首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We studied the involvement of the human T-cell leukemia virus type 1 (HTLV-1) Gag matrix protein in the cell-to-cell transmission of the virus using missense mutations of the basic amino acids. These basic amino acids are clustered at the N terminus of the protein in other retroviruses and are responsible for targeting the Gag proteins to the plasma membrane. In the HTLV–bovine leukemia virus genus of retroviruses, the basic amino acids are distributed throughout the matrix protein sequence. The HTLV-1 matrix protein contains 11 such residues. A wild-type phenotype was obtained only for mutant viruses with mutations at one of two positions in the matrix protein. The phenotypes of the other nine mutant viruses showed that the basic amino acids are involved at various steps of the replication cycle, including some after membrane targeting. Most of these nine mutations allowed normal synthesis, transport, and cleavage of the Gag precursor, but particle release was greatly affected for seven of them. In addition, four mutated proteins with correct particle release and envelope glycoprotein incorporation did not however permit cell-to-cell transmission of HTLV-1. Thus, particle release, although required, is not sufficient for the cell-to-cell transmission of HTLV-1, and the basic residues of the matrix protein are involved in steps that occur after viral particle release.  相似文献   

5.
Large-scale sequence analyses of influenza viruses revealed that nonstructural 1 (NS1) proteins from avian influenza viruses have a conserved C-terminal ESEV amino acid motif, while NS1 proteins from typical human influenza viruses have a C-terminal RSKV motif. To test the influence of the C-terminal domains of NS1 on the virulence of an avian influenza virus, we generated a wild-type H7N1 virus with an ESEV motif and a mutant virus with an NS1 protein containing a C-terminal RSKV motif by reverse genetics. We compared the phenotypes of these viruses in vitro in human, mouse, and duck cells as well as in vivo in mice and ducks. In human cells, the human C-terminal RSKV domain increased virus replication. In contrast, the avian C-terminal ESEV motif of NS1 increased virulence in mice. We linked this increase in pathogenicity in mice to an increase in virus replication and to a more severe lung inflammation associated with a higher level of production of type I interferons. Interestingly, the human C-terminal RSKV motif of NS1 increased viral replication in ducks. H7N1 virus with a C-terminal RSKV motif replicated to higher levels in ducks and induced higher levels of Mx, a type I interferon-stimulated gene. Thus, we identify the C-terminal domain of NS1 as a species-specific virulence domain.Interspecies transmission of influenza viruses can lead to the introduction of new subtypes of influenza virus into the human population (31). The emergence of a new influenza virus that is able to spread efficiently between humans can cause a pandemic, as evidenced by the recent introduction of the swine-origin 2009 A/H1N1 virus to humans (10). The spread of avian influenza A viruses from birds to humans could also lead to the introduction of a new viral subtype with pandemic potential (22). Fortunately, the efficient replication of avian influenza A viruses in humans and interhuman transmission are generally limited and require further adaptations of the virus to humans. One determinant of host adaptation lies in the receptor binding specificity of hemagglutinin (HA) (52). In addition, several reports have underlined the role of amino acid 627 of the PB2 polymerase subunit in determining viral host range and virulence (15, 36, 44, 45). Large-scale sequence analyses of viruses isolated from different bird and mammalian species have been performed in order to identify previously unrecognized determinants of host adaptation and virulence (2, 32). Those studies have identified a 4-amino-acid motif in the C-terminal domain of NS1 that could represent a previously unnoticed host adaptation motif. Indeed, the vast majority of avian influenza viruses have an NS1 protein with a C-terminal ESEV domain, while typical human viruses have a conserved RSKV domain. The conservation of these species-specific motifs in the NS1 protein despite important sequence variability in the rest of the protein suggests that these four C-terminal amino acids are under strong selection pressure in their respective natural hosts (3, 5, 25).NS1 is a multifunctional protein implicated in the regulation of viral gene expression and in the inhibition of the host antiviral response (12). In order to test the role of these newly identified NS1 domains, Jackson et al. previously introduced various C-terminal motifs into NS1 of the mouse-adapted human influenza virus A/WSN/33 strain by use of reverse genetics (24). Mice inoculated with a virus containing an avian C-terminal ESEV NS1 domain had high viral loads in the lungs and decreased survival compared to mice inoculated with a virus containing a C-terminal RSKV domain. These results showed that the C-terminal ESEV motif found in avian NS1 proteins increases virulence in mice when introduced into a human strain of influenza virus. Whether this finding also applies to avian influenza viruses remains unknown. Moreover, whether the C-terminal ESEV domain of NS1 increases replication in human cells remains unknown. Finally, how the C-terminal domains of NS1 modulate virulence in nonmammalian hosts, such as birds, is also unknown.Here, we assessed the contribution of the C-terminal domains of NS1 to the pathogenicity of an avian influenza virus. By using reverse genetics, we generated H7N1 viruses containing an NS1 protein with a C-terminal avian ESEV domain or a C-terminal human RSKV domain. The replications of these viruses in human, mouse, and duck cell were compared. In addition, we assessed their pathogenicity in mice and ducks. Our results show that the C-terminal RSKV domain increases the replication of an avian influenza virus in human cells. To our surprise, we observed that the C-terminal RSKV domain increases replication in ducks. In contrast, the C-terminal ESEV domain increases virulence in mice. Thus, we identify the C-terminal domain of NS1 as a species-specific virulence domain.  相似文献   

6.
BLM解旋酶是人RecQ DNA解旋酶家族重要成员之一,在机体的DNA复制、重组、损伤修复以及维护基因组稳定性等方面发挥重要作用。早期研究表明,BLM解旋酶通过自身携带的核定位信号(nuclear localization signal, NLS)进入细胞核,但是介导其细胞核定位的关键氨基酸位点尚不清楚。本研究构建了BLM解旋酶C端(aa642 1417)截短体克隆,首先通过截短表达的方法确证其NLS结构域。在此基础上,构建重组真核表达载体pEGFP NLS/BLM NES/Rev,通过观察BLM NLS碱性氨基酸位点突变对EGFP NLS/ BLM NES/Rev融合蛋白细胞核定位的影响,以此快速鉴定NLS中介导BLM解旋酶细胞核定位的关键氨基酸位点。结果表明,BLM(aa642 1417) C端截短体具有与全长BLM解旋酶相同的细胞核定位,同时确证1344RSKRRK1349是BLM解旋酶NLS结构域的活性位点,且具有与SV40 NLS相同的核输入能力。氨基酸位点突变试验结果表明,R1344A、K1346A、R1348A和K1349A点突变均减少了EGFP NLS/BLM NES/Rev和EGFP BLM(642 1417)融合蛋白的细胞核定位。因此,这4个位点是介导BLM解旋酶细胞核定位的关键氨基酸位点。此结果为后续研究BLM解旋酶细胞核定位的分子机制奠定了基础。  相似文献   

7.
The importance of the fourth variable (V4) region of the human immunodeficiency virus 1 (HIV-1) envelope glycoprotein (Env) in virus infection has not been well clarified, though the polymorphism of this region has been found to be associated with disease progression to acquired immunodeficiency syndrome (AIDS). In the present work, we focused on the correlation between HIV-1 gp120 V4 region polymorphism and the function of the region on virus entry, and the possible mechanisms for how the V4 region contributes to virus infectivity. Therefore, we analyzed the differences in V4 sequences along with coreceptor usage preference from CCR5 to CXCR4 and examined the importance of the amino acids within the V4 region for CCR5- and CXCR4-tropic virus entry. In addition, we determined the influence of the V4 amino acids on Env expression and gp160 processing intracellularly, as well as the amount of Env on the pseudovirus surface. The results indicated that V4 tended to have a shorter length, fewer potential N-linked glycosylation sites (PNGS), greater evolutionary distance, and a lower negative net charge when HIV-1 isolates switched from a coreceptor usage preference for CCR5 to CXCR4. The N- and C-terminals of the HIV-1 V4 region are highly conserved and critical to maintain virus entry ability, but only the mutation at position 417 in the context of ADA (a R5-tropic HIV-1 strain) resulted in the ability to utilize CXCR4. In addition, 390L, 391F, 414I, and 416L are critical to maintain gp160 processing and maturation. It is likely that the hydrophobic properties and the electrostatic surface potential of gp120, rather than the conformational structure, greatly contribute to this V4 functionality. The findings provide information to aid in the understanding of the functions of V4 in HIV-1 entry and offer a potential target to aid in the development of entry inhibitors.  相似文献   

8.
RanGAP1 is the GTPase-activating protein for Ran, a small ras-like GTPase involved in regulating nucleocytoplasmic transport. In vertebrates, RanGAP1 is present in two forms: one that is cytoplasmic, and another that is concentrated at the cytoplasmic fibers of nuclear pore complexes (NPCs). The NPC-associated form of RanGAP1 is covalently modified by the small ubiquitin-like protein, SUMO-1, and we have recently proposed that SUMO-1 modification functions to target RanGAP1 to the NPC. Here, we identify the domain of RanGAP1 that specifies SUMO-1 modification and demonstrate that mutations in this domain that inhibit modification also inhibit targeting to the NPC. Targeting of a heterologous protein to the NPC depended on determinants specifying SUMO-1 modification and also on additional determinants in the COOH-terminal domain of RanGAP1. SUMO-1 modification and these additional determinants were found to specify interaction between the COOH-terminal domain of RanGAP1 and a region of the nucleoporin, Nup358, between Ran-binding domains three and four. Together, these findings indicate that SUMO-1 modification targets RanGAP1 to the NPC by exposing, or creating, a Nup358 binding site in the COOH-terminal domain of RanGAP1. Surprisingly, the COOH-terminal domain of RanGAP1 was also found to harbor a nuclear localization signal. This nuclear localization signal, and the presence of nine leucine-rich nuclear export signal motifs, suggests that RanGAP1 may shuttle between the nucleus and the cytoplasm.  相似文献   

9.
10.
The infection of chickens with avian Hepatitis E virus (avian HEV) can be asymptomatic or induces clinical signs characterized by increased mortality and decreased egg production in adult birds. Due to the lack of an efficient cell culture system for avian HEV, the interaction between virus and host cells is still barely understood. In this study, four truncated avian HEV capsid proteins (ORF2-1 – ORF2-4) with an identical 338aa deletion at the N-terminus and gradual deletions from 0, 42, 99 and 136aa at the C-terminus, respectively, were expressed and used to map the possible binding site within avian HEV capsid protein. Results from the binding assay showed that three truncated capsid proteins attached to avian LMH cells, but did not penetrate into cells. However, the shortest construct, ORF2-4, lost the capability of binding to cells suggesting that the presence of amino acids 471 to 507 of the capsid protein is crucial for the attachment. The construct ORF2-3 (aa339-507) was used to study the potential binding of avian HEV capsid protein to human and other avian species. It could be demonstrated that ORF2-3 was capable of binding to QT-35 cells from Japanese quail and human HepG2 cells but failed to bind to P815 cells. Additionally, chicken serum raised against ORF2-3 successfully blocked the binding to LMH cells. Treatment with heparin sodium salt or sodium chlorate significantly reduced binding of ORF2-3 to LMH cells. However, heparinase II treatment of LMH cells had no effect on binding of the ORF2-3 construct, suggesting a possible distinct attachment mechanism of avian as compared to human HEV. For the first time, interactions between avian HEV capsid protein and host cells were investigated demonstrating that aa471 to 507 of the capsid protein are needed to facilitate interaction with different kind of cells from different species.  相似文献   

11.
The replicase protein nsP2 of Semliki Forest virus (SFV) has a 648RRR nuclear localization signal and is transported to the nucleus. SFV-RDR has a single amino acid change which disrupts this sequence and nsP2 nuclear transport. In BHK cells, SFV4 and SFV-RDR replicate to high titers, but SFV-RDR is less virulent in mice. We compared the replication of SFV4 and SFV-RDR in adult mouse brain. Both SFV4 and SFV-RDR were neuroinvasive following intraperitoneal inoculation. SFV4 spread rapidly throughout the brain, whereas SFV-RDR infection was confined to small foci of cells. Both viruses infected neurons and oligodendrocytes. Both viruses induced apoptosis in cultured BHK cells but not in the cells of the adult mouse brain. SFV-RDR infection of mice lacking alpha/beta interferon receptors resulted in widespread virus distribution in the brain. Thus, a component of the viral replicase plays an important role in the neuropathogenesis of SFV.  相似文献   

12.
Prosaposin, the precursor of four lysosomal cofactors required for the hydrolysis of sphingolipids, is transported to the lysosomes via the alternative receptor, sortilin. In this study, we identified a specific domain of 17 amino acids within the C terminus of prosaposin involved in binding to this sorting receptor. We generated six prosaposin deletion constructs and examined the effect of truncation by coimmunoprecipitation and confocal microscopy. The experiments revealed that the first half of the prosaposin C terminus (aa 524–540), containing a saposin-like motif, was required and necessary to bind sortilin and to transport it to the lysosomes. Based on this result, we introduced twelve site-directed point mutations within the first half of the C terminus. Although the interaction of prosaposin with sortilin was pH dependent, the mutation of hydrophilic amino acids that usually modulate pH-dependent protein interactions did not affect the binding of prosaposin to sortilin. Conversely, a tryptophan (W530) and two cysteines (C528 and C536) were essential for its interaction with sortilin and for its transport to the lysosomes. In conclusion, our investigation demonstrates that a saposin-like motif within the first half of the prosaposin C terminus contains the sortilin recognition site. (J Histochem Cytochem 58:287–300, 2010)  相似文献   

13.
The arenavirus nucleoprotein (NP) can suppress induction of type I interferon (IFN). This anti-IFN activity is thought to be shared by all arenaviruses with the exception of Tacaribe virus (TCRV). To identify the TCRV NP amino acid residues that prevent its IFN-countering ability, we created a series of NP chimeras between residues of TCRV NP and Pichinde virus (PICV) NP, an arenavirus NP with potent anti-IFN function. Chimera NP analysis revealed that a minimal four amino acid stretch derived from PICV NP could impart efficient anti-IFN activity to TCRV NP. Strikingly, the TCRV NP gene cloned and sequenced from viral stocks obtained through National Institutes of Health Biodefense and Emerging Infections (BEI) resources deviated from the reference sequence at this particular four-amino acid region, GPPT (GenBank KC329849) versus DLQL (GenBank NC004293), respectively at residues 389–392. When efficiently expressed in cells through codon-optimization, TCRV NP containing the GPPT residues rescued the antagonistic IFN function. Consistent with cell expression results, TCRV infection did not stimulate an IFNβ response early in infection in multiple cells types (e.g. A549, P388D1), and IRF-3 was not translocated to the nucleus in TCRV-infected A549 cells. Collectively, these data suggest that certain TCRV strain variants contain the important NP amino acids necessary for anti-IFN activity.  相似文献   

14.
Abstract: In common with other Gq protein-coupled receptors, the third intracellular loop of the cholecystokinin-B (CCK-B) receptor contains three basic amino acids (K333/K334/R335) at the C-terminal segment. To determine the importance of these conserved basic residues in Gq-protein activation and stimulation of phospholipase C, these basic amino acids were mutated. Subsequently, the ability of resulting mutant receptors to activate phospholipase C was investigated by measuring inositol phosphate formation in COS-7 cells and recording Ca2+-activated Cl? currents from Xenopus oocytes. Site-directed mutagenesis was performed to mutate the three basic amino acids, K333/K334/R335, to neutral amino acids, M333/T334/L335. When the resulting mutant CCK-B receptors were expressed in COS-7 cells and Xenopus oocytes, sulfated cholecystokinin octapeptide (CCK-8) failed to induce inositol phosphate formation in COS-7 cells and evoke Ca2+-activated Cl? currents from oocytes. Each basic amino acid was also mutated (K333M, K334T, and R335L). All three single-point mutations resulted in a significant reduction in CCK-8-induced inositol phosphate formation and CCK-8-activated Ca2+-dependent Cl? currents. It is interesting that substituting the basic amino acids, K333/K334/R335, with three other basic residues, R333/R334/K335, did not change the maximal CCK-8-simulated inositol phosphate formation and the amplitude of CCK-8-evoked Ca2+-dependent Cl? currents. Radioligand-binding studies showed that the above-mentioned mutations did not affect the affinity for CCK-8 and receptor expression level in COS-7 cells. These findings suggest that basic amino acids at the C-terminus of the third cytoplasmic loop are required for the signal transduction by CCK-B receptors.  相似文献   

15.
A型流感病毒NS1蛋白羧基端4个氨基酸可以与PDZ结构域(the domain of PSD95,Dig and ZO-1)相结合,称为PL结构域(PDZ ligand domain).对不同亚型或毒株的流感病毒而言,其NS1蛋白PL结构域的组成存在比较大的差异.有研究发现这种差异能够影响NS1与宿主细胞蛋白的相互作用进而影响病毒的致病力.为进一步探讨PL结构域对NS1蛋白生物学特性的影响,首先构建出4种不同亚型流感病毒(H1N1、H3N2、H5N1、H9N2)来源的NS1绿色荧光蛋白表达质粒.在此基础上,对野生型H3N2病毒NS1表达质粒进行人工改造,将其PL结构域缺失或者替换为其他亚型流感病毒的PL结构域,制备出4种重组NS1蛋白表达质粒.通过比较上述不同NS1蛋白在HeLa细胞中的定位情况发现,只有野生型H3N2病毒的NS1蛋白可以定位于核仁当中,而野生型H1N1、H5N1、H9N2病毒的NS1蛋白以及PL结构域缺失或替代的H3N2病毒NS1蛋白都不能定位于核仁.而通过比较上述NS1蛋白在流感病毒易感的MDCK细胞中的定位,进一步发现所有这些蛋白均不定位于核仁.上述结果表明:PL结构域的不同可以明显影响NS1蛋白在HeLa细胞核内的定位和分布,这有可能造成其生物学功能的差异.同时,NS1蛋白在细胞核内的定位还与宿主细胞的来源有着密切关系.  相似文献   

16.
17.
为了确定新城疫病毒融合蛋白(F)分子上活性位点中保守氨基酸在F蛋白的细胞融合作用,弄清F细胞融合的分子机理,采用基因定点突变法,创造一个酶切位点,用酶切反应初步筛选突变株,然后用DNA序列分析进一步确定,并于真核细胞内进行表达,Giemsa染色定性和指示基因法定量检测细胞融合功能,荧光强度分析(FACS)检测表达效率情况。结果表明,NDV F第117位苯丙氨酸(F)突变成亮氨酸(L)时对细胞融合作用没有显著影响。R112和K115同为保守序列,分别突变为G时,细胞融合活性只有原来的44%,下降了56%。细胞表面表达效率没有明显的改变。N147突变为K时,细胞融合活性明显下降,只有原来的15%,而细胞表面表达效率没有明显的改变。L154为保守序列,突变为K时,细胞融合活性消失,说明L154是一个非常关键的氨基酸,对维持F蛋白的细胞融合活性非常重要。细胞表面表达效率也有所下降(为原来的94%)。D462属于高度保守氨基酸,当突变为N时,细胞融合活性消失,但经细胞表面表达效率分析证明,此突变蛋白未表达于细胞表面,证明在细胞浆转运至细胞表面的过程中发生了问题。当突变为R和E时,细胞融合活性未发生改变,但细胞表面表达效率有所下降,分别为野毒株的63%和44%。说明NDV F分子上与HN相互作用的特异性区域中的某些保守氨基酸在细胞融合中发挥着重要作用,对F蛋白的折叠、加工、转运等,发挥着不同作用,从而影响F蛋白的细胞融合作用和/或在细胞表面的表达量。  相似文献   

18.
Nucleotide binding domain and leucine-rich repeat (NLR)-containing family proteins function as intracellular immune sensors in both plants and animals. In plants, the downstream components activated by NLR family proteins and the immune response mechanisms induced by these downstream molecules are largely unknown. We have previously found that the small GTPase OsRac1, which acts as a molecular switch in rice immunity, is activated by Pit, an NLR-type resistance (R) protein to rice blast fungus, and this activation plays critical roles in Pit-mediated immunity. However, the sites and mechanisms of activation of Pit in vivo remain unknown. To clarify the mechanisms involved in the localization of Pit, we searched for consensus sequences in Pit that specify membrane localization and found a pair of potential palmitoylation sites in the N-terminal coiled-coil region. Although wild-type Pit was localized mainly to the plasma membrane, this membrane localization was compromised in a palmitoylation-deficient mutant of Pit. The palmitoylation-deficient Pit displayed significantly lower affinity for OsRac1 on the plasma membrane, thereby resulting in failures of the Pit-mediated cell death, the production of reactive oxygen species, and disease resistance to rice blast fungus. These results indicate that palmitoylation-dependent membrane localization of Pit is required for the interaction with and the activation of OsRac1 and that OsRac1 activation by Pit is vital for Pit-mediated disease resistance to rice blast fungus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号