首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
An effective bidirectional communication between an implantation-competent blastocyst and the receptive uterus is a prerequisite for mammalian reproduction. The blastocyst will implant only when this molecular cross-talk is established. Here we show that the muscle segment homeobox gene (Msh) family members Msx1 and Msx2, which are two highly conserved genes critical for epithelial-mesenchymal interactions during development, also play crucial roles in embryo implantation. Loss of Msx1/Msx2 expression correlates with altered uterine luminal epithelial cell polarity and affects E-cadherin/β-catenin complex formation through the control of Wnt5a expression. Application of Wnt5a in vitro compromised blastocyst invasion and trophoblast outgrowth on cultured uterine epithelial cells. The finding that Msx1/Msx2 genes are critical for conferring uterine receptivity and readiness to implantation could have clinical significance, because compromised uterine receptivity is a major cause of pregnancy failure in IVF programs.  相似文献   

3.
4.
5.
6.
Leukemia inhibitory factor (LIF) is essential for embryo implantation in mice. Whether LIF plays a role in termination of embryonic diapause and initiation of implantation in carnivores, especially in species with obligate delayed implantation such as the mink, is not known. The objectives of this study were to clone the LIF coding sequence in the mink and determine its mRNA abundance in the uterus through embryonic diapause, implantation, and early postimplantation. We show that the mink LIF cDNA contains 609 nt encoding a deduced protein of 203 amino acids. The homologies are 80.6, 90, 88.2, 87.6, and 86.8% in coding sequence and 79.2, 90.1, 91, 90.1 and 85.4% in amino acid sequence with mouse, human, pig, cow, and sheep respectively. Glycosylation sites and disulfide bonds present in other species are generally conserved in the mink LIF sequence. Quantitation by polymerase chain reaction amplification indicates that LIF mRNA is expressed in mink uterus just prior to implantation and during the first two days after implantation, but not during diapause or later after implantation pregnancy. The abundance of LIF mRNA was significantly higher in the uterus at the embryo expansion stage (P < 0.05) than at days 1–2 of postimplantation. By immunohistochemical localization it was shown that LIF is expressed in the uterine epithelial glands at time of embryonic expansion and in early postimplantation. The coincidence of LIF expression with implantation in this species suggests that LIF is involved in the implantation process, and may be a maternal signal which terminates obligate embryonic diapause. Mol. Reprod. Dev. 51:13–21, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Double knockouts of the Msx1 and Msx2 genes in the mouse result in severe cardiac outflow tract malformations similar to those frequently found in newborn infants. Despite the known role of the Msx genes in cardiac formation little is known of the regulatory systems (ligand receptor, signal transduction and protein-DNA interactions) that regulate the tissue-specific expression of the Msx genes in mammals during the formation of the outflow tract. In the present study we have used a combination of multi-species comparative genomics, mouse transgenic analysis and in-situ hybridisation to predict and validate the existence of a remote ultra-conserved enhancer that supports the expression of the Msx1 gene in migrating mouse cardiac neural crest and the outflow tract primordia. Furthermore, culturing of embryonic explants derived from transgenic lines with agonists of the PKC and PKA signal transduction systems demonstrates that this remote enhancer is influenced by PKA but not PKC dependent gene regulatory systems. These studies demonstrate the efficacy of combining comparative genomics and transgenic analyses and provide a platform for the study of the possible roles of Msx gene mis-regulation in the aetiology of congenital heart malformation.  相似文献   

8.
9.
In the mouse, the process of implantation is initiated by the attachment reaction between the blastocyst trophectoderm and uterine luminal epithelium that occurs at 2200–2300 h on day 4 (day 1 = vaginal plug) of pregnancy. Several members of the EGF family are considered important in embryo–uterine interactions during implantation. This investigation demonstrates that the expression of two additions to the family, betacellulin and epiregulin, are exquisitely restricted to the mouse uterine luminal epithelium and underlying stroma adjacent to the implanting blastocyst. These genes are not expressed during progesterone-maintained delayed implantation, but are rapidly switched on in the uterus surrounding the implanting blastocyst following termination of the delay by estrogen. These results provide evidence that expression of betacellulin and epiregulin in the uterus requires the presence of an active blastocyst and suggest an involvement of these growth factors in the process of implantation.  相似文献   

10.
11.
Early embryonic development and implantation were studied in tropical short-nosed fruit bat Cyanopterus sphinx. We report preimplantation development and embryo implantation. Different stages of cleavage were observed in embryo by direct microscopic examination of fresh embryos after retrieving them either from the oviduct or the uterus at different days, up to the day of implantation. Generally, the embryos enter the uterus at the 8-cell stage. Embryonic development continued without any delay and blastocyst were formed showing attachment to the uterine epithelium at the mesometrial side of the uterus. A distinct blue band was formed in the uterus. The site of blastocyst attachment was visualized as a blue band following intravenous injection of pontamine blue. Implantation occurred 9+/-0.7 days after mating. This study reports that bat embryonic development can be studied like other laboratory animals and that this bat shows blue dye reaction, indicating the site and exact time of implantation. This blue dye reaction can be used to accurately find post-implantational delay. We prove conclusively that this species of tropical bat does not have any type of embryonic diapause.  相似文献   

12.
Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19INK4d. p19INK4d induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19INK4d by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19INK4d in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19INK4d throughout the investigated period indicates that p19INK4d plays active role during human tooth development. Furthermore, comparison of expression domains of p19INK4d with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.  相似文献   

13.
Implantation of a blastocyst in the uterus is a multistep process tightly controlled by an intricate regulatory network of interconnected ovarian, uterine, and embryonic factors. Bone morphogenetic protein (BMP) ligands and receptors are expressed in the uterus of pregnant mice, and BMP2 has been shown to be a key regulator of implantation. In this study, we investigated the roles of the BMP type 1 receptor, activin-like kinase 2 (ALK2), during mouse pregnancy by producing mice carrying a conditional ablation of Alk2 in the uterus (Alk2 cKO mice). In the absence of ALK2, embryos demonstrate delayed invasion into the uterine epithelium and stroma, and upon implantation, stromal cells fail to undergo uterine decidualization, resulting in sterility. Mechanistically, microarray analysis revealed that CCAAT/enhancer-binding protein β (Cebpb) expression is suppressed during decidualization in Alk2 cKO females. These findings and the similar phenotypes of Cebpb cKO and Alk2 cKO mice lead to the hypothesis that BMPs act upstream of CEBPB in the stroma to regulate decidualization. To test this hypothesis, we knocked down ALK2 in human uterine stromal cells (hESC) and discovered that ablation of ALK2 alters hESC decidualization and suppresses CEBPB mRNA and protein levels. Chromatin immunoprecipitation (ChIP) analysis of decidualizing hESC confirmed that BMP signaling proteins, SMAD1/5, directly regulate expression of CEBPB by binding a distinct regulatory sequence in the 3′ UTR of this gene; CEBPB, in turn, regulates the expression of progesterone receptor (PGR). Our work clarifies the conserved mechanisms through which BMPs regulate peri-implantation in rodents and primates and, for the first time, uncovers a linear pathway of BMP signaling through ALK2 to regulate CEBPB and, subsequently, PGR during decidualization.  相似文献   

14.
Embryo implantation is a complicated event that relies on two critical factors: the competent blastocyst and the receptive uterus. Successful implantation results from tight coordination of these two factors. The maternal hormone environment of the uterus and molecular cross‐talk between the embryo and uterine tissue play pivotal roles in implantation. Here we showed that regulator of G‐protein signaling 2 (RGS2), a member of ubiquitous family of proteins that regulate G‐protein activation, plays an important role in embryo implantation by interfering in the cross‐talk between the embryo and uterine tissue. RGS2 expression increased during the implantation process, and was higher in the implant site than at the nonimplantation site. Meanwhile, ovariectomized (OVX) mice exhibited higher expression of RGS2 in the uterus. Exogenous 17β‐estradiol and progesterone in OVX mice downregulated the expression of RGS2. Treatment with exogenous 17β‐estradiol alone caused uterine RGS2 messenger RNA levels of OVX mice to return to those of normal female mice; when these mice were treated with progesterone or 17β‐estradiol plus progesterone, RGS2 levels rose. Downregulation of Rgs2 by small interfering RNA in an in vitro coculture system of decidualized endometrial stromal cells and blastocysts inhibited blastocyst outgrowth by restricting trophoblast spreading, suggesting a mechanism by which RGS2 regulates embryo implantation.  相似文献   

15.
The status of embryonic RNA synthesis during facultative delayed implantation in the mouse has been examined by radiolabeling in vitro and in utero, and by assay for endogenous RNA polymerase activity. Under conditions that do not activate delayed blastocysts in utero, embryos were shown to be able to transport and incorporate [3H]uridine into RNA as early as 5 min after intralumenal instillation of label on Day 5 of delay. Assay for endogenous RNA polymerase demonstrated functioning enzyme(s) in blastocysts on Day 5 of delayed implantation. Rates of incorporation of label in vitro under nonactivating conditions indicated a reduction, from normal Day 5 blastocyst levels, of 52% on Day 2 and 36% on Day 5 of delay. Relative rates of uptake of [3H]uridine by blastocysts on Day 5 of delay were reduced by approximately 60% from rates observed in predelay embryos on Day 5 of pregnancy. Estrogen-induced activation of embryos in utero was not associated with an increased relative rate of 3H]uridine uptake or incorporation during the first 24 hr following activation on Day 5 of delay. The findings demonstrate that RNA synthesis persists in the mouse blastocyst during delayed implantation, although at a somewhat reduced level. Implications of these results relevant to the maternal regulation of embryonic growth and implantation are discussed.  相似文献   

16.
The mechanisms by which synchronized embryonic development to the blastocyst stage, preparation of the uterus for the receptive state, and reciprocal embryo-uterine interactions for implantation are coordinated are still unclear. We show in this study that preimplantation embryo development became asynchronous in mice that are deficient in brain-type (CB1) and/or spleen-type (CB2) cannabinoid receptor genes. Furthermore, whereas the levels of uterine anandamide (endocannabinoid) and blastocyst CB1 are coordinately down-regulated with the onset of uterine receptivity and blastocyst activation prior to implantation, these levels remained high in the nonreceptive uterus and in dormant blastocysts during delayed implantation and in pregnant, leukemia inhibitory factor (LIF)-deficient mice with implantation failure. These results suggest that a tight regulation of endocannabinoid signaling is important for synchronizing embryo development with uterine receptivity for implantation. Indeed this is consistent with our finding that while an experimentally induced, sustained level of an exogenously administered, natural cannabinoid inhibited implantation in wild-type mice, it failed to do so in CB1(-/-)/CB2(-/-) double mutant mice. The present study is clinically important because of the widely debated medicinal use of cannabinoids and their reported adverse effects on pregnancy.  相似文献   

17.
Embryo implantation into the maternal uterus is a decisive step for successful mammalian pregnancy. Osteopontin (OPN) is a member of the small integrin-binding ligand N-linked glycoprotein family and participates in cell adhesion and invasion. In this study, we showed that Opn mRNA levels are up-regulated in the mouse uterus on day 4 and at the implantation sites on days 5 and 8 of pregnancy. Immunohistochemistry localized the OPN protein to the glandular epithelium on day 4 and to the decidual zone on day 8 of pregnancy. OPN mRNA and proteins are induced by in vivo and in vitro decidualization. OPN expression in the endometrial stromal cells is regulated by progesterone, a key regulator during decidualization. As a secreted protein, the protein level of OPN in the uterine cavity is enriched on day 4, and in vitro embryo culturing has indicated that OPN can facilitate blastocyst hatching and adhesion. Knockdown of OPN attenuates the adhesion and invasion of blastocysts in mouse endometrial stromal cells by suppressing the expression and enzymatic activity of matrix metalloproteinase-9 in the trophoblast. Our data indicated that OPN expression in the mouse uterus during early pregnancy is essential for blastocyst hatching and adhesion and that the knockdown of OPN in mouse endometrial stroma cells could lead to a restrained in vitro trophoblast invasion.  相似文献   

18.
Heparin binding EGF-like growth factor (HB-EGF), encoded by the Hegfl gene, is considered as an important mediator of embryo-uterine interactions during implantation in mice. However, it is unknown whether HB-EGF is important for implantation in species with different steroid hormonal requirements. In mice and rats, maternal ovarian estrogen and progesterone (P(4)) are essential to implantation. In contrast, blastocyst implantation can occur in hamsters in the presence of P(4) alone. To ascertain whether HB-EGF plays any role in implantation in hamsters, we examined the expression, regulation and signaling of HB-EGF in the hamster embryo and uterus during the periimplantation period. We demonstrate that both the blastocyst and uterus express HB-EGF during implantation. Hegfl is expressed solely in the uterine luminal epithelium surrounding the blastocyst prior to and during the initiation of implantation. Hypophysectomized P(4)-treated pregnant hamsters also showed a similar pattern of implantation-specific Hegfl expression. These results suggest that uterine Hegfl expression at the implantation site is driven by either signals emanating from the blastocyst or maternal P(4), but not by maternal estrogen. However, in ovariectomized hamsters, uterine induction of Hegfl requires the presence of estrogen and activation of its nuclear receptor (ER), but not P(4). This observation suggests an intriguing possibility that an estrogenic or unidentified signal from the blastocyst is the trigger for uterine HB-EGF expression. An auto-induction of Hegfl in the uterus by blastocyst-derived HB-EGF is also a possibility. We further observed that HB-EGF induces autophosphorylation of ErbB1 and ErbB4 in the uterus and blastocyst. Taken together, we propose that HB-EGF production and signaling by the blastocyst and uterus orchestrate the 'two-way' molecular signaling to initiate the process of implantation in hamsters.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号