首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Mutations in genes encoding cationic trypsinogen (PRSS1), pancreatic secretory trypsin inhibitor (SPINK1) and chymotrypsinogen C (CTRC) are associated with chronic pancreatitis. However, in many patients with a familial chronic pancreatitis pattern suggesting a genetic cause, no mutations in either of these genes can be found, indicating that other, still unknown, associated genes exist. In this respect ATP8B1 is an interesting candidate due to its strong expression in the pancreas, its supposed general function in membrane organization and the higher incidence of pancreatitis in patients with ATP8B1 deficiency.

Methods

We analyzed all 27 ATP8B1 coding exons and adjacent non-coding sequences of 507 chronic pancreatitis patients by direct sequencing. Exons that harbored possible relevant variations were subsequently sequenced in 1,027 healthy controls.

Results

In the exonic regions, 5 novel non-synonymous alterations were detected as well as 14 previously described alterations of which some were associated with ATP8B1 deficiency. However, allele frequencies for any of these variations did not significantly differ between patients and controls. Furthermore, several non-synonymous variants were exclusively detected in control subjects and multiple variants in the non-coding sequence were identified with similar frequencies in both groups.

Conclusions

We did not find an association between heterozygous ATP8B1 variants and chronic pancreatitis in our cohort of patients with hereditary and idiopathic chronic pancreatitis.  相似文献   

2.
Extensive genetic studies of chronic pancreatitis over the past decade have highlighted the importance of a tightly regulated balance between activation and inactivation of trypsin within the pancreas to disease susceptibility and resistance. The recent identification of chymotrypsin C (CTRC) as enzyme Y, which was proposed to protect the pancreas by degrading prematurely activated trypsinogen within the pancreas 20 years ago, made CTRC an excellent candidate gene for disease-association studies. Here, we analyzed all eight exons of the CTRC gene for conventional genetic variants and copy number variations (CNVs) by direct sequencing and quantitative fluorescent multiplex PCR, respectively, in a total of 287 French white patients (idiopathic × 216; familial × 42; hereditary × 29). While no CNVs were found in any of the 287 subjects, 20 conventional variations including a nonsense mutation (p.W55X), a microdeletion mutation (p.K247_R254del) and nine missense mutations were found in the 216 patients with idiopathic chronic pancreatitis (ICP). Except for two common polymorphisms, all the remaining 18 mutational events represent rare variations, with a minor allele frequency of 0–0.3% in the control population. All these rare variants were always found more frequently in the ICP patients than in the controls, and their combined frequency in the ICP patients (26/216; 12.0%) is significantly different from that in the controls (4/350; 1.1%) (OR = 11.8 [3.9–40.6]), χ 2 = 31.58, P < 10−6). This genetic finding, when considered in the perceived role of CTRC in eliminating prematurely activated trypsin, indicated that CTRC is a new pancreatitis susceptibility gene.  相似文献   

3.
The development of congenital heart defects (CHDs) involves a complex interplay between genetic variants, epigenetic variants, and environmental exposures. Previous studies have suggested that susceptibility to CHDs is associated with maternal genotypes, fetal genotypes, and maternal–fetal genotype (MFG) interactions. We conducted a haplotype-based genetic association study of obstructive heart defects (OHDs), aiming to detect the genetic effects of 877 SNPs involved in the homocysteine, folate, and transsulfuration pathways. Genotypes were available for 285 mother-offspring pairs with OHD-affected pregnancies and 868 mother-offspring pairs with unaffected pregnancies. A penalized logistic regression model was applied with an adaptive least absolute shrinkage and selection operator (lasso), which dissects the maternal effect, fetal effect, and MFG interaction effects associated with OHDs. By examining the association between 140 haplotype blocks, we identified 9 blocks that are potentially associated with OHD occurrence. Four haplotype blocks, located in genes MGMT, MTHFS, CBS, and DNMT3L, were statistically significant using a Bayesian false-discovery probability threshold of 0.8. Two blocks in MGMT and MTHFS appear to have significant fetal effects, while the CBS and DNMT3L genes may have significant MFG interaction effects.  相似文献   

4.
Background The aim of the present study was to investigate the association between genetic variants in metylenetetrahydrofolate reductase (MTHFR) and Paraoxonase-1 (PON1) 55/192 genes and total homocysteine (tHcy), folate, B12 vitamin, and PON1 levels in patients with coronary artery disease (CAD). Methods The study included 235 patients with CAD and 268 healthy control subjects. Results LL and LM genotypes and L allele of PON1 55 were over-represented in patients. In contrast, MM genotype and M allele were more frequent in controls. QQ genotype and Q allele of PON1 192 and CT genotype of MTHFR were significantly diminished and QR genotype and R allele were significantly elevated in CAD patients compared with controls. The plasma tHcy were elevated but B12 levels were diminished in patients. PON1 55 and 192 genetic variants were significantly associated with PON1 activity, triglyceride, total cholesterol, tHcy and, high-density lipoprotein-cholesterol and low-density lipoprotein-cholesterol in patients, respectively. Conclusion Genetic variants of PON1 55/192 and MTHFR were associated with CAD.  相似文献   

5.
The objective of this study was to analyze the effects of single and combined genotypes of MC4R and POU1F1 genes in Chinese well-known indigenous chicken (Langshan chicken) population. Genetic variants within MC4R gene and POU1F1 gene were screened through PCR-SSCP and DNA sequencing methods. A C/T mutation at nt 944 in MC4R gene (NC_006089.2:g. 944C>T) and a G/A mutation at nt 3109 in POU1F1 gene (NC_006088.2:g. 3109 G>A) were identified. Associations between the mutations of the two genes with two production traits were analyzed. The results showed that, at MC4R locus, individuals with BB and AB genotypes had highly significantly higher body weight at 16 weeks (p < 0.01) than did those with the AA genotype. And, individuals within AA and AB genotypes had significantly higher egg numbers at 300 days (p < 0.05). At POU1F1 locus, individuals with CD genotype had higher body weight at 16 weeks and egg numbers at 300 days (p < 0.05). Furthermore, combined genotypes from these two loci were found to be associated with egg numbers at 300 days (p < 0.05). The individuals within combined genotype AB/CD had higher egg production. Therefore, variations identified within the MC4R and POU1F1genes are suitable for future use in identifying chickens with the genetic potential of higher body weight and reproductive traits, at least in the population of Langshan chickens.  相似文献   

6.

Background

Graves'' disease (GD) is a complex disease in which genetic predisposition is modified by environmental factors. The aim of the study was to examine the association between genetic variants in genes encoding proteins involved in immune response and the age at diagnosis of GD.

Methods

735 GD patients and 1216 healthy controls from Poland were included into the study. Eight genetic variants in the HLA-DRB1, TNF, CTLA4, CD40, NFKb, PTPN22, IL4 and IL10 genes were genotyped. Patients were stratified by the age at diagnosis of GD and the association with genotype was analysed.

Results

Polymorphism in the HLA-DRB1, TNF and CTLA4 genes were associated with GD. The carriers of the HLA DRB1*03 allele were more frequent in patients with age at GD diagnosis ≤30 years than in patients with older age at GD diagnosis.

Conclusions

HLADRB1*03 allele is associated with young age at diagnosis of Graves'' disease in polish population.  相似文献   

7.
Anjana Munshi 《Human genetics》2012,131(11):1775-1781
Statins reduce the risk of cardiovascular events by lowering the blood cholesterol. Many genes involved in the pharmacodynamic pathway of statins have been part of pharmacogenetic research in patients with hypercholesterolemia, with an emphasis on genes involved in the cholesterol pathway. The present study was carried out with an aim to evaluate the association between the genetic variants of lipoprotein lipase gene [HindIII (+/+)/HindIII (?/?)], multiple drug resistance gene (C3435T) and endothelial nitric oxide synthase gene (4a/4b) with clinical outcome including an increased risk of recurrent stroke or death in ischemic stroke patients on atorvastatin therapy. 525 stroke patients and 500 healthy controls were involved in the study. Follow-up telephone interviews were conducted with patients post-event to determine stroke outcome. Blood samples were collected and genotypes determined by polymerase chain reaction-restriction digestion technique. A significant association of MDR1 and LPL gene variants with bad outcome in stroke patients on atorvastatin therapy was found. However, there was no significant association of 27?bp VNTR polymorphism of eNOS gene with outcome. MDR analysis was carried out to analyze gene–gene interaction involving these gene variants contributing to clinical outcome of patients on stratin therapy but no significant interaction between these variants was observed. In conclusion the individuals with HindIII (?/?) genotype of LPL and CC genotype of MDR1 gene would benefit more from atorvastatin therapy.  相似文献   

8.
Hirschsprung disease (HSCR, aganglionic megacolon) is a complex genetic disorder of the enteric nervous system (ENS) characterized by the absence of enteric neurons along a variable length of the intestine. While rare variants (RVs) in the coding sequence (CDS) of several genes involved in ENS development lead to disease, the association of common variants (CVs) with HSCR has only been reported for RET (the major HSCR gene) and NRG1. Importantly, RVs in the CDS of these two genes are also associated with the disorder. To assess independent and joint effects between the different types of RET and NRG1 variants identified in HSCR patients, we used 254 Chinese sporadic HSCR patients and 143 ethnically matched controls for whom the RET and/or NRG1 variants genotypes (rare and common) were available. Four genetic risk factors were defined and interaction effects were modeled using conditional logistic regression analyses and pair-wise Kendall correlations. Our analysis revealed a joint effect of RET CVs with RET RVs, NRG1 CVs or NRG1 RVs. To assess whether the genetic interaction translated into functional interaction, mouse neural crest cells (NCCs; enteric neuron precursors) isolated from embryonic guts were treated with NRG1 (ErbB2 ligand) or/and GDNF (Ret ligand) and monitored during the subsequent neural differentiation process. Nrg1 inhibited the Gdnf-induced neuronal differentiation and Gdnf negatively regulated Nrg1-signaling by down-regulating the expression of its receptor, ErbB2. This preliminary data suggest that the balance neurogenesis/gliogenesis is critical for ENS development.  相似文献   

9.
The study aimed to investigate the association between MTHFR C677T, ENPP1 K121Q, and ADIPOQ 45 T/G gene polymorphisms and incidence of myocardial infarction (MI) in Egyptian patients. The study included 60 unrelated patients suffering from their first MI and 60 unrelated controls. Patients were recruited from Kasr-El Eini hospital, Cairo University. The previously mentioned polymorphisms were determined in all participants by PCR–RFLP. There was no significant difference in the distribution of genotypes and alleles of MTHFR C677T between groups. In contrast, significant difference was found in the distributions of genotypes and alleles of ENPP1 K121Q and ADIPOQ 45 T/G between MI patients and controls (P = 0.01, P = 0.004, P = 0.009, P = 0.001, respectively). Univariate analysis revealed that 121Q ENPP1 and 45 G ADIPOQ alleles were associated with the increased risk of MI (OR = 3; 95 % CI = 1.45–6.2; P = 0.004 and OR = 5.8; 95 % CI = 1.92–17.54; P = 0.001, respectively). The mutant homozygous genotypes of MTHFR, ENPP1, and ADIPOQ were more prevalent in diabetic hypertensive MI patients than it was among non-diabetic normotensive MI patients. Regarding the coagulation profile, INR (P = 0.009) and PC % (P = 0.022) were significantly different among the three genotypes of MTHFR C677T. The 677 T, 121 Q, and 45G variants were associated with MI in Egyptian patients; however, more studies are needed to determine the possible protective effect for these polymorphisms in our population.  相似文献   

10.
Inflammatory bowel disease (IBD) is a common disease, includes Crohn''s disease (CD) and ulcerative colitis (UC), and is determined by altered gut bacterial populations and aberrant host immune response. Peptidoglycan recognition proteins (PGLYRP) are innate immunity bactericidal proteins expressed in the intestine. In mice, PGLYRPs modulate bacterial populations in the gut and sensitivity to experimentally induced UC. The role of PGLYRPs in humans with CD and/or UC has not been previously investigated. Here we tested the hypothesis that genetic variants in PGLYRP1, PGLYRP2, PGLYRP3 and PGLYRP4 genes associate with CD and/or UC and with gender and/or age of onset of disease in the patient population. We sequenced all PGLYRP exons in 372 CD patients, 77 UC patients, 265 population controls, 210 familial CD controls, and 24 familial UC controls, identified all polymorphisms in these populations, and analyzed the variants for significant association with CD and UC. We identified 16 polymorphisms in the four PGLYRP genes that significantly associated with CD, UC, and/or subgroups of patient populations. Of the 16, 5 significantly associated with both CD and UC, 6 with CD, and 5 with UC. 12 significant variants result in amino acid substitutions and based on structural modeling several of these missense variants may have structural and/or functional consequences for PGLYRP proteins. Our data demonstrate that genetic variants in PGLYRP genes associate with CD and UC and may provide a novel insight into the mechanism of pathogenesis of IBD.  相似文献   

11.

Background

Peach [Prunus persica (L.) Batsch] is an economically important fruit crop that has become a genetic-genomic model for all Prunus species in the family Rosaceae. A doubled haploid reference genome sequence length of 227.3 Mb, a narrow genetic base contrasted by a wide phenotypic variability, the generation of cultivars through hybridization with subsequent clonal propagation, and the current accessibility of many founder genotypes, as well as the pedigree of modern commercial cultivars make peach a model for the study of inter-cultivar genomic heterogeneity and its shaping by artificial selection.

Results

The quantitative genomic differences among the three genotypes studied as genomic variants, included small variants (SNPs and InDels) and structural variants (SV) (duplications, inversions and translocations). The heirloom cultivar ''Georgia Belle’ and an almond by peach introgression breeding line ''F8,1-42’ are more heterogeneous than is the modern cultivar ''Dr. Davis’ when compared to the peach reference genome (''Lovell’). A pair-wise comparison of consensus genome sequences with ''Lovell’ showed that ''F8,1-42’ and ''Georgia Belle’ were more divergent than were ''Dr. Davis’ and ''Lovell’.

Conclusions

A novel application of emerging bioinformatics tools to the analysis of ongoing genome sequencing project outputs has led to the identification of a range of genomic variants. Results can be used to delineate the genomic and phenotypic differences among peach genotypes. For crops such as fruit trees, the availability of old cultivars, breeding selections and their pedigrees, make them suitable models for the study of genome shaping by artificial selection. The findings from the study of such genomic variants can then elucidate the control of pomological traits and the characterization of metabolic pathways, thus facilitating the development of protocols for the improvement of Prunus crops.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-14-750) contains supplementary material, which is available to authorized users.  相似文献   

12.
Patients demonstrate notable variations in disease progression following human immunodeficiency virus (HIV) infection. We aimed to identify ZNRD1 and RNF39 genetic variants linked to AIDS progression. We conducted a genetic association study in HIV-1-infected Han Chinese patients residing in Taiwan. The clinical characteristics of 143 HIV-1-infected patients were measured, and patients were split into 2 groups: AIDS progression and AIDS non-progression. Genotyping of ZNRD1 and RNF39 was performed in all participants. We found that patients in the AIDS progression group had higher HIV-1 viral loads and lower CD4 cell counts than did patients in the AIDS non-progression group. The frequency of the AA genotype of ZNRD1 (rs16896970) was lower in the AIDS progression group than in the AIDS non-progression group. Patients with AA genotypes had lower levels of HIV-1 viral loads and higher levels of CD4 cell counts than did patients with AG+GG genotypes. AIDS progression in patients with the AA group is significantly different from that in patients with the AG and GG groups by using Kaplan-Meier survival analysis. The hazard ratio for progression was lower in the AA group than in the AG and GG groups. We identified a SNP that contributes to AIDS progression in HIV-1-infected patients in this population. This SNP had a significant protective influence on AIDS progression, and polymorphisms of the ZNRD1 gene may play a role in the pathogenesis of HIV-1 infection.  相似文献   

13.

Background and objective

The genetic variants of xenobiotic-metabolizing enzymes, such as those encoded by glutathione-S-transferase (GST) genes, may be associated with the risk of coronary artery disease (CAD). To investigate the genetic factors for CAD, we examined the GSTM1, GSTT1, GSTP1, and GSTA1 genotypes in a CAD cohort in Taiwan.

Methods

Our study included 458 CAD participants and 209 control participants who received coronary angiography to assess CAD. The severity of CAD was defined as the number of coronary vessels with 50% or greater stenosis. Sequence variation of the GSTM1 and GSTT1 genes was determined using a polymerase chain reaction (PCR). The GSTP1 (Ile105Val), and GSTA1 (-69C > T) genetic variants were identified using a combination of PCR and restriction fragment length polymorphism analysis. Logistic regression analysis was used to calculate the odds ratios (ORs) and 95% confidence intervals.

Results

Among the GST genetic variants examined, the GSTT1 null genotype was more prevalent in CAD participants with 3 stenosed vessels than in control participants (OR = 1.64, P = .02). This association was no longer observed after adjusting for age, sex, smoking, alcohol use, diabetes mellitus, and serum levels of total cholesterol and high-density lipoprotein cholesterol (OR = 1.28, P = .40). Both univariate and multivariate logistic regression analyses found no significant associations between CAD and the other genetic variants, either separately or in combination. In addition, no effects of interactions between the genotypes and environmental factors, such as cigarette smoking, were significantly associated with the risk of CAD.

Conclusion

The GST genetic variants examined were not associated with susceptibility to CAD in our Taiwanese cohort. This null association requires further confirmation with larger samples.  相似文献   

14.
《Genomics》2021,113(6):4136-4148
Hereditary Spastic Paraplegias (HSP) are a group of rare inherited neurological disorders characterized by progressive loss of corticospinal motor-tract function. Numerous patients with HSP remain undiagnosed despite screening for known genetic causes of HSP. Therefore, identification of novel genetic variations related to HSP is needed. In this study, we identified 88 genetic variants in 54 genes from whole-exome data of 82 clinically well-defined Korean HSP families. Fifty-six percent were known HSP genes, and 44% were composed of putative candidate HSP genes involved in the HSPome and originally reported neuron-related genes, not previously diagnosed in HSP patients. Their inheritance modes were 39, de novo; 33, autosomal dominant; and 10, autosomal recessive. Notably, ALDH18A1 showed the second highest frequency. Fourteen known HSP genes were firstly reported in Koreans, with some of their variants being predictive of HSP-causing protein malfunction. SPAST and REEP1 mutants with unknown function induced neurite abnormality. Further, 54 HSP-related genes were closely linked to the HSP progression-related network. Additionally, the genetic spectrum and variation of known HSP genes differed across ethnic groups. These results expand the genetic spectrum for HSP and may contribute to the accurate diagnosis and treatment for rare HSP.  相似文献   

15.
《Genomics》2023,115(5):110676
ObjectiveDeleterious genetic variants comprise one cause of cardiac conotruncal defects (CTDs). Genes associated with CTDs are gradually being identified. In the present study, we aimed to explore the profile of genetic variants of CTD-associated genes in Chinese patients with non-syndromic CTDs.MethodsThirty-nine CTD-related genes were selected after reviewing published articles in NCBI, HGMD, OMIM, and HPO. In total, 605 patients with non-syndromic CTDs and 300 healthy controls, all of Han ethnicity, were recruited. High-throughput targeted sequencing was used to detect genetic variants in the protein-coding regions of genes. We performed rigorous variant-level filtrations to identify potentially damaging variants (Dvars) using prediction programs including CADD, SIFT, PolyPhen-2, and MutationTaster.ResultDvars were detected in 66.7% (26/39) of the targeted CTD-associated genes. In total, 11.07% (67/605) of patients with non-syndromic CTDs were found to carry one or more Dvars in targeted CTD-associated genes. Dvars in FOXH1, TBX2, NFATC1, FOXC2, and FOXC1 were common in the CTD cohort (1.5% [9/605], 1.2% [7/605], 1.2% [7/605], 1% [6/605], and 0.5% [3/605], respectively).ConclusionTargeted exon sequencing is a cost-effective approach for the genetic diagnosis of CTDs. Our findings contribute to an understanding of the genetic architecture of non-syndromic CTDs.  相似文献   

16.
Systemic lupus erythematosus (SLE) is an autoimmune chronic inflammatory disease that presents several clinical manifestations, affecting multiple organs and systems. Immunological, environmental, hormonal and genetic factors may contribute to disease. Genes and proteins involved in metabolism and detoxification of xenobiotics are often used as susceptibility markers to diseases with environmental risk factors. Cytochrome P450 (CYP) enzymes activate the xenobiotic making it more reactive, while the Glutathione S-transferases (GST) enzymes conjugate the reduced glutathione with electrophilic compounds, facilitating the toxic products excretion. CYP and GST polymorphisms can alter the expression and catalytic activity of enzymes. This study aimed to investigate the role of genetic variants of CYP and GST in susceptibility and clinical expression of SLE, through the analysis of GSTM1 null, GSTT1 null, GSTP1*Ile105Val, CYP1A1*2C and CYP2E1*5B polymorphisms. 371 SLE patients from Hospital de Clínicas de Porto Alegre and 522 healthy blood donors from southern Brazil were evaluated. GSTP1 and CYP variants were genotyped using PCR–RFLP and GSTT1 and GSTM1 variants were analyzed by multiplex PCR. Among European-derived individuals, a lower frequency of GSTP1*Val heterozygous genotypes was found in SLE patients when compared to controls (p = 0.005). In African-derived SLE patients, the CYP2E1*5B allelic frequency was higher in relation to controls (p = 0.054). We did not observe any clinical implication of the CYP and GST polymorphisms in patients with SLE. Our data suggest a protective role of the GSTP1*Ile/Val heterozygous genotype against the SLE in European-derived and a possible influence of the CYP2E1*5B allele in SLE susceptibility among African-derived individuals.  相似文献   

17.
Several Planktothrix strains, each producing a distinct oligopeptide profile, have been shown to coexist within Lake Steinsfjorden (Norway). Using nonribosomal peptide synthetase (NRPS) genes as markers, it has been shown that the Planktothrix community comprises distinct genetic variants displaying differences in bloom dynamics, suggesting a Planktothrix subpopulation structure. Here, we investigate the Planktothrix variants inhabiting four lakes in southeast of Norway utilizing both NRPS and non-NRPS genes. Phylogenetic analyses showed similar topologies for both NRPS and non-NRPS genes, and the lakes appear to have similar structuring of Planktothrix genetic variants. The structure of distinct variants was also supported by very low genetic diversity within variants compared to the between-variant diversity. Incongruent topologies and split decomposition revealed recombination events between Planktothrix variants. In several strains the gene variants seem to be a result of recombination. Both NRPS and non-NRPS genes are dominated by purifying selection; however, sites subjected to positive selection were also detected. The presence of similar and well-separated Planktothrix variants with low internal genetic diversity indicates gene flow within Planktothrix populations. Further, the low genetic diversity found between lakes (similar range as within lakes) indicates gene flow also between Planktothrix populations and suggests recent, or recurrent, dispersals. Our data also indicate that recombination has resulted in new genetic variants. Stability within variants and the development of new variants are likely to be influenced by selection patterns and within-variant homologous recombination.  相似文献   

18.
Genetic susceptibility is an important modifier of clinical outcome and natural history of progression in Alcoholic liver disease (ALD). While the significance of ethnicity in this evolution is very clear, subtle inter-individual genetic variant(s) might be important and thus we investigated those in an Indian population. Fourteen markers were genotyped within two alcohol metabolism genes [Alcohol dehydrogenase (ADH) gene clusters (ADH1B and ADH1C) and Aldehyde dehydrogenase (ALDH2)], one microsomal ethanol oxidizing enzyme cytochrome p450 (CYP2E1) and three oxidative stress response (OSR) genes (MnSOD, GSTT1 and GSTM1) among 490 Bengali individuals (322 ALD and 168 control) from Eastern and North-Eastern India and validation was performed in a new cohort of 150 Bengali patients including 100 ALD and 50 advanced non-alcoholic steatohepatitis (NASH). Out of 14 genetic variants, carriage of 5 genotypes (rs2066701CC in ADH1B, rs1693425TT in ADH1C, rs4880TT in MnSOD and GSTT1/GSTM1 null, p-value <0.05) were noted significantly higher among ALD patients while inter or intra group gene-gene interaction analysis revealed that addition of risk genotype of any OSR gene enhanced the possibility of ALD synergistically. Multiple logistic regression analysis showed independent association of rs2066701CC, rs4880TT and GSTM1 null genotype with ALD while lower frequencies of those genotypes in advanced NASH patients further confirmed their causal relation to ALD. Thus these findings suggest that the three variants of ADH1C, MnSOD and GSTM1 can be used to identify individuals who are at high risk to develop ALD and may be helpful in proper management of Indian alcoholics.  相似文献   

19.
BackgroundCrohn''s disease (CD) is a chronic inflammatory disease of the gastrointestinal tract. Genetic polymorphisms can confer CD risk and influence disease phenotype. Indoleamine 2,3 dioxygenase-1 (IDO1) is one of the most over-expressed genes in CD and mediates potent anti-inflammatory effects via tryptophan metabolism along the kynurenine pathway. We aimed to determine whether non-synonymous polymorphisms in IDO1 or IDO2 (a gene paralog) are important either as CD risk alleles or as modifiers of CD phenotype.MethodsUtilizing a prospectively collected database, clinically phenotyped CD patients (n = 734) and non-IBD controls (n = 354) were genotyped for established IDO1 and IDO2 non-synonymous single nucleotide polymorphisms (SNPs) and novel genetic variants elucidated in the literature. Allelic frequencies between CD and non-IBD controls were compared. Genotype-phenotype analysis was conducted. IDO1 enzyme activity was assessed by calculating the serum kynurenine to tryptophan ratio (K/T).ResultsIDO1 SNPs were rare (1.7% non-IBD vs 1.1% CD; p = NS) and not linked to Crohn''s disease diagnosis in this population. IDO1 SNPs did however associate with a severe clinical course, presence of perianal disease, extraintestinal manifestations and a reduced serum K/T ratio during active disease suggesting lower IDO1 function. IDO2 minor allele variants were common and one of them, rs45003083, associated with reduced risk of Crohn''s disease (p = 0.025). No IDO2 SNPs associated with a particular Crohn''s disease clinical phenotype.ConclusionsThis work highlights the functional importance of IDO enzymes in human Crohn''s disease and establishes relative rates of IDO genetic variants in a US population.  相似文献   

20.
The widespread use of Next Generation Sequencing has opened up new avenues for cancer research and diagnosis. NGS will bring huge amounts of new data on cancer, and especially cancer genetics. Current knowledge and future discoveries will make it necessary to study a huge number of genes that could be involved in a genetic predisposition to cancer. In this regard, we developed a Nextera design to study 11 complete genes involved in DNA damage repair. This protocol was developed to safely study 11 genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, PALB2, RAD50, RAD51C, RAD80, and TP53) from promoter to 3''-UTR in 24 patients simultaneously. This protocol, based on transposase technology and gDNA enrichment, gives a great advantage in terms of time for the genetic diagnosis thanks to sample multiplexing. This protocol can be safely used with blood gDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号