首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fine-scale spatial heterogeneity influences biodiversity and ecosystem productivity at many scales. In savanna systems, Macrotermes termites, through forming spatially explicit mounds with unique woody plant assemblages, emerge as important sources of such heterogeneity. Despite a growing consensus regarding the importance of functional diversity (FD) to ecosystem processes, no study has quantified how termite mounds affect woody plant FD. We address whether termite mounds alter the distribution of functional traits, and increase FD of woody plant communities within Africa’s largest savanna woodland, the 2.7 million km2 miombo system. Using plant traits that change according to soil resources (for example, water and nutrients), and disturbance (for example, fire and elephant herbivory), we identified response functional groups and compared relative representation of these groups between mound and matrix habitats. We also asked whether mound and matrix habitats differed in their contribution to FD within the system. Although species representing most functional groups were found in both mound and matrix habitats, relative abundance of functional groups differed between mound and matrix. Mound plant assemblages had greater response diversity to soil resources than matrix plots, but there was no difference in response diversity to disturbance. High trait values on mounds included tree height, leaf nitrogen, phosphorus, and palatability. Species with root ectomycorrhizae dominated the matrix. In conclusion, these small patches of nutrient-enriched substrate emerge as drivers of FD in above-ground woody plant communities.  相似文献   

3.
An Alternative to the Distributive Pairing Hypothesis in Drosophila   总被引:2,自引:8,他引:2       下载免费PDF全文
E. Novitski 《Genetics》1964,50(6):1449-1451
  相似文献   

4.
Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension , with the unit imaginary producing the correct spacetime distance , and the results of Einstein’s then recently developed theory of special relativity, thus providing an explanation for Einstein’s theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary , with the Clifford bivector for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis and . We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton’s scattering formula, and a simple formulation of Dirac’s and Maxwell’s equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane.  相似文献   

5.
Alternative Leadership Strategies in the Prehispanic Southwest. Barbara J. Mills. ed. Tucson: University of Arizona Press, 2000. 320 pp.  相似文献   

6.
《Plains anthropologist》2013,58(50):305-306
Abstract

Recent ethnographic work with Cree informants supports the hypothesis that the original Cree. term for “Blackfoot” Indians referred to animal (perhaps horse’s) hooves rather than to artificially blackened feet or moccasins.  相似文献   

7.
The origin of the genetic code marked a major transition from a plausible RNA world to the world of DNA and proteins and is an important milestone in our understanding of the origin of life. We examine the efficacy of the physico-chemical hypothesis of code origin by carrying out simulations of code-sequence coevolution in finite populations in stages, leading first to the emergence of ten amino acid code(s) and subsequently to 14 amino acid code(s). We explore two different scenarios of primordial code evolution. In one scenario, competition occurs between populations of equilibrated code-sequence sets while in another scenario; new codes compete with existing codes as they are gradually introduced into the population with a finite probability. In either case, we find that natural selection between competing codes distinguished by differences in the degree of physico-chemical optimization is unable to explain the structure of the standard genetic code. The code whose structure is most consistent with the standard genetic code is often not among the codes that have a high fixation probability. However, we find that the composition of the code population affects the code fixation probability. A physico-chemically optimized code gets fixed with a significantly higher probability if it competes against a set of randomly generated codes. Our results suggest that physico-chemical optimization may not be the sole driving force in ensuring the emergence of the standard genetic code.  相似文献   

8.
Predators play a disproportionately positive role in ensuring integrity of food webs, influencing ecological processes and services upon which humans rely. Predators tend to be amongst the first species to be affected by anthropogenic disturbance, however. Spiders impact invertebrate population dynamics and stabilise food webs in natural and agricultural systems (potentially mitigating against crop pests and reduced yields). Africa’s savannas are undergoing continent-wide conversion from low-density rangelands to villages and croplands, as human populations burgeon. Despite limited research, and evidence of deleterious impacts to biodiversity, African savannas are earmarked by prominent international organisations for conversion to cropland. Given the key role of spiders in food webs, they can have beneficial impacts in agroecosystems. Furthermore, functional diversity (FD) reflects ecosystem pattern and processes better than species diversity, so we evaluated impacts of large-scale landuse change on both species richness and FD. We surveyed spiders using pitfall traps at 42 sites (14 replicates each in rangeland, cropland, and villages) in South African savannas, investigating effects of landuse, season, and habitat variables on spider species diversity and FD. Species richness was lowest in villages. FD was lowest in cropland, however, with reduced representation of traits associated with hunting of larger invertebrates. Furthermore, there were fewer specialists in croplands. These findings suggest that even when cropland does not impact species diversity, loss of FD can still occur. As savanna systems transform, impacts on invertebrate population dynamics may increase the possibility of a breakdown in pest control in natural and agricultural systems, given changes in FD of invertebrate predators.  相似文献   

9.
10.
Trypanosomatidae are a dangerous family of Euglenobionta parasites that threaten the health and economy of millions of people around the world. More precisely describing the population biology and reproductive mode of such pests is not only a matter of pure science, but can also be useful for understanding parasite adaptation, as well as how parasitism, specialization (parasite specificity), and complex life cycles evolve over time. Studying this parasite’s reproductive strategies and population structure can also contribute key information to the understanding of the epidemiology of associated diseases; it can also provide clues for elaborating control programs and predicting the probability of success for control campaigns (such as vaccines and drug therapies), along with emergence or re-emergence risks. Population genetics tools, if appropriately used, can provide precise and useful information in these investigations. In this paper, we revisit recent data collected during population genetics surveys of different Trypanosoma species in sub-Saharan Africa. Reproductive modes and population structure depend not only on the taxon but also on the geographical location and data quality (absence or presence of DNA amplification failures). We conclude on issues regarding future directions of research, in particular vis-à-vis genotyping and sampling strategies, which are still relevant yet, too often, neglected issues.  相似文献   

11.
12.
Existing modeling approaches are divided between a focus on the constitutive (micro) elements of systems or on higher (macro) organization levels. Micro-level models enable consideration of individual histories and interactions, but can be unstable and subject to cumulative errors. Macro-level models focus on average population properties, but may hide relevant heterogeneity at the micro-scale. We present a framework that integrates both approaches through the use of temporally structured matrices that can take large numbers of variables into account. Matrices are composed of several bidimensional (time×age) grids, each representing a state (e.g. physiological, immunological, socio-demographic). Time and age are primary indices linking grids. These matrices preserve the entire history of all population strata and enable the use of historical events, parameters and states dynamically in the modeling process. This framework is applicable across fields, but particularly suitable to simulate the impact of alternative immunization policies. We demonstrate the framework by examining alternative strategies to accelerate measles elimination in 15 developing countries. The model recaptured long-endorsed policies in measles control, showing that where a single routine measles-containing vaccine is employed with low coverage, any improvement in coverage is more effective than a second dose. It also identified an opportunity to save thousands of lives in India at attractively low costs through the implementation of supplementary immunization campaigns. The flexibility of the approach presented enables estimating the effectiveness of different immunization policies in highly complex contexts involving multiple and historical influences from different hierarchical levels.  相似文献   

13.

Background

Approximately one-quarter of all pregnancy- and delivery-related maternal deaths worldwide occur in India. Taking into account the costs, feasibility, and operational complexity of alternative interventions, we estimate the clinical and population-level benefits associated with strategies to improve the safety of pregnancy and childbirth in India.

Methods and Findings

Country- and region-specific data were synthesized using a computer-based model that simulates the natural history of pregnancy (both planned and unintended) and pregnancy- and childbirth-associated complications in individual women; and considers delivery location, attendant, and facility level. Model outcomes included clinical events, population measures, costs, and cost-effectiveness ratios. Separate models were adapted to urban and rural India using survey-based data (e.g., unmet need for birth spacing/limiting, facility births, skilled birth attendants). Model validation compared projected maternal indicators with empiric data. Strategies consisted of improving coverage of effective interventions that could be provided individually or packaged as integrated services, could reduce the incidence of a complication or its case fatality rate, and could include improved logistics such as reliable transport to an appropriate referral facility as well as recognition of referral need and quality of care. Increasing family planning was the most effective individual intervention to reduce pregnancy-related mortality. If over the next 5 y the unmet need for spacing and limiting births was met, more than 150,000 maternal deaths would be prevented; more than US$1 billion saved; and at least one of every two abortion-related deaths averted. Still, reductions in maternal mortality reached a threshold (∼23%–35%) without including strategies that ensured reliable access to intrapartum and emergency obstetrical care (EmOC). An integrated and stepwise approach was identified that would ultimately prevent four of five maternal deaths; this approach coupled stepwise improvements in family planning and safe abortion with consecutively implemented strategies that incrementally increased skilled attendants, improved antenatal/postpartum care, shifted births away from home, and improved recognition of referral need, transport, and availability/quality of EmOC. The strategies in this approach ranged from being cost-saving to having incremental cost-effectiveness ratios less than US$500 per year of life saved (YLS), well below India''s per capita gross domestic product (GDP), a common benchmark for cost-effectiveness.

Conclusions

Early intensive efforts to improve family planning and control of fertility choices and to provide safe abortion, accompanied by a paced systematic and stepwise effort to scale up capacity for integrated maternal health services over several years, is as cost-effective as childhood immunization or treatment of malaria, tuberculosis, or HIV. In just 5 y, more than 150,000 maternal deaths would be averted through increasing contraception rates to meet women''s needs for spacing and limiting births; nearly US$1.5 billion would be saved by coupling safe abortion to aggressive family planning efforts; and with stepwise investments to improve access to pregnancy-related health services and to high-quality facility-based intrapartum care, more than 75% of maternal deaths could be prevented. If accomplished over the next decade, the lives of more than one million women would be saved. Please see later in the article for the Editors'' Summary  相似文献   

14.
15.
Resource Acquisition and Alternative Mating Strategies in Water Striders   总被引:1,自引:0,他引:1  
Behavioral polymorphisms occur among male and female water striders,Gems remigis, when competing for food and mates. Individualsof both sexes vie for positions in the fastest flowing portionsof streams. Here prey capture rates are highest, as are thoseof swimming and aggression. Only the largest females, and maleswith the largest first appendages, can regularly maintain positionsin these areas. The remaining females are arranged along theflow gradient according to their size with the smallest holdingpositions in pools of slow moving water. For the remaining malesneither overall size, nor the size of the first appendages,appears to determine which males swim near the edge of streams,or which males swim as satellites behind those occupying thefast flowing productive areas. Preliminary data show that matingsuccess of edge and satellite males are about equal, but significantlyless than that of the centrally positioned males with the largestfirst appendages. Thus although it appears that morphologicalphenotype influences male competitive behavior, when the absolutesize of the critical trait is small males adopt behavior afterassessing the actions of others. For these "subordinate" males,behavioral assessment appears to produce an "ideal free" spatialdistribution.  相似文献   

16.
物种繁殖策略和交配对策的变异性是演化生物学研究的新必领域.然而,在实际研究中,由于术语使用混乱和概念错误,常常导致许多结果模糊不清.通过该文,区分了繁殖策略和交配对策的概念,总结了繁殖策略变异性诸假设,阐述并比较了迄今为止繁殖策略和交配对策变异性研究的重要理论和模型,解释了不同交配对策的演化基础和激素调节机理,并在此基础上提出当前物种繁殖策略和交配对策变异性研究的热点问题.  相似文献   

17.
Stone-tipped weapons were a significant innovation for Middle Pleistocene hominins. Hafted hunting technology represents the development of new cognitive and social learning mechanisms within the genus Homo, and may have provided a foraging advantage over simpler forms of hunting technology, such as a sharpened wooden spear. However, the nature of this foraging advantage has not been confirmed. Experimental studies and ethnographic reports provide conflicting results regarding the relative importance of the functional, economic, and social roles of hafted hunting technology. The controlled experiment reported here was designed to test the functional hypothesis for stone-tipped weapons using spears and ballistics gelatin. It differs from previous investigations of this type because it includes a quantitative analysis of wound track profiles and focuses specifically on hand-delivered spear technology. Our results do not support the hypothesis that tipped spears penetrate deeper than untipped spears. However, tipped spears create a significantly larger inner wound cavity that widens distally. This inner wound cavity is analogous to the permanent wound cavity in ballistics research, which is considered the key variable affecting the relative ‘stopping power’ or ‘killing power’ of a penetrating weapon. Tipped spears conferred a functional advantage to Middle Pleistocene hominins, potentially affecting the frequency and regularity of hunting success with important implications for human adaptation and life history.  相似文献   

18.
White-Sand Savannas Expand at the Core of the Amazon After Forest Wildfires   总被引:1,自引:0,他引:1  
Flores  Bernardo M.  Holmgren  Milena 《Ecosystems》2021,24(7):1624-1637
Ecosystems - Across the tropics, climate change is increasing the frequency and severity of wildfires, exposing tropical forests to the risk of shifting into an open vegetation state. A recent...  相似文献   

19.
Alternative splicing is commonly used by the Metazoa to generate more than one protein from a gene. However, such diversification of the proteome by alternative splicing is much rarer in fungi. We describe here an ancient fungal alternative splicing event in which these two proteins are generated from a single alternatively spliced ancestral SKI7/HBS1 gene retained in many species in both the Ascomycota and Basidiomycota. While the ability to express two proteins from a single SKI7/HBS1 gene is conserved in many fungi, the exact mechanism by which they achieve this varies. The alternative splicing was lost in Saccharomyces cerevisiae following the whole-genome duplication event as these two genes subfunctionalized into the present functionally distinct HBS1 and SKI7 genes. When expressed in yeast, the single gene from Lachancea kluyveri generates two functionally distinct proteins. Expression of one of these proteins complements hbs1, but not ski7 mutations, while the other protein complements ski7, but not hbs1. This is the first known case of subfunctionalization by loss of alternative splicing in yeast. By coincidence, the ancestral alternatively spliced gene was also duplicated in Schizosaccharomyces pombe with subsequent subfunctionalization and loss of splicing. Similar subfunctionalization by loss of alternative splicing in fungi also explains the presence of two PTC7 genes in the budding yeast Tetrapisispora blattae, suggesting that this is a common mechanism to preserve duplicate alternatively spliced genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号