首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In addition to effects mediated by resource competition, some invasive plants may impact surrounding vegetation by secreting compounds that are directly inhibitory to growth. Lonicera maackii, an invasive Asian shrub of forests and open areas in eastern and midwestern North America, has devastating effects on understory vegetation, some of which persist even after this shrub is removed. In this study, we explored the potential of aqueous extracts of the leaves and roots of this plant to inhibit seed germination of Impatiens capensis, Alliaria petiolata, Arabidopsis thaliana, and L. maackii in Petri dish bioassays. Both L. maackii root and leaf extracts significantly decreased germination in the three herb species. This inhibitory effect generally increased with increasing extract concentration and was more pronounced with application of leaf extract than root extract. However, when the same extracts were applied to seeds of L. maackii itself, germination was delayed in some cases, but was not significantly reduced by the end of the experiment. Germination of L. maackii seeds even reached significantly higher levels in some extract treatments than in no-extract controls. This implies that L. maackii can successfully inhibit the germination of other plants with few autotoxic effects and may even promote the germination of its own seeds.  相似文献   

2.
The alkaloidal responses of wild tobacco to real and simulated herbivory   总被引:10,自引:0,他引:10  
Ian T. Baldwin 《Oecologia》1988,77(3):378-381
Summary I compared the induced alkaloidal response in undamaged leaves of plants subjected to herbivory by the larvae of Manduca sexta and to different simulations of this herbivory; all herbivory treatments removed similar amounts of leaf mass. Although larval feeding induced a significant increase (2.2x) in alkaloid concentrations compared to undamaged plants, the alkaloid responses to larval feeding were significantly lower than the responses to an herbivory simulation (4x controls) which involved removing the same amount of leaf area from the same positions on the leaf, over a similar time period. Moreover, another herbivory simulation, identical in amount of leaf mass removed and duration of damage to the larval feeding, but without regard to spatial array of leaf damage, resulted in an alkaloidal response (5.5x controls) higher still than the previous herbivory simulation. In a second experiment the importance of leaf vein damage on the induced alkaloidal response was examined. Here, leaf removal that involved cutting leaf tissues from between secondary veins before removing the midrib, resulted in alkaloidal responses that were significantly lower (1.7x controls) than responses from leaf removal that involved cutting both veins and midribs along with the intervein tissues (2.6x controls). Vein damage alone did not produce a significant response. These results indicate that herbivory is difficult to simulate: that how a leaf is damaged can be as important as the magnitude of leaf damage in determining a plant's response to damage.  相似文献   

3.
缺乏专性天敌可能是外来植物扩散蔓延的原因之一.生物防治是环境友好且高效的防除方法,而人工模拟天敌危害对植物的生长、再生指标影响的效果与自然天敌的效果相似.在田间条件下,对入侵植物黄顶菊进行不同程度模拟天敌危害处理,探讨对黄顶菊生长、再生能力影响的效果,为生物防治提供理论基础.结果表明,轻度处理和摘顶处理下黄顶菊生物量、株高、分枝数、花蕾数、净光合速率(Pn)、水分利用效率(WUE)指标表现出超补偿效应,只有重度处理下受到显著抑制;轻度至重度处理初始荧光(F0)则显著高于对照和摘顶处理,而PSⅡ的最大光化学效率(Fv/Fm)和PSⅡ的潜在活性(FV/F0)则显著降低.分析发现,分枝数、花蕾数、生物量等具很高的表型可塑性指数,显示黄顶菊的生长指标对模拟天敌危害具有更强的适应能力.综上,轻度天敌危害对黄顶菊无明显抑制作用,重度危害对黄顶菊的生长、开花结实抑制效果最为理想.生产实践中建议结合其他方法以实现对黄顶菊的有效控制.  相似文献   

4.
Invasive plants are often associated with reduced cover of native plants, but rarely has competition between invasives and natives been assessed experimentally. The shrub Lonicera maackii, native to northeastern Asia, has invaded forests and old fields in numerous parts of eastern North America, and is associated with reduced tree seedling density in Ohio forests. A field experiment was conducted to test the effects of established L. maackii on the survival and growth of transplanted native tree species. The experiment examined above-ground competition (by removing L. maackii shoots) and below-ground competition (by trenching around transplanted seedlings). The effects of above-ground competition with L. maackii were generally more important than below-ground competition, though both were detected. Shoot treatment was the key determinant for the survival of all species except P. serotina, whereas trenching only enhanced survival for A. saccharum caged and P. serotina, and only in the shoot removal treatment. For the surviving seedlings, L. maackii shoot removal increased growth of A. saccharum seedlings protected with cages, but actually reduced the growth of unprotected Q. rubra and A. saccharum seedlings, indicating that L. maackii shoots confer some protection from deer browsing. Significant interactions between root and shoot treatment on Q. rubra growth parameters, specifically greatest growth in the shoot present & trenched treatment, is attributed to protection from deer browsing combined with release from below-ground competition. Despite this protective function of L. maackii shoots, the overall effect of this invasive shrub is increased mortality of native tree seedlings, suggesting it impacts the natural regeneration of secondary forests.  相似文献   

5.

Background and Aims

Selective feeding by herbivores, especially at the seedling or juvenile phase, has the potential to change plant traits and ultimately the susceptibility of surviving plants to other enemies. Moreover, since hybridization is important to speciation and can lead to introgression of traits between plant species, differential feeding (herbivore-induced mortality) can influence the expression of resistance traits of hybrids and ultimately determine the consequences of hybridization. While it would be expected that herbivore-induced mortality would lead to greater resistance, there may be trade-offs whereby resistance to one herbivore increases susceptibility to others. The hypothesis was tested that the exotic slug, Arion subfuscus, causes non-random survival of hybrid willows and alters plant: (1) susceptibility to slugs; (2) secondary and nutritional chemistry, and growth; and (3) susceptibility to other phytophages.

Methods

Two populations of plants, control and selected, were created by placing trays of juvenile willows in the field and allowing slugs access to only some. When ≤10 individuals/tray remained (approx. 85 % mortality), ‘selected’ and undamaged ‘control’ trays were returned to a common area. Traits of these populations were then examined in year 1 and in subsequent years.

Key Results

The selected population was less palatable to slugs. Surprisingly, foliar concentrations of putative defence traits (phenolic glycosides and tannins) did not differ between treatments, but the selected population had higher foliar nitrogen and protein, lower carbon to nitrogen ratio and greater above-ground biomass, indicating that vigorously growing plants were inherently more resistant to slugs. Interestingly, selected plants were more susceptible to three phytophages: an indigenous pathogen (Melampsora epitea), a native herbivorous beetle (Chrysomela knabi) and an exotic willow leaf beetle (Plagiodera versicolora).

Conclusions

This exotic slug changed the population structure of F2 hybrid willows in unanticipated ways. Defence expression remained unchanged, while nutritional and growth traits changed. These changes caused plants to be more susceptible to other plant enemies. Other exotic herbivore species are anticipated to have similar direct and indirect effects on native plant populations.  相似文献   

6.

Background and Aims

There is currently much speculation about the role of epigenetic variation as a determinant of heritable variation in ecologically important plant traits. However, we still know very little about the phenotypic consequences of epigenetic variation, in particular with regard to more complex traits related to biotic interactions.

Methods

Here, a test was carried out to determine whether variation in DNA methylation alone can cause heritable variation in plant growth responses to jasmonic acid and salicylic acid, two key hormones involved in induction of plant defences against herbivores and pathogens. In order to be able to ascribe phenotypic differences to epigenetic variation, the hormone responses were studied of epigenetic recombinant inbred lines (epiRILs) of Arabidopsis thaliana – lines that are highly variable at the level of DNA methylation but nearly identical at the level of DNA sequence.

Key Results

Significant heritable variation was found among epiRILs both in the means of phenotypic traits, including growth rate, and in the degree to which these responded to treatment with jasmonic acid and salicylic acid. Moreover, there was a positive epigenetic correlation between the responses of different epiRILs to the two hormones, suggesting that plant responses to herbivore and pathogen attack may have a similar molecular epigenetic basis.

Conclusions

This study demonstrates that epigenetic variation alone can cause heritable variation in, and thus potentially microevolution of, plant responses to defence hormones. This suggests that part of the variation of plant defences observed in natural populations may be due to underlying epigenetic, rather than entirely genetic, variation.  相似文献   

7.
8.

Background and Aims

Herbivory and plant defence differ markedly among seedlings and juvenile and mature plants in most species. While ontogenetic patterns of chemical resistance have been the focus of much research, comparatively little is known about how tolerance to damage changes across ontogeny. Due to dramatic shifts in plant size, resource acquisition, stored reserves and growth, it was predicted that tolerance and related underlying mechanisms would differ among ontogenetic stages.

Methods

Ontogenetic patterns in the mechanisms of tolerance were investigated in Plantago lanceolata and P. major (Plantaginaceae) using the genetic sib-ship approach. Pot-grown plants were subjected to 50 % defoliation at the seedling, juvenile and mature stages and either harvested in the short-term to look at plasticity in growth and photosynthesis in response to damage or allowed to grow through seed maturation to measure phenology, shoot compensation and reproductive fitness.

Key Results

Tolerance to defoliation was high in P. lanceolata, but low in P. major, and did not vary among ontogenetic stages in either species. Mechanisms underlying tolerance did vary across ontogeny. In P. lanceolata, tolerance was significantly related to flowering (juveniles) and pre-damage shoot biomass (mature plants). In P. major, tolerance was significantly related to pre-damage root biomass (seedlings) and induction of non-photochemical quenching, a photosynthetic parameter (juveniles).

Conclusions

Biomass partitioning was very plastic in response to damage and showed associations with tolerance in both species, indicating a strong role in plant defence. In contrast, photosynthesis and phenology showed weaker responses to damage and were related to tolerance only in certain ontogenetic stages. This study highlights the pivotal role of ontogeny in plant defence and herbivory. Additional studies in more species are needed to determine how seedlings tolerate herbivory in general and whether mechanisms vary across ontogeny in consistent patterns.  相似文献   

9.
Lewis KC  Bazzaz FA  Liao Q  Orians CM 《Oecologia》2006,148(3):384-395
We investigated geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata, to test the hypothesis that escape from herbivory in invasive species permits enhanced growth and lower production of defensive chemicals. We quantified herbivore damage, concentrations of sinigrin, and growth and reproduction inside and outside herbivore exclusion treatments, in field populations in the native and invasive ranges. As predicted, unmanipulated plants in the native range (Hungary, Europe) experienced greater herbivore damage than plants in the introduced range (Massachusetts and Connecticut, USA), providing evidence for enemy release, particularly in the first year of growth. Nevertheless, European populations had consistently larger individuals than US populations (rosettes were, for example, eightfold larger) and also had greater reproductive output, but US plants produced larger seeds at a given plant height. Moreover, flowering plants showed significant differences in concentrations of sinigrin in the invasive versus native range, although the direction of the difference was variable, suggesting the influence of environmental effects. Overall, we observed less herbivory, but not increased growth or decreased defense in the invasive range. Geographical differences in performance and leaf chemistry appear to be due to variation in the environment, which could have masked evolved differences in allocation.  相似文献   

10.

Background and Aims

To understand whether root responses to aerial rhythmic growth and contrasted defoliation treatments can be interpreted under the common frame of carbohydrate availability; root growth was studied in parallel with carbohydrate concentrations in different parts of the root system on oak tree seedlings.

Methods

Quercus pubescens seedlings were submitted to selective defoliation (removal of mature leaves, cotyledons or young developing leaves) at appearance of the second flush and collected 1, 5 or 10 d later for morphological and biochemical measurements. Soluble sugar and starch concentrations were measured in cotyledons and apical and basal root parts.

Key Results

Soluble sugar concentration in the root apices diminished during the expansion of the second aerial flush and increased after the end of aerial growth in control seedlings. Starch concentration in cotyledons regularly decreased. Continuous removal of young leaves did not alter either root growth or apical sugar concentration. Starch storage in basal root segments was increased. After removal of mature leaves (and cotyledons), root growth strongly decreased. Soluble sugar concentration in the root apices drastically decreased and starch reserves in the root basal segments were emptied 5 d after defoliation, illustrating a considerable shortage in carbohydrates. Soluble sugar concentrations recovered 10 d after defoliation, after the end of aerial growth, suggesting a recirculation of sugar. No supplementary recourse to starch in cotyledons was observed.

Conclusions

The parallel between apical sugar concentration and root growth patterns, and the correlations between hexose concentration in root apices and their growth rate, support the hypothesis that the response of root growth to aerial periodic growth and defoliation treatments is largely controlled by carbohydrate availability.  相似文献   

11.
以青藏高原高寒草甸中常见的24种菊科植物为材料,在去离子水、河沙加蒸馏水、河沙加半强度霍格兰营养液和河沙加标准霍格兰营养液四种营养基质中培养幼苗,在10d、20d和30d三个幼苗生长期研究种子重量对幼苗生长的影响,结果表明:(1)在10d、20d和30d三个不同的幼苗生长期,在不同培养基质中种子重量与幼苗重量均呈显著的正相关,但R值在去离子水中变化不大,而在其它3种培养基质中持续减少。(2)种子重量与相对生长率负相关,这种负相关性在去离子水中10d和20d生长期表现较弱,在其它3种培养基质中同一生长期的幼苗相对生长率变化不明显。(3)除在10d去离子水中种子重量与幼苗根冠比率呈显著的正相关外,其余均没有显著的相关关系。  相似文献   

12.
Plasmodium falciparum malaria is subject to artificial selection from antimalarial drugs that select for drug-resistant parasites. We describe and apply a flexible new approach to investigate how epistasis, inbreeding, selection heterogeneity and multiple simultaneous drug deployments interact to influence the spread of drug-resistant malaria. This framework recognizes that different human 'environments' within which treatment may occur (such as semi- and non-immune humans taking full or partial drug courses) influence the genetic interactions between parasite loci involved in resistance. Our model provides an explanation for how the rate of spread varies according to different malaria transmission intensities, why resistance might stabilize at intermediate frequencies and also identifies several factors that influence the decline of resistance after a drug is removed. Results suggest that studies based on clinical outcomes might overestimate the spread of resistant parasites, especially in high-transmission areas. We show that when transmission decreases, prevalence might decrease without a corresponding change in frequency of resistance and that this relationship is heavily influenced by the extent of linkage disequilibrium between loci. This has important consequences on the interpretation of data from areas where control is being successful and suggests that reducing transmission might have less impact on the spread of resistance than previously expected.  相似文献   

13.

Background and Aims

Some Lupinus species produce cluster roots in response to low plant phosphorus (P) status. The cause of variation in cluster-root formation among cluster-root-forming Lupinus species is unknown. The aim of this study was to investigate if cluster-root formation is, in part, dependent on different relative growth rates (RGRs) among Lupinus species when they show similar shoot P status.

Methods

Three cluster-root-forming Lupinus species, L. albus, L. pilosus and L. atlanticus, were grown in washed river sand at 0, 7·5, 15 or 40 mg P kg−1 dry sand. Plants were harvested at 34, 42 or 62 d after sowing, and fresh and dry weight of leaves, stems, cluster roots and non-cluster roots of different ages were measured. The percentage of cluster roots, tissue P concentrations, root exudates and plant RGR were determined.

Key Results

Phosphorus treatments had major effects on cluster-root allocation, with a significant but incomplete suppression in L. albus and L. pilosus when P supply exceeded 15 mg P kg−1 sand. Complete suppression was found in L. atlanticus at the highest P supply; this species never invested more than 20 % of its root weight in cluster roots. For L. pilosus and L. atlanticus, cluster-root formation was decreased at high internal P concentration, irrespective of RGR. For L. albus, there was a trend in the same direction, but this was not significant.

Conclusions

Cluster-root formation in all three Lupinus species was suppressed at high leaf P concentration, irrespective of RGR. Variation in cluster-root formation among the three species cannot be explained by species-specific variation in RGR or leaf P concentration.  相似文献   

14.

Background and Aims

The lack of studies assessing the simultaneous expression of tolerance and resistance traits during seedling development and overall seedling defences as compared with adult plants, in general, constitutes a significant research need that can greatly improve our understanding of overall investment in defences during plant ontogeny.

Methods

Using two seedling and two juvenile stages of the perennial herb Penstemon virgatus (Plantaginaceae) evaluations were made of (a) patterns of investment in constitutive chemical defences [i.e. iridoid glycosides (IGs)], and (b) simultaneous variation in the short-term ability of seedling and juvenile stages to induce resistance traits, measured as induced chemical defences, or tolerance traits, measured as compensatory re-growth following moderate levels of damage by a specialist insect herbivore.

Key Results

Plants were highly defended during most of their transition from seedling to early juvenile stages, reaching a constant approx. 20 % dry weight total IGs. Furthermore, following 30 % above-ground tissue damage, seedlings and juvenile stages were equally able to induce resistance, by raising their IG concentration by approx. 8 %, whereas compensatory re-growth was only achieved at young juvenile but not seedling stages.

Conclusions

Two major trends emerged from this study: (1) in contrast to expected and previously observed trends, in this perennial plant species, seedlings seem to be one of the most well-defended stages as compared with adult ones; (2) high levels of constitutive defences did not limit the ability of young developmental stages to induce resistance following damage, although this response may come with a cost (i.e. decreased compensation) in young seedling stages. Hence, as has been previously demonstrated in few other systems, these results points towards an indirect evidence for a trade-off between tolerance and resistance traits at some, but not all, developmental stages; making them often difficult to detect.  相似文献   

15.
Krischik VA  Denno RF 《Oecologia》1990,83(2):182-190
Summary Patterns of growth, reproduction, defense (leaf resin) and herbivory were compared between the sexes of the dioecious shrub Baccharis halimifolia (Compositae). Male plants possessed longer shoots and more tender leaves, grew faster, and flowered and senesced earlier than female plants. Levels of leaf nitrogen, water content, and acetone-soluble resin (shown to deter feeding by polyphagous insect herbivores) did not differ between male and female plants. When offered a choice between leaves from male and female plants, adults of two leaf beetles (Chrysomelidae), the monophagous Trirhabda bacharidis and the polyphagous Paria thoracica, both preferred to feed on male leaves. Similarly, the daily fecundity of older females of T. bacharidis was higher when they were fed leaves from male compared to female plants. However, adult survivorship and total fecundity of T. baccharidis did not differ between male and female leaf treatments. We attribute the feeding preference for and slight increase in fecundity on male plants to the tenderness of male leaves. Larvae of the fly Tephritis subpura (Tephritidae) fed exclusively in the sterile receptacle of male flower heads (85% infested), but the phenology was such that pollen production was not adversely affected. Larvae of two other flies Dasineura sp. and Contarinia sp. (Cecidomyiidae) occupied >95% of only female flower heads where they fed among and on the developing seeds. We conclude that foliage-feeding herbivores are unlikely candidates to explain the female-biased sex ratio (59% female) of B. halimifolia plants in the field, and that their preference for male plants is a result of plant characteristics (e.g. rapid growth) that have been selected by some other factor. However, our data on selective floral herbivory in B. halimifolia are in accord with the argument that dioecy reduces the inadvertent loss of flower parts of one sex when herbivores feed on flower parts of the opposite sex.  相似文献   

16.

Background and Aims

In seeds with deep simple epicotyl morphophysiological dormancy, warm and cold stratification are required to break dormancy of the radicle and shoot, respectively. Although the shoot remains inside the seed all winter, little is known about its growth and morphological development prior to emergence in spring. The aims of the present study were to determine the temperature requirements for radicle and shoot emergence in seeds of Viburnum betulifolium and V. parvifolium and to monitor growth of the epicotyl, plumule and cotyledons in root-emerged seeds.

Methods

Fresh and pre-treated seeds of V. betulifolium and V. parvifolium were incubated under various temperature regimes and monitored for radicle and shoot emergence. Growth of the epicotyl and cotyledons at different stages was observed with dissecting and scanning electron microscopes.

Key Results

The optimum temperature for radicle emergence of seeds of both species, either kept continuously at a single regime or exposed to a sequence of regimes, was 20/10 °C. GA3 had no effect on radicle emergence. Cold stratification (5 °C) was required for shoot emergence. The shoot apical meristem in fresh seeds did not form a bulge until the embryo had grown to the critical length for radicle emergence. After radicle emergence, the epicotyl–plumule and cotyledons grew slowly at 5 and 20/10 °C, and the first pair of true leaves was initiated. However, the shoot emerged only from seeds that received cold stratification.

Conclusions

Seeds of V. betulifolium and V. parvifolium have deep simple epicotyl morphophysiological dormancy, C1bB (root)–C3 (epicotyl). Warm stratification was required to break the first part of physiological dormancy (PD), thereby allowing embryo growth and subsequently radicle emergence. Although cold stratification was not required for differentiation of the epicotyl–plumule, it was required to break the second part of PD, thereby allowing the shoot to emerge in spring.  相似文献   

17.

Background and Aims

European beech epicormics have received far less attention than epicormics of other species, especially sessile oak. However, previous work on beech has demonstrated that there is a negative effect of radial growth on trunk sprouting, while more recent investigations on sessile oak proved a strong positive influence of the presence of epicormics. The aims of this study were, first, to make a general quantification of the epicormics present along beech stems and, secondly, to test the effects of both radial growth and epicormic frequency on sprouting.

Methods

In order to test the effect of radial growth, ten forked individuals were sampled, with a dominant and a dominated fork of almost equal length for every individual. To test the effects of primary growth and epicormic frequency, on the last 17 annual shoots of each fork arm, the number of axillary buds, shoot length, ring width profiles, epicormic shoots and other epicormics were carefully recorded.

Key Results

The distribution of annual shoot length, radial growth profiles and parallel frequencies of all epicormics are presented. The latter frequencies were parallel to the annual shoot lengths, nearly equivalent for both arms of each tree, and radial growth profiles included very narrow rings in the lowest annual shoots and even missing rings in the dominated arms alone. The location of the latent buds and the epicormics was mainly at branch base, while epicormic shoots, bud clusters and spheroblasts were present mainly in the lowest annual shoots investigated. Using a zero-inflated mixed model, sprouting was shown to depend positively on epicormic frequency and negatively on radial growth.

Conclusions

Support for a trade-off between cambial activity and sprouting is put forward. Sprouting mainly depends on the frequency of epicormics. Between- and within-tree variability of the epicormic composition in a given species may thus have fundamental and applied implications.  相似文献   

18.
Quantifying species interaction strengths enhances prediction of community dynamics, but variability in the strength of species interactions in space and time complicates accurate prediction. Interaction strengths can vary in response to density, indirect effects, priority effects or a changing environment, but the mechanism(s) causing direction and magnitudes of change are often unclear. We designed an experiment to characterize how environmental factors influence the direction and the strength of priority effects between sessile species. We estimated per capita non-trophic effects of barnacles (Semibalanus balanoides) on newly settled germlings of the fucoid, Ascophyllum nodosum, in the presence and absence of consumers in experiments on rocky shores throughout the Gulf of Maine, USA. Per capita effects on germlings varied among environments and barnacle life stages, and these interaction strengths were largely unaltered by changing consumer abundance. Whereas previous evidence shows adult barnacles facilitate fucoids, here, we show that recent settlers and established juveniles initially compete with germlings. As barnacles mature, they switch to become facilitators of fucoids. Consumers caused variable mortality of germlings through time comparable to that from competition. Temporally variable effects of interactors (e.g. S. balanoides), or spatial variation in their population structure, in different regions differentially affect target populations (e.g. A. nodosum). This may affect abundance of critical stages and the resilience of target species to environmental change in different geographical regions.  相似文献   

19.
Two experiments were conducted to examine the response of Quercus rubra L. seedlings to coppicing. In a greenhouse experiment, growth, biomass distribution, leaf gas exchange, and water and carbohydrate relations were measured for 1-year-old seedlings that were either coppiced when dormant at the time of planting or left intact as controls. Coppicing induced sprouting from the base of the stem, and, in general, the physiology of sprouts and controls was similar. However, the relative growth rate (RGR) of sprouts was 9% higher than that of controls, allowing sprouts to compensate fully for the initial mass lost to coppicing. In a second experiment, in an outdoor cold frame, growth, biomass distribution, leaf gas exchange and plant water relations were measured on 1-year-old seedlings that were either coppiced at the time of planting (dormant-coppiced), coppiced soon after bud break (active-coppiced) or left intact (controls). Dormant coppicing again had little impact on seedling physiology, and dormant-coppiced plants again compensated for initial mass loss with a higher RGR. In contrast, active-coppiced seedlings did not compensate for initial mass loss, as their RGR did not differ from that of controls. By the tenth week of the study, leaf gas exchange rates of active-coppiced sprouts were higher than those of dormant-coppiced and control seedlings. Active-coppiced sprouts also had a greater soil-to-leaf hydraulic conductivity (expressed on a leaf area basis) and a lower ratio of leaf area to root surface area than did controls. Across treatments, photosynthetic rate and stomatal conductance were positively correlated with soil-to-leaf hydraulic conductivity, and gas exchange rates and hydraulic conductivity were negatively related to leaf:root area ratio. Thus, the removal of actively growing shoots may have altered subsequent leaf gas exchange largely through coppice-induced changes in leaf-root balance.  相似文献   

20.
This study experimentally analyses the response to simulated herbivory of juvenile Scots pine of two different ages in contrasting abiotic scenarios, focusing on the potential dual role of browsing ungulates: negative, by removing aerial biomass, and positive, by stimulating compensation capacity and providing nutrients by depositing their excrement. Compensation against herbivory was investigated by experimentally clipping a set of Scots pine (Pinus sylvestris L. nevadensis) juveniles, grown under different levels of light and nutrient availability. The responses analysed were survival, trunk-diameter growth, leader-shoot growth, increment in number of meristems, RGR, biomass of needles, shoots, root and whole plant, and root-to-shoot ratio. Clipping consistently resulted in a worse survival and performance of pines with respect to unclipped ones. From the factors analysed, light availability was responsible mainly for the variations in plant performance, while the addition of nutrients was much less important. Age was also important, with older pines showing in general better performance after clipping. Overall, clipping invariably had a negative effect on Scots pine, since none of the combinations of abiotic factors used resulted in overcompensation. However, the intensity on this negative effect proved quite variable, from almost an exact compensation in clipped older pines under full sunlight availability to very poor performance and high death probability in younger pines in shade. Scots pine cannot overcompensate after clipping, but, depending of the environmental conditions, the negative result of clipping varies from severe undercompensation to almost exact compensation. Also, small differences in sapling age can promote significant differences in sapling response to clipping and light environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号