首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasminogen activators play an important role in synaptic plasticity associated with the crossed phrenic phenomenon (CPP) and recovery of respiratory function after spinal cord injury. A genetic approach using knockout mice lacking various genes in the plasminogen activator/plasmin system has shown that induction of urokinase plasminogen activator (uPA) is required during the first hour after a C2-hemisection for the acquisition of the CPP response. The uPA knockout mice do not show the structural remodeling of phrenic motor neuron synapses characteristic of the CPP response. As shown here uPA acts in a cell signaling manner via binding to its receptor uPAR rather than as a protease, since uPAR knockout mice or knock-in mice possessing a modified uPA that is unable to bind to uPAR both fail to generate a CPP and recover respiratory function. Microarray data and real-time PCR analysis of mRNAs induced in the phrenic motor nucleus after C2-hemisection in C57Bl/6 mice as compared to uPA knockout mice indicate a potential cell signaling cascade downstream possibly involving β-integrin and Src, and other pathways. Identification of these uPA-mediated signaling pathways may provide the opportunity to pharmacologically upregulate the synaptic plasticity necessary for recovery of phrenic motoneuron activity following cervical spinal cord injury.  相似文献   

2.
大鼠放射性脊髓损伤脊髓血流量变化规律   总被引:1,自引:0,他引:1  
目的:放射性脊髓损伤(Radiation spinal cord injury,RSCI)是头颈部、胸部及上腹部肿瘤放射治疗和射线意外照射时的常见并发症,一般认为,白质坏死、脱髓鞘为其主要的病理学变化.然而,越来越多的证据表明血-脊髓屏障破裂和血管通透性增加等血管损伤远早于白质坏死和脱髓鞘改变.所以本文阐明大鼠放射性脊髓损伤病理生理过程中脊髓血流量变化规律.方法:将60只Sprague-Dawley (SD)大鼠随机分为12组,1组为对照,其余11组采用60Co放射治疗机行30 Gy大鼠颈髓C2-T2单次照射,剂量率为153 cGy/min,源皮距为80 cm,照射时长为1153 s,照射范围为2.0× 1.0 cm,对照组大鼠于麻醉后置于60Co放射治疗机下,佯照,照射前及照射后分别采用激光多普勒法测量脊髓血流量,11组大鼠于照射前以及照射后1、3、7、14、21、30、60、90、120、150、180天进行测量,以照射前测量值为基数,各时间点以基数的百分比表示该时间点脊髓血流量.结果:大鼠放射性脊髓损伤后,脊髓血流量在照射早期即有降低,照射后90天达到最低,随后脊髓血流量进入平台期.结论:阐明了大鼠放射性脊髓损伤后脊髓血流量的变化规律.大鼠放射性脊髓损伤可影响脊髓血流量,导致脊髓长期处于持续低灌流、缺血缺氧状态,最终导致脊髓不可逆性损伤.临床上放射性脊髓损伤的病人感到疲乏无力,出现神经系统的症状体征,通常死于脑疝.本文为临床上疲乏无力,出现神经系统的症状体征,死于脑疝放射性脊髓损伤的病人的早期防治提供病理生理基础.  相似文献   

3.
Embryonic neural stem cell (ENSC) transplantation is used experimentally for the improvement of spinal cord repair following spinal cord injury (SCI). However, the effects of such intervention on oxidative stress and cell death remain unknown. We used in vivo Comet assay in the acute and chronic SCI groups compared with the SCI+ENSC transplantation groups of experimental rats in order to evaluate DNA damage in the spinal cord. Chronic SCI resulted in the generation of oxidative DNA damage in the spinal cord brain and kidneys, as indicated by high Comet assay parameters, including the percentage of DNA in the tail (T%, or TD), tail moment (TM), and tail length (TL). The DNA damage levels significantly decreased after ENSC transplantation in the spinal cords of acute and chronic SCI groups within the lesion site and rostrally and caudally to the injury, and in the brains and kidneys of the chronic SCI group. Thus, ENSC transplantation is found to be an effective tool for limitation of DNA damage following spinal cord injury.  相似文献   

4.
Jiang  Xingjie  Yu  Mingchen  Ou  Yiqing  Cao  Yong  Yao  Yu  Cai  Ping  Zhang  Feng 《Neurochemical research》2017,42(11):3245-3253
Neurochemical Research - NF-κB is involved in the activation of microglia, which induces secondary spinal cord injury (SCI). This process involves the activation of NF-κB signaling...  相似文献   

5.
Autophagy is an intracellular catabolic mechanism that maintains the balance of proteins, lipids and aging organelles. 3-Methyladenine (3-MA) is a selective inhibitor of autophagy, whereas rapamycin, an antifungal agent, is a specific inducer of autophagy, inhibiting the protein mammalian target of rapamycin. In the present study, we examined the role of autophagy, inhibited by 3-MA and enhanced by rapamycin, in a model of acute spinal cord injury in rats. We found that rapamycin could significantly increase the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin1 at the injury site. At the same time, the number of neurons and astrocytes with LC3 positive in the spinal cord was upregulated with time. In addition, administration of rapamycin produced an increase in the Basso, Beattie and Bresnahan scores of injured rats, indicating high recovery of locomotor function. Furthermore, expression of the proteins Bcl-2 and Bax was upregulated and downregulated, respectively. By contrast, the results for rats treated with 3-MA, which inhibits autophagy, were the opposite of those seen with the rapamycin-treated rats. These results show that induction of autophagy can produce neuroprotective effects in acute spinal cord injury in rats via inhibition of apoptosis.  相似文献   

6.
Wanjiang  Wu  Xin  Chen  Yaxing  Chen  Jie  Wang  Hongyan  Zhang  Fei  Ni  Chengmin  Ling  Chengjian  Feng  Jichao  Yuan  Jiangkai  Lin 《Cellular and molecular neurobiology》2022,42(4):1241-1252
Cellular and Molecular Neurobiology - Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) transplantation is thought to be a promising strategy for treating spinal cord injury...  相似文献   

7.
VEGF165 Therapy Exacerbates Secondary Damage Following Spinal Cord Injury   总被引:1,自引:0,他引:1  
Vascular endothelial growth factor (VEGF) demonstrates potent and well-characterized effects on endothelial cytoprotection and angiogenesis. In an attempt to preserve spinal microvasculature and prolong the endogenous neovascular response observed transiently following experimental spinal cord injury (SCI), exogenous recombinant human VEGF (rhVEGF165) was injected into the injured rat spinal cord. Adult female Fischer 344 rats were subjected to moderate SCI (12.5 g-cm) using the NYU impactor. At 72 h after injury, animals were randomly assigned to three experimental groups receiving no microinjection or injection of saline or saline containing 2 g of rhVEGF165. Acutely, VEGF injection resulted in significant microvascular permeability and infiltration of leukocytes into spinal cord parenchyma. 6 weeks postinjection, no significant differences were observed in most measures of microvascular architecture following VEGF treatment, but analysis of histopathology in spinal cord tissue revealed profound exacerbation of lesion volume. These results support the idea that intraparenchymal application of the proangiogenic factor VEGF may exacerbate SCI, likely through its effect on vessel permeability.  相似文献   

8.
Spinal cord injury (SCI) remains a formidable challenge in the clinic. In the current study, we examined the effects of the TLX gene on the proliferation and neuronal differentiation of dermal multipotent stem cells (DMSCs) in vitro and the potential of these cells to improve SCI in rats in vivo. DMSCs were stably transfected with TLX-expressing plasmid (TLX/DMSCs). Cell proliferation was examined using the MTT assay, and neuronal differentiation was characterized by morphological observation combined with immunocytochemical/immunofluorescent staining. The in vivo functions of these cells were evaluated by transplantation into rats with SCI, followed by analysis of hindlimb locomotion and post-mortem histology. Compared to parental DMSCs, TLX/DMSCs showed enhanced proliferation and preferential differentiation into NF200-positive neurons in contrast to GFAP-positive astrocytes. When the undifferentiated cells were transplanted into rats with SCI injury, TLX/DMSCs led to significant improvement in locomotor recovery and healing of SCI, as evidenced by reduction in scar tissues and cavities, increase in continuous nerve fibers/axons and enrichment of NF200-positive neurons on the histological level. In conclusion, TLX promotes the proliferation and neuronal differentiation of DMSCs and thus, may serve as a promising therapy for SCI in the clinic.  相似文献   

9.
Fbxo45 is an F-box protein that is restricted to the nervous system. Unlike other F-box proteins, Fbxo45 was found not to form an SCF complex as a result of an amino acid substitution in the consensus sequence for Cul1 binding. Proteomics analysis revealed that Fbxo45 specifically associates with PAM (protein associated with Myc), a RING finger-type ubiquitin ligase. Mice deficient in Fbxo45 were generated and found to die soon after birth as a result of respiratory distress. Fbxo45/ embryos show abnormal innervation of the diaphragm, impaired synapse formation at neuromuscular junctions, and aberrant development of axon fiber tracts in the brain. Similar defects are also observed in mice lacking Phr1 (mouse ortholog of PAM), suggesting that Fbxo45 and Phr1 function in the same pathway. In addition, neuronal migration was impaired in Fbxo45/ mice. These results suggest that Fbxo45 forms a novel Fbxo45-PAM ubiquitin ligase complex that plays an important role in neural development.Ubiquitin-dependent proteolysis is indispensable for various biological processes (3, 40). Protein ubiquitylation is mediated by several enzymes that act in concert, with a ubiquitin ligase (E3) playing a key role in substrate recognition (14). E3 enzymes contain specific structural motifs that mediate recruitment of a ubiquitin-conjugating enzyme (E2), with these motifs including HECT, RING finger, U-box, and PHD finger domains (30). The SCF complex consists of Skp1 (adaptor subunit), Cul1 (scaffold subunit), an F-box protein (substrate recognition subunit), and Rbx1 (also known as Roc1 or Hrt1; RING finger-containing subunit). Whereas Skp1, Cul1, and Rbx1 are common to all SCF complexes, the F-box protein is variable (with ∼70 such proteins having been identified in humans) and confers substrate specificity.Fbxo45 is an F-box protein that was originally isolated as an estrogen-induced protein (47). Human and mouse Fbxo45 genes comprise three exons and possess several consensus binding sequences for the estrogen receptor in the promoter region. Fbxo45 mRNA is rapidly induced on exposure of MCF-7 cells to 17β-estradiol (47). FSN-1, the Caenorhabditis elegans ortholog of Fbxo45, binds to RPM-1 (regulator of presynaptic morphology 1) together with CUL-1 and SKR-1, the C. elegans orthologs of mammalian Cul1 and Skp1, respectively (21, 46). RPM-1 belongs to an evolutionarily conserved family of proteins (the PHR family) that include Highwire (HIW) (Drosophila melanogaster), Esrom (Danio rerio), Phr1 (Mus musculus), and protein associated with Myc (PAM) (Homo sapiens), each of which contains a RING-finger domain that is required for its E3 activity (7, 20, 21, 27, 44). Complete loss of function of fsn-1 in C. elegans results in defects that are characterized by the simultaneous presence of overdeveloped and underdeveloped neuromuscular junctions (NMJs) and which are similar to, but not as pronounced as, those observed in rpm-1/ mutants. These genetic findings support the notion that the functions of FSN-1 and RPM-1 are partially overlapping (21).Although PHR family members interact with many potential targets (11, 24, 26, 31), genetic data have shown that one key substrate of RPM-1 and HIW is the mitogen-activated protein kinase kinase kinase known as DLK (dual leucine zipper kinase) in C. elegans and known as Wallenda in D. melanogaster, respectively. The abundance of this kinase is increased in rpm-1 or hiw mutants, and synaptic defects in the mutant worms and flies are suppressed by a loss of DLK or Wallenda. Furthermore, an increase in the level of DLK or Wallenda is sufficient to phenocopy the synaptic defects of the rpm-1 or hiw mutants (5, 27). PAM has also been shown to catalyze the ubiquitylation of tuberin (TSC2) and to regulate signaling by mTOR (mammalian target of rapamycin) in human cells (12).To elucidate the physiological functions of Fbxo45 in mammals, we have now generated mice deficient in this protein. Analysis of the mutant mice revealed that Fbxo45 is required for normal neuromuscular synaptogenesis, axon pathfinding, and neuronal migration. Moreover, we found that Fbxo45 does not form an authentic SCF complex as a result of an amino acid substitution in the F-box domain, and we identified PAM as a binding partner of Fbxo45. The phenotype of Fbxo45/ mice was found to be similar to that of Phr1/ mice, especially with regard to the defects of neuromuscular synapse formation and of axon navigation. Our results indicate that three fundamental processes of neural development— axonal projection, synapse formation, and neuronal migration—may be linked by a common machinery consisting of the Fbxo45-Phr1 complex.  相似文献   

10.
Demyelination due to oligodendrocytes loss occurs after traumatic spinal cord injury (TSCI). Several studies have suggested the therapeutic potential of vitamin D (VitD) in demyelinating diseases. However, experimental evidence in the context of TSCI is limited, particularly in the presence of prior VitD-deficiency. In the present study, a contusion and a transection TSCI rat model were used, representing mild and severe injury, respectively. Motor recovery was assessed in rats with normal VitD level or with VitD-deficiency after 8 weeks'' treatment post-TSCI (Cholecalciferol, 500 IU/kg/day). The impact on myelin integrity was examined by transmission electron microscopy and studied in vitro using primary culture of oligodendrocytes. We found that VitD treatment post-TSCI effectively improved hindlimb movement in rats with normal VitD level irrespective of injury severity. However, cord-transected rats with prior deficiency did not seem to benefit from VitD supplementation. Our data further suggested that having sufficient VitD was essential for persevering myelin integrity after injury. VitD rescued oligodendrocytes from apoptotic cell death in vitro and enhanced their myelinating ability towards dorsal root axons. Enhanced myelination was mediated by increased oligodendrocyte precursor cells (OPCs) differentiation into oligodendrocytes in concert with c-Myc downregulation and suppressed OPCs proliferation. Our study provides novel insights into the functioning of VitD as a regulator of OPCs differentiation as well as strong preclinical evidence supporting future clinical testing of VitD for TSCI.  相似文献   

11.
脊髓损伤后的常规治疗手段是在有效时间内进行手术缓减外力压迫,防止脊髓神经进一步受损。细胞替代治疗理论上可治愈脊髓损伤,不同类型细胞可从各角度产生治疗作用,包括损伤后的脊髓轴突再生、神经元再建和轴突髓鞘化等,进而促进功能恢复。对近年来干细胞治疗脊髓损伤研究中的最新结果进行了概述,以期为干细胞治疗脊髓损伤的研究提供参考。  相似文献   

12.
13.
14.
15.
Src-associated in mitosis (Sam68; 68 kDa) is a novel RNA-binding protein that belongs to the signal transduction and activation of RNA family involved in various biological processes. However, the expression and roles of Sam68 in the central nervous system remain unknown. In the present study, we performed a spinal cord injury (SCI) model in adult rats and found a significant increase of Sam68 protein levels in this model, which reached a peak at day 3 and then gradually returned to normal levels at day 14 after SCI. We use immunohistochemistry analysis revealing a widespread distribution of Sam68 in the spinal cord. In addition, double-immunofluorescence staining showed that Sam68 immunoreactivity was found predominantly in neurons and astrocytes. Moreover, colocalization of Sam68/active caspase-3 has been respectively detected in neuronal nuclei, and colocalization of Sam68/PCNA has been detected in glial fibrillary acidic protein. In vitro, we found that depletion of Sam68 by short interfering RNA inhibits neuronal apoptosis and astrocyte proliferation and decreases cyclin D1 protein levels. In conclusion, this is the first study to find the Sam68 expression in SCI. Our results suggest that Sam68 might be illustrated in the apoptosis of neurons and proliferation of astrocytes after SCI. This research will provide new drug targets for clinical treatment of SCI.  相似文献   

16.
《Cell metabolism》2020,31(3):623-641.e8
  1. Download : Download high-res image (201KB)
  2. Download : Download full-size image
  相似文献   

17.
Tumor necrosis factor receptor-associated factor 2 (TRAF2) for signal transduction of the cell death receptor is well established. However, the role of TRAF2 in spinal cord injury (SCI) remains unclear. In this study, we detected the dynamic change patterns of TRAF2 expression using an acute spinal cord contusion (SCC) model in adult rats. Western blot analysis and immunohistochemistry identified significant upregulation of TRAF2 after SCI. Double-immunofluorescent staining demonstrated that the upregulated TRAF2 was found predominantly in neurons. Moreover, colocalization of TRAF2 with active caspase-3/-8 was detected in NeuN-positive cells. In vitro, we analyzed the association of TRAF2 with active caspase-3/8 on PC12 cells by western blot analysis, which paralleled the in vivo data. Knockdown ofTRAF2 with siRNA demonstrated its probable anti-apoptotic role in the process of neuronal apoptosis after SCI. To summarize, we have revealed for the first time the temporal and spatial expression profile of TRAF2 in SCI. Our data suggest that upregulation of TRAF2 triggered by trauma plays an important role in suppressing neuronal apoptosis after SCI.  相似文献   

18.
Following trauma of the adult brain or spinal cord the injured axons of central neurons fail to regenerate or if intact display only limited anatomical plasticity through sprouting. Adult cortical neurons forming the corticospinal tract (CST) normally have low levels of the neuronal calcium sensor-1 (NCS1) protein. In primary cultured adult cortical neurons, the lentivector-induced overexpression of NCS1 induces neurite sprouting associated with increased phospho-Akt levels. When the PI3K/Akt signalling pathway was pharmacologically inhibited the NCS1-induced neurite sprouting was abolished. The overexpression of NCS1 in uninjured corticospinal neurons exhibited axonal sprouting across the midline into the CST-denervated side of the spinal cord following unilateral pyramidotomy. Improved forelimb function was demonstrated behaviourally and electrophysiologically. In injured corticospinal neurons, overexpression of NCS1 induced axonal sprouting and regeneration and also neuroprotection. These findings demonstrate that increasing the levels of intracellular NCS1 in injured and uninjured central neurons enhances their intrinsic anatomical plasticity within the injured adult central nervous system.  相似文献   

19.
Myelin-derived proteins, such as tenascin-R (TN-R), myelin associate glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), and Nogo-A, inhibit the central nervous system regeneration. In this study, the DNA vaccine encoding for oligodendrocyte and myelin-related antigens was employed to attenuate the axonal growth inhibitory properties of myelin in the setting of spinal cord injury. Using a rat spinal cord dorsal hemisection model, the vaccine directed against the inhibitory epitopes of Nogo-A, MAG, OMgp, and TN-R was administered intramuscularly once a week following spinal cord injury, supplemented with local application of specific anti-sera against the four antigens. Anterograde labeling of dorsal column fibers showed active axonal regeneration through the lesion site at the eighth week following the treatment in experimental group but not in control groups. Light microscopic and ultrastructural analysis revealed that vaccination with these myelin-related antigens did not lead to demyelinating disease. OMgp and TN-R levels were down-regulated at the lesion site together with a parallel increase in growth-associated protein 43 levels in the treatment groups. This study reveals the effective approach of a DNA vaccine strategy by attaining the special antibody to direct neutralization of the myelin inhibitors during spinal cord injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号