共查询到20条相似文献,搜索用时 15 毫秒
1.
Andreas Keller Tobias Fehlmann Nicole Ludwig Mustafa Kahraman Thomas Laufer Christina Backes Claus Vogelmeier Caroline Diener Frank Biertz Christian Herr Rudolf A.Jrres Hans-Peter Lenhof Eckart Meese Robert Bals 《基因组蛋白质组与生物信息学报(英文版)》2018,16(3):162-171
Chronic obstructive pulmonary disease(COPD) significantly increases the risk of developing cancer. Biomarker studies frequently follow a case-control set-up in which patients diagnosed with a disease are compared to controls. Longitudinal cohort studies such as the COPD-centered German COPD and SYstemic consequences-COmorbidities NETwork(COSYCONET) study provide the patient and biomaterial base for discovering predictive molecular markers. We asked whether microRNA(miRNA) profiles in blood collected from COPD patients prior to a tumor diagnosis could support an early diagnosis of tumor development independent of the tumor type. From 2741 participants of COSYCONET diagnosed with COPD, we selected 534 individuals including 33 patients who developed cancer during the follow-up period of 54 months and 501 patients who did not develop cancer, but had similar age, gender and smoking history. Genome-wide miRNA profiles were generated and evaluated using machine learning techniques. For patients developing cancer we identified nine miRNAs with significantly decreased abundance(two-tailed unpaired t-test adjusted for multiple testing P 0.05), including members of the miR-320 family. The identified mi RNAs regulate different cancer-related pathways including the MAPK pathway(P = 2.3 x 10~(-5)). We also observed the impact of confounding factors on the generated miRNA profiles, underlining the value of our matched analysis. For selected miRNAs, qRT-PCR analysis was applied to validate the results. In conclusion, we identified several miRNAs in blood of COPD patients, which could serve as candidates for biomarkers to help identify COPD patients at risk of developing cancer. 相似文献
2.
目的:研究大鼠胰腺胚胎发育不同阶段的基因表达谱,对比其功能相关基因随大鼠胰腺发育的变化.方法:采用显微分离及提取技术获得胚胎发育不同阶段胰腺组织并提取RNA,采用高密度寡核普酸芯片(Affemetrix芯片)对胚胎发育至第12.5天、15.5天、18.5天胚胎胰腺及成年胰腺进行基因转录水平分析,用生物信息学方法分析具体基因的表达情况.结果:胰腺的生物学功能尤其beta细胞功能相关基因insulin RNA,amylopsin RNA,GLUT-2 RNA等在胚胎15.5及18.5天显著高表达.结论:E15.5到E18.5直至出生是胰腺功能完善和成熟的阶段,这个时期以细胞功能成熟为主. 相似文献
3.
转移是恶性肿瘤基本的生物学特征,胃癌转移是导致胃癌患者死亡的主要原因. 诸多研究表明,微小RNA在胃癌转移过程中起着重要作用. 本文总结了有关抑制和促进胃癌转移微小RNA的研究新进展,并从影响信号传导途径、调控癌基因和抑癌基因表达、作用于细胞因子等方面分析了其主要作用机制. 相似文献
4.
5.
克隆参与胚胎发育的新基因并研究其表达规律和功能是揭示胚胎发育的基因调控机理的重要途径。囊胚形成和原肠形成是哺乳动物胚胎发育过程中的两个关键阶段。囊胚阶段发生了胚胎的第一次分化,是细胞多能性和分化的一个转折点。此时涉及的基因活动,既有维持胚胎干细胞全能性或多能性的基因活动,又有按照预定发育模式参与胚胎定向分化的基因活动。原肠期是胚胎发育过程中的第二个关键转折点,涉及到3个胚层的形成和细胞命运决定等多种变化。在这个时期胚胎获得了胎儿原基的所有信息,新组织的产生和细胞迁移的再生组织与形态发生、细胞增殖、细胞分化、模式形成等存在着非常复杂而相互协调的关联。大多数细胞正由原来的多潜能逐渐向寡潜能发展,控制组织器官形态建成的基因正逐渐开启。这两个时期的基因表达图式、特征和种类会有很大的差异和变化,因此研究这两个时期的新基因的表达规律和功能,将是了解胚胎发育的基因调控机理的重要途径。文章以这两个时期胚胎为原始材料,利用减法杂交方法克隆到一新的小鼠胚胎基因mED2,对其进行了表达规律和生物学功能的初步分析。RT-PCR-Southern和原位杂交实验表明,mED2基因转录水平具有发育阶段的依赖性;随着发育过程的进行,其表达主要在胚神经系统和中胚层衍生的组织表达。mED2基因活性的knockdown对于合子的卵裂和植入前早期胚胎发育均有抑制作用。亚细胞定位实验表明,mED2基因编码的蛋白基本定位于细胞核膜及其临近的内膜细胞器(粗糙内质网和高尔基体)。根据生物信息学分析,mED2蛋白可能为一跨膜蛋白且与含有硫氧还蛋白结构域的蛋白有部分匹配。由此推测mED2基因参与了小鼠植入前早期胚胎发育,其基因产物可能通过蛋白之间的相互作用,即对蛋白进行后期修饰、折叠及行使分子伴侣等作用来活化或抑制其靶蛋白的活性,进而参与小鼠的早期胚胎发育。 相似文献
6.
目的:初步分析与小鼠胚胎发育相关的新基因0610038D11Rik表达模式及生物学功能.方法:采用RT-PCR,全胚胎原位杂交和Northern Blotting技术对该基因进行表达谱分析;细胞免疫染色对其进行细胞结构定位.结果:全胚胎原位杂交结果显示0610038D11Rik在胚胎E9.5的端脑、间脑、菱脑和听泡处有较强的信号.随着神经管逐渐关闭,胚胎E10.5在背部神经嵴,神经管区也出现表达信号.E11.5时除了在上述部位表达外,心脏部位也检测到较弱的信号.RT-PCR和Northern Blot实验发现该基因在小鼠胚胎发育直至出生后均有持续性分布,并且在发育中后期的脑、心脏、肺、肾、肝脏,肌肉和舌等多种重要脏器广泛表达.细胞定位表明其主要集中在核内和细胞质中.结论:0610038D11Rik基因在小鼠的脑神经系统和多器官表达,提示该新基因可能在这些组织的发育过程中发挥重要的作用. 相似文献
7.
Xiang-Shun Cui Xing-Hui Shen Shao-Chen Sun Sun-Wha Cho Young-Tae Heo Yong-Kook Kang Teruhiko Wakayama 《遗传学报》2013,40(4):189-200
MicroRNAs (miRNAs) are a class of highly conserved small non-coding RNA molecules that play a pivotal role in several cellular functions. In this study, miRNA and messenger RNA (mRNA) profiles were examined by Illumina microarray in mouse embryonic stem cells (ESCs) derived from parthenogenetic, androgenetic, and fertilized blastocysts. The global analysis of miRNA-mRNA target pairs provided insight into the role of miRNAs in gene expression. Results showed that a total of 125 miRNAs and 2394 mRNAs were differentially expressed between androgenetic ESCs (aESCs) and fertilized ESCs (fESCs), a total of 42 miRNAs and 87 mRNAs were differentially expressed between parthenogenetic ESCs (pESCs) and fESCs, and a total of 99 miRNAs and 1788 mRNAs were differentially expressed between aESCs and pESCs. In addition, a total of 575, 5 and 376 miRNA-mRNA target pairs were observed in aESCs vs. fESCs, pESCs vs. fESCs, and aESCs vs. pESCs, respectively. Furthermore, 15 known imprinted genes and 16 putative uniparentally expressed miRNAs with high expression levels were confirmed by both microarray and real-time RT-PCR. Finally, transfection of miRNA inhibitors was performed to validate the regulatory relationship between putative maternally expressed miRNAs and target mRNAs. Inhibition of miR-880 increased the expression of Peg3, Dyrk1b, and Prrg2 mRNA, inhibition of miR-363 increased the expression of Nfat5 and Soat1 mRNA, and inhibition of miR-883b-5p increased Nfat5, Tacstd2, and Ppapdc1 mRNA. These results warrant a functional study to fully understand the underlying regulation of genomic imprinting in early embryo development. 相似文献
8.
9.
10.
11.
12.
Santosh K. Patnaik Sai Yendamuri Eric Kannisto John C. Kucharczuk Sunil Singhal Anil Vachani 《PloS one》2012,7(9)
The association of lung cancer with changes in microRNAs in plasma shown in multiple studies suggests a utility for circulating microRNA biomarkers in non-invasive detection of the disease. We examined if presence of lung cancer is reflected in whole blood microRNA expression as well, possibly because of a systemic response. Locked nucleic acid microarrays were used to quantify the global expression of microRNAs in whole blood of 22 patients with lung adenocarcinoma and 23 controls, ten of whom had a radiographically detected non-cancerous lung nodule and the other 13 were at high risk for developing lung cancer because of a smoking history of >20 pack-years. Cases and controls differed significantly for age with a mean difference of 10.7 years, but not for gender, race, smoking history, blood hemoglobin, platelet count, or white blood cell count. Of 1282 quantified human microRNAs, 395 (31%) were identified as expressed in the study’s subjects, with 96 (24%) differentially expressed between cases and controls. Classification analyses of microRNA expression data were performed using linear kernel support vector machines (SVM) and top-scoring pairs (TSP) methods, and classifiers to identify presence of lung adenocarcinoma were internally cross-validated. In leave-one-out cross-validation, the TSP classifiers had sensitivity and specificity of 91% and 100%, respectively. The values with SVM were both 91%. In a Monte Carlo cross-validation, average sensitivity and specificity values were 86% and 97%, respectively, with TSP, and 88% and 89%, respectively, with SVM. MicroRNAs miR-190b, miR-630, miR-942, and miR-1284 were the most frequent constituents of the classifiers generated during the analyses. These results suggest that whole blood microRNA expression profiles can be used to distinguish lung cancer cases from clinically relevant controls. Further studies are needed to validate this observation, including in non-adenocarcinomatous lung cancers, and to clarify upon the confounding effect of age. 相似文献
13.
14.
Autophagy modulation is now recognized as a potential therapeutic approach for cancer (including colorectal cancer), yet the molecular mechanisms regulating autophagy in response to cellular stress are still not well understood. MicroRNAs (miRNAs) have been found to play important roles in controlling many cellular functions, including growth, metabolism and stress response. The physiological importance of the miRNA-autophagy interconnection is only beginning to be elucidated. MiRNA microarray technology facilitates analysis of global miRNA expression in certain situations. In this study, we explored the expression profile of miRNAs during the response of human colon cancer cells (HT29s) to 5-FU treatment and nutrient starvation using miRNA microarray analysis. The alteration of miRNA expression showed the same pattern under both conditions was further testified by qRT-PCR in three human colon cancer cell lines. In addition, bioinformatic prediction of target genes, pathway analysis and gene network analysis were performed to better understand the roles of these miRNAs in the regulation of autophagy. We identified and selected four downregulated miRNAs including hsa-miR-302a-3p and 27 upregulated miRNAs under these two conditions as having the potential to target genes involved in the regulation of autophagy in human colon cancer cells. They have the potential to modulate autophagy in 5-FU-based chemotherapy in colorectal cancer. 相似文献
15.
16.
Objective
MicroRNAs (miRNAs) expression is altered in cancer cells, and miRNAs could serve as diagnostic and prognostic biomarker for cancer patients. This study was designed to analyze circulating miRNAs expression in the malignant pleural effusion (MPE) and their association with patient survival in non-small cell lung cancer (NSCLC).Methods
Pleural effusion from 184 patients with NSCLC and MPE were collected. MiRNA microarray and bioinformatics interpretation were used to evaluate miRNA expression profiles in 10 NSCLC patients with different survival prognosis. Associations were validated in 184 patients (randomly classified into training and validation set with equal number in each group) using quantitative RT-PCR. Risk scores were formulated based on the expression signature of miRNAs. Clinical data, such as patient survival, were collected for correlation analysis.Results
Thirty-three miRNAs were found to be altered more than two-fold by microarray in malignant effusions between longer-survival and shorter-survival groups, and levels of five miRNAs (miRNA-93, miRNA-100, miRNA-134, miRNA-151 and miRNA-345) were significantly associated with overall survival. High expression of miR-100 and low expression of miRNA-93, miRNA-134, miRNA-151 and miRNA-345 were associated with poor survival in both the training and validation cohort. Patients with high risk scores had overall poor survival compared to the patients with low risk scores. Risk score was an independent predictor of patient survival.Conclusions
Expression patterns of miRNAs are systematically altered in MPE of patient with NSCLC. The five miRNA signature from the effusion may serve as a predictor for the overall survival of patients with lung cancers. 相似文献17.
Dissection of new genes underlying embryonic development is important for our understanding of the molecular mechanism of vertebrate embryonic development. In this study, the expression pattern and functional analysis of a new gene, called mED2, originally cloned from mouse embryos using subtractive hybridization was reported. mED2 expression patterns were characterized by RT-PCR-Southern hybridization and in situ hybridization. The results showed that mED2 was mainly expressed in the embryonic nervous system and mesoderm-derived tissues and its expression varied depending on the embryonic developmental stages. The knockdown of mED2 activity by antisense RNA injection inhibited zygote cleavage and blastocyst formation during pre-implantation in mice. Subcellular localization of mED2-eGFP fusion protein revealed a pattern of nuclear membrane and juxta-/perinuclear location such as in the rough endoplasmic reticulum and Golgi apparatus. This finding was supported by bioinformatics analysis, which indicated mED2 protein to be a transmembrane protein with partial homology to the thioredoxin family of proteins. It is inferred that mED2 gene can probably take part in early embryonic development in mouse and may be involved in target protein posttranslational modification, turnover, folding, and stability at the endoplasmic reticulum and/or the Golgi apparatus. 相似文献
18.
Kaiqun Ren Jing Yuan Manjun Yang Xiang Gao Xiaofeng Ding Jianlin Zhou Xingwang Hu Jianguo Cao Xiyun Deng Shuanglin Xiang Jian Zhang 《PloS one》2014,9(11)
As a member of the polymerase delta-interacting protein 1 (PDIP1) gene family, potassium channel tetramerisation domain-containing 10 (KCTD10) interacts with proliferating cell nuclear antigen (PCNA) and polymerase δ, participates in DNA repair, DNA replication and cell-cycle control. In order to further investigate the physiological functions of KCTD10, we generated the KCTD10 knockout mice. The heterozygous KCTD10+/− mice were viable and fertile, while the homozygous KCTD10−/− mice showed delayed growth from E9.0, and died at approximately E10.5, which displayed severe defects in angiogenesis and heart development. Further study showed that VEGF induced the expression of KCTD10 in a time- and dose-dependent manner. Quantitative real-time PCR and western blotting results revealed that several key members in Notch signaling were up-regulated either in KCTD10-deficient embryos or in KCTD10-silenced HUVECs. Meanwhile, the endogenous immunoprecipitation (IP) analysis showed that KCTD10 interacted with Cullin3 and Notch1 simultaneously, by which mediating Notch1 proteolytic degradation. Our studies suggest that KCTD10 plays crucial roles in embryonic angiogenesis and heart development in mammalians by negatively regulating the Notch signaling pathway. 相似文献
19.
Liao Huajun Wang Qianqian Zhang Nan Fu Yuying Wu Gang Ren Xueqiang Xue Bingjie Liu Xiyu Xu Zhihong Yan Chongchong 《Plant Molecular Biology Reporter》2021,39(3):577-594
Plant Molecular Biology Reporter - Low-temperature is one of the most severe abiotic stresses affecting the potato production as the cultivated potato (Solanum tuberosum) is frost sensitive.... 相似文献
20.
Chongchong Yan Qianqian Wang Nan Zhang Jiajia Wang Xuexiang Ren Bingjie Xue Xiaojing Pu Zhihong Xu Huajun Liao 《Phyton》2020,89(3):561-586
Since potato cultivars are sensitive to low temperature, cold injury
severely affects the geographical distribution and yield of potato. Although some
miRNAs have been identified in response to cold stress in plants, there is no
report about the role of miRNAs in the response to cold stress in potato. Here,
via high throughput sequencing, we described the profiling of cold stress response
to miRNA and mRNA in potato. Two small RNA and six mRNA libraries were
constructed and sequenced. 296 known and 211 novel miRNAs were identified, in
which 34 miRNAs in Cold Group (CG) had the higher expression quantity
than which in Normal Group (NG) and 32 in CG had lower expression quantity
than which in NG. 3068 differentially expressed genes were detected between
NG and CG, in which 1400 genes were up-regulated and 1668 genes were
down-regulated. The metabolism pathway of starch and sucrose (ko00500) is
the common KEGG pathway in differentially expressed miRNA and mRNA. In
this pathway, StuPME21575 and StuPME42971 are pectinesterase which mainly
catalyzes the pectin-forming pectate, which are controlled by stu-miR6023 and
stu-novel-miR42365. As the potato suffering cold stress, these two miRNAs
expression levels became higher, but their target genes expression levels were just
opposite and this result is the same with qRT-PCR. 相似文献