administered together with this antigen, a process believed to require complement activation by IgM. However, recent data show that a knock-in mouse strain, Cμ13, which only produces IgM unable to activate complement, has normal antibody responses. Moreover, the recently discovered murine IgM Fc receptor (FcµR or TOSO/FAIM3) was shown to affect antibody responses. This prompted the re-investigation of whether complement activation by specific IgM is indeed required for enhancement of antibody responses and whether the mutation in Cµ13 IgM also caused impaired binding to FcµR. The results show that IgM from Cµ13 and wildtype mice bound equally well to the murine FcµR. In spite of this, specific Cμ13 IgM administered together with sheep red blood cells or keyhole limpet hemocyanine was a very poor enhancer of the antibody and germinal center responses as compared with wildtype IgM. Within seconds after immunization, wildtype IgM induced deposition of C3 on sheep red blood cells in the blood. IgM which efficiently enhanced the T-dependent humoral immune response had no effect on activation of specific CD4+ T cells as measured by cell numbers, cell division, blast transformation, or expression of the activation markers LFA-1 and CD44 in vivo. These observations confirm the importance of complement for the ability of specific IgM to enhance antibody responses and suggest that there is a divergence between the regulation of T- and B-cell responses by IgM.  相似文献   

7.
目的:评价光动力疗法(PDT)联合声动力学疗法(SDT)对小鼠鳞癌超微结构的影响。方法:以镓卟呤衍生物ATX-70作为光敏剂和声敏剂,分别用光动力疗法、声动力疗法以及两者联合应用处理小鼠鳞癌,利用透射电镜观察不同时间段取材的细胞超微结构的变化。结果:激光或超声激活ATX-70对鳞癌细胞超微结构的破坏程度随取材时间的延长而加剧,联合应用对肿瘤细胞破坏程度更明显。损伤位点主要集中在胞膜、线粒体、内质网及细胞核上,同时还观察到一些肿瘤细胞表现出明显的凋亡特征。结论:光动力学结合声动力学疗法比单用肿瘤细胞破坏程度更明显,主要通过破坏细胞超微结构杀伤肿瘤细胞,部分通过诱导凋亡杀伤。  相似文献   

8.
9.
Differentiation of naïve CD4+ cells into functionally distinct effector helper T cell subsets, characterised by distinct “cytokine signatures,” is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the TH1/TH2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.  相似文献   

10.
Amyloid precursor protein (APP) and its cleaved products have been reported to have important functions in CNS health, including in memory and synapse formation, cell survival and neuroprotection. Furthermore APP and its cleaved products have been shown to be transiently increased in response to various CNS stressors, suggesting a role in response to acute cellular injury. In an attempt to further understand the function of APP in response to CNS injury, we have used intracranial LPS injection as an inflammatory injury model in APP knock out mice (APPKO). Our data show that innate immune responses to LPS injection is significantly blunted in APPKO mice compared to APP sufficient wild type (BL6) mice. Morphologically, glial cells in APPKO mice appear less reactive, with shorter ramified processes and smaller cell bodies in response to LPS. Additionally, quantitative RT-PCR analysis for several glia markers and innate immune cytokine levels (e.g. TNFα, IL-6, IL-1β and IL-10) showed significantly reduced expression levels in LPS injected APPKO mice. In vitro cell culture assays confirmed this attenuated response to LPS stimulation by primary microglial cells isolated from APPKO mice. Our data suggests that APP full length protein and/or its cleaved products are necessary to mount a complete and effective innate immune cell response to inflammatory injury.  相似文献   

11.

Background

Specific immunological unresponsiveness to alloantigens can be induced in vivo by treating mice with a donor alloantigen in combination with a non-depleting anti-CD4 antibody. This tolerance induction protocol enriches for alloantigen reactive regulatory T cells (Treg). We previously demonstrated that alpha-1,2-mannosidase, an enzyme involved in the synthesis and processing of N-linked glycoproteins, is highly expressed in tolerant mice, in both graft infiltrating leukocytes and peripheral blood lymphocytes.

Principal Findings

In this study we have identified that alpha-1,2-mannosidase expression increases in CD25+CD4+ Treg when they encounter alloantigen in vivo. When alpha-1,2-mannosidase enzyme activity was blocked, Treg retained their capacity to suppress T cell proliferation in vitro but were unable to bind to physiologically relevant ligands in vitro. Further in vivo analysis demonstrated that blocking alpha-1,2-mannosidase in Treg resulted in the migration of significantly lower numbers to the peripheral lymph nodes in skin grafted mice following adoptive transfer, where they were less able to inhibit the proliferation of naïve T cells responding to donor alloantigen and hence unable prevent allograft rejection in vivo.

Significance

Taken together, our results suggest that activation of alloantigen reactive Treg results in increased alpha-1,2-mannosidase expression and altered N-glycosylation of cell surface proteins. In our experimental system, altered N-glycosylation is not essential for intrinsic Treg suppressive capacity, but is essential in vivo as it facilitates Treg migration to sites where they can regulate immune priming. Migration of Treg is central to their role in regulating in vivo immune responses and may require specific changes in N-glycosylation upon antigen encounter.  相似文献   

12.
Monitoring antigen-specific T cells is critical for the study of immune responses and development of biomarkers and immunotherapeutics. We developed a novel multiplex assay that combines conventional immune monitoring techniques and immune receptor repertoire sequencing to enable identification of T cells specific to large numbers of antigens simultaneously. We multiplexed 30 different antigens and identified 427 antigen-specific clonotypes from 5 individuals with frequencies as low as 1 per million T cells. The clonotypes identified were validated several ways including repeatability, concordance with published clonotypes, and high correlation with ELISPOT. Applying this technology we have shown that the vast majority of shared antigen-specific clonotypes identified in different individuals display the same specificity. We also showed that shared antigen-specific clonotypes are simpler sequences and are present at higher frequencies compared to non-shared clonotypes specific to the same antigen. In conclusion this technology enables sensitive and quantitative monitoring of T cells specific for hundreds or thousands of antigens simultaneously allowing the study of T cell responses with an unprecedented resolution and scale.  相似文献   

13.
The study of T cell responses and their consequences during allo-antigen recognition requires a model that enables one to distinguish between donor and host T cells, to easily monitor the graft, and to adapt the system in order to answer different immunological questions. Medawar and colleagues established allogeneic tail-skin transplantation in mice in 1955. Since then, the skin transplantation model has been continuously modified and adapted to answer specific questions. The use of tail-skin renders this model easy to score for graft rejection, requires neither extensive preparation nor deep anesthesia, is applicable to animals of all genetic background, discourages ischemic necrosis, and permits chemical and biological intervention. In general, both CD4+ and CD8+ allogeneic T cells are responsible for the rejection of allografts since they recognize mismatched major histocompatibility antigens from different mouse strains. Several models have been described for activating allogeneic T cells in skin-transplanted mice. The identification of major histocompatibility complex (MHC) class I and II molecules in different mouse strains including C57BL/6 mice was an important step toward understanding and studying T cell-mediated alloresponses. In the tail-skin transplantation model described here, a three-point mutation (I-Abm12) in the antigen-presenting groove of the MHC-class II (I-Ab) molecule is sufficient to induce strong allogeneic CD4+ T cell activation in C57BL/6 mice. Skin grafts from I-Abm12 mice on C57BL/6 mice are rejected within 12-15 days, while syngeneic grafts are accepted for up to 100 days. The absence of T cells (CD3-/- and Rag2-/- mice) allows skin graft acceptance up to 100 days, which can be overcome by transferring 2 x 104 wild type or transgenic T cells. Adoptively transferred T cells proliferate and produce IFN-γ in I-Abm12-transplanted Rag2-/- mice.  相似文献   

14.

Background

Chronic granulomatous disease (CGD), an inherited disorder of the NADPH oxidase in which phagocytes are defective in generating superoxide anion and downstream reactive oxidant intermediates (ROIs), is characterized by recurrent bacterial and fungal infections and by excessive inflammation (e.g., inflammatory bowel disease). The mechanisms by which NADPH oxidase regulates inflammation are not well understood.

Methodology/Principal Findings

We found that NADPH oxidase restrains inflammation by modulating redox-sensitive innate immune pathways. When challenged with either intratracheal zymosan or LPS, NADPH oxidase-deficient p47phox−/− mice and gp91phox-deficient mice developed exaggerated and progressive lung inflammation, augmented NF-κB activation, and elevated downstream pro-inflammatory cytokines (TNF-α, IL-17, and G-CSF) compared to wildtype mice. Replacement of functional NADPH oxidase in bone marrow-derived cells restored the normal lung inflammatory response. Studies in vivo and in isolated macrophages demonstrated that in the absence of functional NADPH oxidase, zymosan failed to activate Nrf2, a key redox-sensitive anti-inflammatory regulator. The triterpenoid, CDDO-Im, activated Nrf2 independently of NADPH oxidase and reduced zymosan-induced lung inflammation in CGD mice. Consistent with these findings, zymosan-treated peripheral blood mononuclear cells from X-linked CGD patients showed impaired Nrf2 activity and increased NF-κB activation.

Conclusions/Significance

These studies support a model in which NADPH oxidase-dependent, redox-mediated signaling is critical for termination of lung inflammation and suggest new potential therapeutic targets for CGD.  相似文献   

15.
Toll-like receptors (TLRs) recognize pathogens by interacting with pathogen-associated molecular patterns, such as the phosphatidylinositol-based lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM). Such structures are present in several pathogens, including Mycobacterium tuberculosis, being important for the initiation of immune responses. It is well established that the interaction of LM and LAM with TLR2 is a process dependent on the structure of the ligands. However, the implications of structural variations on TLR2 ligands for the development of T helper (Th) cell responses or in the context of in vivo responses are less studied. Herein, we used Corynebacterium glutamicum as a source of lipoglycan intermediates for host interaction studies. In this study, we have deleted a putative glycosyltransferase, NCgl2096, from C. glutamicum and found that it encodes for a novel α(1→2)arabinofuranosyltransferase, AftE. Biochemical analysis of the lipoglycans obtained in the presence (wild type) or absence of NCgl2096 showed that AftE is involved in the biosynthesis of singular arabinans of LAM. In its absence, the resulting molecule is a hypermannosylated (hLM) form of LAM. Both LAM and hLM were recognized by dendritic cells, mainly via TLR2, and triggered the production of several cytokines. hLM was a stronger stimulus for in vitro cytokine production and, as a result, a more potent inducer of Th17 responses. In vivo data confirmed hLM as a stronger inducer of cytokine responses and suggested the involvement of pattern recognition receptors other than TLR2 as sensors for lipoglycans.  相似文献   

16.
Frequent and long-term use of topical corticosteroids after corneal transplantation is necessary to prevent graft rejection. However, it relies heavily on patient compliance, and sustained therapeutic drug levels are often not achieved with administration of topical eye drops. A biodegradable drug delivery system with a controlled and sustained drug release may circumvent these limitations. In this study, we investigated the efficacy of a prednisolone acetate (PA)-loaded poly (d,l-lactide-co-ε-caprolactone) (PLC) microfilm drug delivery system on promoting the survival of allogeneic grafts after penetrating keratoplasty (PK) using a rat model. The drug release profiles of the microfilms were characterized (group 1). Subsequently, forty-eight PK were performed in four experimental groups: syngeneic control grafts (group 2), allogeneic control grafts (group 3), allogeneic grafts with subconjunctivally-implanted PA microfilm (group 4), and allogeneic grafts with PA eye drops (group 5; n = 12 in each). PA-loaded microfilm achieved a sustained and steady release at a rate of 0.006–0.009 mg/day, with a consistent aqueous drug concentration of 207–209 ng/ml. The mean survival days was >28 days in group 2, 9.9±0.8 days in group 3, 26.8±2.7 days in group 4, and 26.4±3.4 days in group 5 (P = 0.023 and P = 0.027 compared with group 3). Statistically significant decrease in CD4+, CD163+, CD 25+, and CD54+ cell infiltration was observed in group 4 and group 5 compared with group 3 (P<0.001). There was no significant difference in the mean survival and immunohistochemical analysis between group 4 and group 5. These results showed that sustained PA-loaded microfilm effectively prolongs corneal allograft survival. It is as effective as conventional PA eye drops, providing a promising clinically applicable alternative for patients undergoing corneal transplantation.  相似文献   

17.
18.
19.

Background

The regulatory T cells (Tregs) can actively suppress the immune responses. However, literature about detailed changes of host effective and suppressive immunities before and after depletion of Tregs in ovarian carcinomas, is rare.

Materials and Methods

Ovarian cancer patients and the ascitogenic animal model were employed. Immunologic profiles with flow cytometric analyses, immunohistochemistric staining, RT-PCR, ELISA, and ELISPOT assays were performed. In vivo depletion of Treg cells with the mAb PC61was also performed in the animal model.

Results

The cytokines, including IL-4 (p = 0.017) and TNF-α (p = 0.046), significantly decreased while others such as TGF-β (p = 0.013), IL-6 (p = 0.016), and IL-10 (p = 0.018) were elevated in ascites of ovarian cancer patients, when the disease progressed to advanced stages. The ratio of CD8+ T cell/Treg cell in ascites was also lower in advanced diseases than in early diseases (advanced 7.37±0.64 vs. early 14.25±3.11, p = 0.037). The kinetic low-dose CD25 Ab depletion group had significantly lower intra-peritoneal tumor weight (0.20±0.03 g) than the sequential high-dose (0.69±0.06 g) and sequential low-dose (0.67±0.07 g) CD25 Ab deletion groups (p = 0.001) after 49 days of tumor challenge in the animal. The kinetic low-dose CD25 Ab depletion group generated the highest number of IFN-γ-secreting, mesothelin-specific T lymphocytes compared to the other groups (p<0.001).

Conclusions

The imbalance between effective and suppressive immunities becomes more severe as a tumor progresses. The depletion of Treg cells can correct the imbalance of immunologic profiles and generate potent anti-tumor effects. Targeting Treg cells can be a new strategy for the immunotherapy of ovarian carcinoma.  相似文献   

20.
During viral infection, inflammation and recovery are tightly controlled by competing proinflammatory and regulatory immune pathways. Respiratory syncytial virus (RSV) is the leading global cause of infantile bronchiolitis, which is associated with recurrent wheeze and asthma diagnosis in later life. Th2-driven disease has been well described under some conditions for RSV-infected mice. In the present studies, we used the Foxp3DTR mice (which allow specific conditional depletion of Foxp3+ T cells) to investigate the functional effects of regulatory T cells (Tregs) during A2-strain RSV infection. Infected Treg-depleted mice lost significantly more weight than wild-type mice, indicating enhanced disease. This enhancement was characterized by increased cellularity in the bronchoalveolar lavage (BAL) fluid and notable lung eosinophilia not seen in control mice. This was accompanied by abundant CD4+ and CD8+ T cells exhibiting an activated phenotype and induction of interleukin 13 (IL-13)- and GATA3-expressing Th2-type CD4+ T cells that remained present in the airways even 14 days after infection. Therefore, Treg cells perform vital anti-inflammatory functions during RSV infection, suppressing pathogenic T cell responses and inhibiting lung eosinophilia. These findings provide additional evidence that dysregulation of normal immune responses to viral infection may contribute to severe RSV disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号