首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intensive research over the last 15 years has led to the identification of several autosomal recessive and dominant genes that cause familial Parkinson’s disease (PD). Importantly, the functional characterization of these genes has shed considerable insights into the molecular mechanisms underlying the etiology and pathogenesis of PD. Collectively; these studies implicate aberrant protein and mitochondrial homeostasis as key contributors to the development of PD, with oxidative stress likely acting as an important nexus between the two pathogenic events. Interestingly, recent genome-wide association studies (GWAS) have revealed variations in at least two of the identified familial PD genes (i.e. α-synuclein and LRRK2) as significant risk factors for the development of sporadic PD. At the same time, the studies also uncovered variability in novel alleles that is associated with increased risk for the disease. Additionally, in-silico meta-analyses of GWAS data have allowed major steps into the investigation of the roles of gene-gene and gene-environment interactions in sporadic PD. The emergent picture from the progress made thus far is that the etiology of sporadic PD is multi-factorial and presumably involves a complex interplay between a multitude of gene networks and the environment. Nonetheless, the biochemical pathways underlying familial and sporadic forms of PD are likely to be shared.  相似文献   

2.
Based on the published data, the authors analyze in detail events resulting in the death of neurons in the substantia nigra (according to the apoptosis scenario) and in the development of Parkinson's disease (idiopathic parkinsonism).  相似文献   

3.
4.
5.
6.
It has been shown that molecular hydrogen (H2) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinson''s disease (PD). Here, we show that drinking H2-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H2 showed that H2 as low as 0.08 ppm had almost the same effect as saturated H2 water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H2-containing water, whereas production of superoxide (O2) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H2 in drinking water can reduce oxidative stress in the brain. Thus, drinking H2-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration.  相似文献   

7.
8.
帕金森病(Parkinson’s disease,PD)是一种常见的神经退行性疾病,影响群体广泛。该文分析了帕金森病多巴胺细胞的表达和DNA甲基化信息,识别出了新的表达或者DNA甲基化异常的基因,并分析了这些基因与帕金森病的关联。结果表明:相比于正常细胞,帕金森病细胞中与微管形成相关的基因表达上调,这些基因包括SLAIN1、TAGLN3和TUBB2B;天然免疫关联的基因(如LY96)下调。另一个上调基因SCG5推测与免疫应激响应相关。DNA甲基化变化在启动子区显著,除了调节基因转录,这些变化可能通过PRC1和Pc G复合物改变染色质的活性水平。此外,表达水平和DNA甲基化同时调整的基因与轴突定向、胞内运输、神经元分化及迁移等功能有关。以上结果提供了对帕金森病机理特征的新的认识。  相似文献   

9.
10.
11.

Background

Pain is highly prevalent in patients with Parkinson’s disease (PD), but little is known about the underlying pathophysiological mechanisms. The susceptibility to pain is known to depend on ascending and descending pathways. Because parts of the descending pain inhibitory system involve dopaminergic pathways, dysregulations in dopaminergic transmission might contribute to altered pain processing in PD. Deficits in endogenous pain inhibition can be assessed using conditioned pain modulation (CPM) paradigms.

Methods

Applying such a paradigm, we investigated i) whether CPM responses differ between PD patients and healthy controls, ii) whether they are influenced by dopaminergic medication and iii) whether there are effects of disease-specific factors. 25 patients with idiopathic PD and 30 healthy age- and gender-matched controls underwent an established CPM paradigm combining heat pain test stimuli at the forearm and the cold pressor task on the contralateral foot as the conditioning stimulus. PD patients were tested under dopaminergic medication and after at least 12 hours of medication withdrawal.

Results

No significant differences between CPM responses of PD patients and healthy controls or between PD patients “on” and “off” medication were found. These findings suggest (i) that CPM is insensitive to dopaminergic modulations and (ii) that PD is not related to general deficits in descending pain inhibition beyond the known age-related decline. However, at a trend level, we found differences between PD subtypes (akinetic-rigid, tremor-dominant, mixed) with the strongest impairment of pain inhibition in the akinetic-rigid subtype.

Conclusions

There were no significant differences between CPM responses of patients compared to healthy controls or between patients “on” and “off” medication. Differences between PD subtypes at a trend level point towards different pathophysiological mechanisms underlying the three PD subtypes which warrant further investigation and potentially differential therapeutic strategies in the future.  相似文献   

12.
13.
淀粉样蛋白的沉积与Tau蛋白磷酸化是阿尔茨海默病发病的关键分子机制,神经元胞内钙离子的变化可影响其生成和代谢;另一方面,这些蛋白的改变会进一步导致神经元钙稳态的失调,致使突触损伤、神经细胞凋亡及认知功能下降.本文就神经元钙稳态失衡在阿尔茨海默病发病中的进展进行综述.  相似文献   

14.
帕金森病发病机制与治疗研究进展   总被引:1,自引:0,他引:1  
帕金森病(Parkinson's disease PD)是第二大中枢神经退行性疾病,常见于老年人。其最主要的临床表现是静止性震颤、肌强直、运动迟缓和姿势不稳等运动症状。典型的病理特征是中脑黑质多巴胺能神经元进行性变性缺失,残存的多巴胺能神经元胞质内出现病理标志物路易体(lewy's body)。PD的病因和发病机制尚不完全清楚,目前认为PD可能是遗传、环境、老龄化等因素共同作用的结果,具体机制涉及线粒体功能障碍、氧化应激、神经炎症、兴奋性毒性损伤等。由于病因不清、发病机制复杂导致PD的治疗依旧是一个亟待解决的问题,目前已有的治疗手段包括药物治疗、外科手术治疗、细胞和组织移植治疗、基因治疗等,但均存在不同程度的弊端。本文主要结合近年来文献研究进展,对PD发病机制及其治疗现状进行概述,旨在为PD基础研究及药物研发提供一定线索。  相似文献   

15.
Many biochemical traits are recognised as risk factors, which contribute to or predict the development of disease. Only a few are in widespread use, usually to assist with treatment decisions and motivate behavioural change. The greatest effort has gone into evaluation of risk factors for cardiovascular disease and/or diabetes, with substantial overlap as ‘cardiometabolic’ risk. Over the past few years many genome-wide association studies (GWAS) have sought to account for variation in risk factors, with the expectation that identifying relevant polymorphisms would improve our understanding or prediction of disease; others have taken the direct approach of genomic case-control studies for the corresponding diseases. Large GWAS have been published for coronary heart disease and Type 2 diabetes, and also for associated biomarkers or risk factors including body mass index, lipids, C-reactive protein, urate, liver function tests, glucose and insulin. Results are not encouraging for personal risk prediction based on genotyping, mainly because known risk loci only account for a small proportion of risk. Overlap of allelic associations between disease and marker, as found for low density lipoprotein cholesterol and heart disease, supports a causal association, but in other cases genetic studies have cast doubt on accepted risk factors. Some loci show unexpected effects on multiple markers or diseases. An intriguing feature of risk factors is the blurring of categories shown by the correlation between them and the genetic overlap between diseases previously thought of as distinct. GWAS can provide insight into relationships between risk factors, biomarkers and diseases, with potential for new approaches to disease classification.  相似文献   

16.
Parkinson disease (PD) is known as a common progressive neurodegenerative disease which is clinically diagnosed by the manifestation of numerous motor and nonmotor symptoms. PD is a genetically heterogeneous disorder with both familial and sporadic forms. To date, researches in the field of Parkinsonism have identified 23 genes or loci linked to rare monogenic familial forms of PD with Mendelian inheritance. Biochemical studies revealed that the products of these genes usually play key roles in the proper protein and mitochondrial quality control processes, as well as synaptic transmission and vesicular recycling pathways within neurons. Despite this, large number of patients affected with PD typically tends to show sporadic forms of disease with lack of a clear family history. Recent genome-wide association studies (GWAS) meta-analyses on the large sporadic PD case–control samples from European populations have identified over 12 genetic risk factors. However, the genetic etiology that underlies pathogenesis of PD is also discussed, since it remains unidentified in 40% of all PD-affected cases. Nowadays, with the emergence of new genetic techniques, international PD genomics consortiums and public online resources such as PDGene, there are many hopes that future large-scale genetics projects provide further insights into the genetic etiology of PD and improve diagnostic accuracy and therapeutic clinical trial designs.  相似文献   

17.
Dopaminergic nervous transmission in Parkinson's disease   总被引:2,自引:0,他引:2  
  相似文献   

18.
目的:探索帕金森病(PD)的磁敏感加权成像(SWI)的表现。方法:34例帕金森病患者作为病例组和30例正常人作为对照组,采用GE1.5T磁共振成像系统,行常规的快速自旋回波T1、T2加权像后,加扫三维磁敏感加权成像覆盖基底节区及中脑。使用SWI后处理软件在校正相位图上两次测量双侧尾状核头、苍白球、壳核、黑质、红核的相位值,最终的相位值取两次测量的平均值。结果:病例组患者黑质、壳核的相位值较对照组明显降低,差异具有统计学意义(P<0.05),PD患者黑质及壳核铁沉积增加。病例组壳核的相位值与PD病程之间存在负相关。对照组中尾状核头、壳核、黑质相位值左侧低于右侧。结论:SWI是显示PD患者脑内铁沉积的有效的检查方法。  相似文献   

19.
MALDI imaging mass spectrometry (IMS) is a powerful approach that facilitates the spatial analysis of molecular species in biological tissue samples2 (Fig.1). A 12 μm thin tissue section is covered with a MALDI matrix, which facilitates desorption and ionization of intact peptides and proteins that can be detected with a mass analyzer, typically using a MALDI TOF/TOF mass spectrometer. Generally hundreds of peaks can be assessed in a single rat brain tissue section. In contrast to commonly used imaging techniques, this approach does not require prior knowledge of the molecules of interest and allows for unsupervised and comprehensive analysis of multiple molecular species while maintaining high molecular specificity and sensitivity2. Here we describe a MALDI IMS based approach for elucidating region-specific distribution profiles of neuropeptides in the rat brain of an animal model Parkinson''s disease (PD). PD is a common neurodegenerative disease with a prevalence of 1% for people over 65 of age3,4. The most common symptomatic treatment is based on dopamine replacement using L-DOPA5. However this is accompanied by severe side effects including involuntary abnormal movements, termed L-DOPA-induced dyskinesias (LID)1,3,6. One of the most prominent molecular change in LID is an upregulation of the opioid precursor prodynorphin mRNA7. The dynorphin peptides modulate neurotransmission in brain areas that are essentially involved in movement control7,8. However, to date the exact opioid peptides that originate from processing of the neuropeptide precursor have not been characterized. Therefore, we utilized MALDI IMS in an animal model of experimental Parkinson''s disease and L-DOPA induced dyskinesia. MALDI imaging mass spectrometry proved to be particularly advantageous with respect to neuropeptide characterization, since commonly used antibody based approaches targets known peptide sequences and previously observed post-translational modifications. By contrast MALDI IMS can unravel novel peptide processing products and thus reveal new molecular mechanisms of neuropeptide modulation of neuronal transmission. While the absolute amount of neuropeptides cannot be determined by MALDI IMS, the relative abundance of peptide ions can be delineated from the mass spectra, giving insights about changing levels in health and disease. In the examples presented here, the peak intensities of dynorphin B, alpha-neoendorphin and substance P were found to be significantly increased in the dorsolateral, but not the dorsomedial, striatum of animals with severe dyskinesia involving facial, trunk and orolingual muscles (Fig. 5). Furthermore, MALDI IMS revealed a correlation between dyskinesia severity and levels of des-tyrosine alpha-neoendorphin, representing a previously unknown mechanism of functional inactivation of dynorphins in the striatum as the removal of N-terminal tyrosine reduces the dynorphin''s opioid-receptor binding capacity9. This is the first study on neuropeptide characterization in LID using MALDI IMS and the results highlight the potential of the technique for application in all fields of biomedical research.  相似文献   

20.
The oxidation chemistry of the chemical neurotransmitter dopamine (DA) has been investigated using electrochemical approaches. At physiological pH in aqueous solution DA is initially oxidized at a pyrolytic graphite electrode in a reversible 2e, 2H+ reaction to give DA-o-quinone (1). Deprotonation and intramolecular cyclization of 1 yields 5,6-dihydroxyin-doline (3) which is rapidly further oxidized (2e, 2H+) to 6-hydroxyindoline-6-one (4; dopaminochrome). Compound 4 then rearranges to 5,6-dihydroxyindole (5) which for the first time has been unequivocally identified as an oxidation product of DA. When preconcentrated on a preparative reversed-phase HPLC column 5 undergoes an unusual nonoxidative dimerization reaction to give 2-(5 ,6-dihydroxyindoline-3-yl)-5,6-dihydroxyindole (7). This 2,3′-linked indole-indoline dimer is extremely toxic when centrally administered to laboratory mice and evokes complex behavioral responses including convulsions, tremor, and hyperactivity. DA is known to undergo autoxidation in the cytoplasm of dopaminergic substantia nigra neurons to give neuromelanin polymer. Based on the results obtained in this study it is speculated that 5, a necessary intermediate in the latter reaction, is adsorbed on neuromelanin and reacts to form 7 which along with DA-o-quinone (1) and dopaminochrome (4) might be endotoxins that contribute to the age-dependent degeneration of dopaminergic SN neurons. In the presence of L-cysteine DA-o-quinone (1) reacts to give 5-S-cysteinyldopamine (8) not 6-S-cysteinyldopamine as has been suggested by other investigators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号