首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Activity of animals is influenced by ambient temperature and increasing temperatures brought about by climate change may impose a heat stress risk. Previous studies investigating the effect of heat waves on activity usually measure animals at different, but constant temperatures, however, rarely are they studied under a natural temperature cycle. General activity, behavioural flexibility and frequency of water drinking counts during a normal day, hot day and a simulated heat wave temperature cycle were studied in the crepuscular four-striped field mouse, Rhabdomys dilectus, and the nocturnal Namaqua rock mouse, Micaelamys namaquensis. Both R. dilectus and M. namaquensis showed typical daily locomotor activity under control conditions. During the heat wave, peak activity times changed for R. dilectus, but both species exhibited higher bouts of activity for the heat wave during the day compared to the control, which was accompanied by an increased amount of time spent drinking water. The increased activity during the heat wave is likely due to enhanced water requirements and potentially a form of behavioural thermoregulation as animals may be uncomfortable and try to move to cooler areas. Thus, in the absence of a typical microclimate, access to water may allow rodents to overcome heat stress from extreme temperatures without having to shift their temporal active times.  相似文献   

2.
Due to ongoing climate change, short-term extreme heat waves in the summer are expected to be more frequent. Insect eggs are sensitive to thermal stress. This raises the question of whether herbivore insects' thermal adaptability would be changed after a single extreme heat wave at the egg stage. In this study, we examined the developmental performance of Ostrinia furnacalis Guenée at 25?°C, 27?°C, 29?°C or 31?°C after a single extreme heat wave (42?°C) for 0?h (control), 1?h, 2?h, or 3?h at the egg stage. The results showed that O. furnacalis at the egg or larval stage was more sensitive to a single heat wave than it was at the pupae or adult stage. After a single heat wave, O. furnacalis showed a reduced egg-hatching rate or reduced larval survival rate, but the optimum temperature for egg hatching and larval survival was higher than that in the control. The upper temperature threshold and optimum temperature for larval development in the control were higher than that after a single extreme heat wave. Both male and female pupal weight decreased with increasing temperature, and pupal weight decreased faster in females than in males. The Cox proportional hazard model showed that when O. furnacalis developed at 25?°C, the instantaneous death risk of adults with a 3?h heat wave at the egg stage was higher than that of the control, but when O. furnacalis developed at 29?°C and 31?°C, the instantaneous death risk of adults after a heat wave was significantly lower than that of the control. Our study highlights the effect of a single heat wave on O. furnacalis eggs and the subsequent development of survival individuals.  相似文献   

3.
Climate-change induced shifts in species’ temporal and geographic niches have been well documented, while plastic and genetic responses to climatic change have received much less attention. Plastic responses to changes in temperature are generally well understood, though most experimental studies to date have used constant temperature regimes, the reliability of which is under debate. We here investigate plastic responses in the widespread butterfly Pieris napi to simulated climate change, using ecologically realistic diurnal temperature cycles and current and predicted temperature regimes including effects of a heat wave. Increasing the temperature mean by 3 °C predominantly affected developmental times, cold resistance and adult life span, while an increase in the diurnal temperature amplitude had very little effects. Immune function responded only weakly to different thermal regimes. The simulation of a prolonged heat wave severely impaired juvenile survival, body size and longevity, supporting the wide-held notion that extreme weather events will be much more important for species’ performance and local survival than moderate increases in temperature means. Given that the frequency of extreme weather events is predicted to increase with climate change, even widespread species may be negatively affected.  相似文献   

4.
Heat waves, which are projected to be more frequent and intense in a warmer climate, could become a serious threat to plants that rely on water surplus availability, such as bryophytes. Here, I take the advantage of the European summer 2003 climate anomaly to assess the impact of an extreme heat wave on peat mosses of the genus Sphagnum, a group of bryophytes forming the bulk of living and dead biomass in peatlands. With this aim, 20 selected bogs in the Italian Alps were checked for Sphagnum survival in the years following the heat wave. Over the study area, the period May–September 2003 was characterized by higher mean monthly air temperature (13.5 °C) and lower mean monthly precipitation (87 mm) compared with normal climatic conditions (11.5 °C and 117 mm, respectively) so that the heat wave coincided with a drought spell. As a consequence of the unusual water stress, I documented an increased mortality of peat mosses forming high hummocks. In particular, at habitat scale, the distribution of desiccated peat mosses was restricted to the hummock face receiving the greatest amount of solar irradiation. However, at regional scale, the present study identified a climatic threshold, simply defined by the ratio of precipitation to temperature (P : T), which triggered an irreversible desiccation of peat mosses when mean monthly P : T dropped below 6.5 (mm : °C) during May–September 2003. The absence of any sign of recovery after 4 years since the drought must be seen as a harbinger of the deleterious effects of extreme heat waves on organisms not adapted to cope with abrupt climate anomaly.  相似文献   

5.
Heat wave frequency and intensity are predicted to increase. We investigated whether repeated exposure to heat waves would induce acclimation in Quercus rubra seedlings and considered [CO2] as an interacting factor. We measured gas exchange and chlorophyll fluorescence of seedlings grown in 380 (C A) or 700 (C E) μmol CO2 mol?1, and three temperature treatments (ambient, ambient +3 °C, and an ambient +12 °C heat wave every fourth week). Measurements were performed during the third and fourth +12 °C heat waves (July and August 2010) at Whitehall Forest, GA, USA. Additionally, previously unexposed seedlings were subjected to the August heat wave to serve as a control to determine acclimation of seedlings which were previously exposed. Seedlings with a history of heat wave exposure showed lower net photosynthesis (A net) and stomatal conductance (on average ?47 and ?38 %, respectively) than seedlings with no such history, when both were subjected to the same +12 °C heat wave. During both heat waves, A net significantly declined in the +12 °C treatment compared with the other treatments. Additionally, the A net decline during the August compared with the July heat wave was stronger in C E than in C A, suggesting that elevated [CO2] might have had a negative effect on acclimation capacity. We conclude that seedlings subjected to consecutive heat waves will moderate stomatal conductance outside the heat wave, to reduce water usage at lower temperatures, increasing survival at the expense of carbon assimilation.  相似文献   

6.
The Mediterranean land snail Xeropicta derbentina forms huge populations in Southern France. In order to characterize heat exposure and the induction of the 70-kD heat shock protein (Hsp70) response system during the life cycle of this snail, a selected population from the Vaucluse area, Provence, was investigated encompassing the issues of morphological life cycle parameters (shell size and colouration), the daily courses of heat exposure at different heights above the ground, of shell temperature, and that of the individual Hsp70 levels. The study covered all four seasons of the year 2011. Snails were found to be annual, reaching their final size in August. The shell colouration pattern showed high variation in juveniles (spring) with a strong tendency towards becoming uniformly white at old age in autumn. In all seasons, ambient air temperature decreased with increasing distance from the ground surface during daytime while remaining constantly low in the night. Overall, the Hsp70 level of individuals followed the ambient temperature during diurnal and seasonal variations. Correlation analysis revealed a positive association of individual shell temperature and Hsp70 level for the most part of the life cycle of the snails until late summer, whereas a negative correlation was found for aged animals indicating senescence effects on the capacity of the stress response system.  相似文献   

7.
The monitoring of the status and distribution of seabird populations is necessary to understand their spatial and temporal responses to rapid climate changes occurring in the Western Antarctic Peninsula area. We surveyed and mapped Admiralty Bay bird communities and related them to climate variables—temperature, temperature anomaly, Antarctic Oscillation Index and El-Niño Southern Oscillation Index. We recorded 13 breeding seabird species over three seasons (2009/2010, 2010/2011 and 2011/2012) and mapped 10 of them over an area of 149.5 ha. The ice-free areas with the greatest number of species were Point Thomas, Keller Peninsula and Hennequin Point. The most abundant species was the Adelie Penguin (Pygoscelis adeliae) followed by the Chinstrap Penguin (P. antarcticus). We observed that the number of breeding pairs of Gentoo Penguins (P. papua), Chinstrap Penguins and skuas (Catharacta maccormicki and C. antarctica) are related to temperature, temperature anomaly and El-Niño Southern Oscillation Index. The size of breeding populations and their distributions have been fluctuating over the last 30 years in ice-free areas of Admiralty Bay. Most species showed a decreasing trend from 1978 to 2012, with the exception of Chinstrap Penguins, Southern Giant Petrels (Macronectes giganteus) and skuas, which seem to be stable in numbers in the last two decades. Decreases in seabird populations from the Antarctic Peninsula are widely recognized as a response to environmental change and anthropogenic influences such as tourism and building activities, thus highlighting the importance of monitoring to support mitigation measures.  相似文献   

8.
Calcium-permeable and thermosensitive transient receptor potential (TRP) channels mediate the nociceptive transduction of noxious temperature in Drosophila nociceptors. However, the underlying molecular mechanisms are not completely understood. Here we find that Subdued, a calcium-activated chloride channel of the Drosophila anoctamin family, functions in conjunction with the thermo-TRPs in thermal nociception. Genetic analysis with deletion and the RNAi-mediated reduction of subdued show that subdued is required for thermal nociception in nociceptors. Further genetic analysis of subdued mutant and thermo-TRP mutants show that they interact functionally in thermal nociception. We find that Subdued expressed in heterologous cells mediates a strong chloride conductance in the presence of both heat and calcium ions. Therefore, our analysis suggests that Subdued channels may amplify the nociceptive neuronal firing that is initiated by thermo-TRP channels in response to thermal stimuli.  相似文献   

9.
With advancing global climate change, the analysis of thermal tolerance and evolutionary potential is important in explaining the ecological adaptation and changes in the distribution of invasive species. To reveal the variation of heat resistance and evolutionary potential in the invasive Mediterranean cryptic species of Bemisia tabaci, we selected two Chinese populations—one from Harbin, N China, and one from Turpan, S China—that experience substantial heat and cold stress and conducted knockdown tests under static high- and low-temperature conditions. ANOVAs indicated significant effects of populations and sex on heat knockdown time and chill coma recovery time. The narrow-sense heritability (h 2) estimates of heat tolerance based on a parental half-sibling breeding design ranged from 0.47±0.03 to 0.51±0.06, and the estimates of cold tolerance varied from 0.33±0.07 to 0.36±0.06. Additive genetic variances were significantly different from zero for both heat and cold tolerance. These results suggest that invasive B. tabaci Mediterranean cryptic species possesses a strong ability to respond to thermal selection and develops rapid resistance to climate change.  相似文献   

10.
1. Climate change has affected zooplankton phenology and abundance in many freshwater ecosystems. The strong temperature anomalies that characterise summer heat waves make these events particularly suitable to study the effects of different seasonal warming patterns on zooplankton. Since heat waves are expected to occur more frequently under continuing climate change, they may also allow us to investigate how freshwater systems will be affected in the future. 2. Using a long‐term data set (1991–2007) from a shallow, eutrophic lake in Germany, we identify time periods in spring and summer during which cyclopoid copepods and bosminids are particularly sensitive to changes in water temperature. Based on this knowledge, we consider why summer populations responded differently to recent heat wave events that occurred at different times in the season. 3. Linear regressions of moving averages suggested that water temperatures shortly before and shortly after the clear‐water phase (CWP) were crucial for summer development of bosminids and cyclopoid copepods, respectively. Algal food availability (diatoms and cryptophytes) in the first weeks after the CWP also strongly influenced the summer populations of the two zooplankton groups. 4. Inter‐annual differences in water temperature during the critical time periods at least partly explained the contrasting responses of cyclopoid copepods and bosminids to heat wave events. 5. Our findings indicate that the zooplankton response to climate warming, particularly to heat wave events, is critically dependent on the temporal pattern of elevated water temperatures. Beyond that, we show that the summer zooplankton populations react to periods of warming in relation to events in the plankton annual cycle (such as the CWP in eutrophic lakes) rather than to warming at a fixed time in the season.  相似文献   

11.
1. Heat does not sensitize paramecia to ultraviolet light but ultraviolet light sensitizes them to heat. Paramecia of two species (Paramecium caudatum and P. multimicronucleate) are much more readily killed by heat at 42.3° C. if they are first exposed to ultraviolet light. 2. From studies on paramecia irradiated with a given dosage at various wave lengths before being killed by heat, an action spectrum of the compound in the protoplasm being sensitized to heat can be determined. Proteins with absorption similar to that of pseudoglobulin are suggested by these experiments. 3. The effect upon living things differs from that on pure protein systems in that paramecia are not rendered more sensitive to temperatures below the lethal temperature whereas proteins are. 4. Almost complete recovery from ultraviolet light as judged by heat sensitivity occurs within 4 to 5 days. 5. By a study of the rate of recovery from doses at different wave lengths evidence suggesting effects on nucleic acid is obtained. 6. The possible significance of the data and the action spectrum is discussed.  相似文献   

12.
We report on the numerically and analytically investigated plasmonic and photothermal responses of a nanomatryushka structure composed of silver concentric nanoshells which exhibited strong plasmon resonance localization in the optical frequencies. Illuminating an isolated silver nanomatryushka in an aqueous system, we calculated the photothermal response of the structure and quantified the absorbed optical power and generated photothermal heat. In addition, it is shown that a couple of nanomatryushka structures as a symmetric molecular dimer in weak and strong coupling regimes are able to support strong plasmon resonances in the visible to the near-infrared region. Utilizing strong near-field coupling in the metallic nanostructures and hybridization of plasmons, and also employing silver as a highly absorptive material at the visible spectrum, we increased the energy dissipation per unit volume almost three orders of magnitude in comparison to the other analogous subwavelength structures. Employing numerical methods, we showed that a symmetric metallic nanomatryushka dimer is able to generate enough photothermal heat which could result in a remarkable amount of temperature change (ΔT?=?140 K) at the picosecond time scale. According to hybridization theory, the symmetric dimer is able to support strong bonding and antibonding plasmon resonant modes. Utilizing concentric nanoshells with high geometrical tunability facilitates using all of the surfaces and center of nanoparticles to generate heat with a large temperature change within a short relaxation time. This understanding opens new avenues to utilize simple nanoparticle orientations to generate significant heat power in an extremely short time scale for cancer therapy, photothermal therapy, and biological applications.  相似文献   

13.
Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open‐air field experiment. Five separate heat waves were applied to field‐grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high‐temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high‐temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave‐induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures.  相似文献   

14.
Peters anomaly is a rare form of anterior segment ocular dysgenesis, which can also be associated with additional systemic defects. At this time, the majority of cases of Peters anomaly lack a genetic diagnosis. We performed whole exome sequencing of 27 patients with syndromic or isolated Peters anomaly to search for pathogenic mutations in currently known ocular genes. Among the eight previously recognized Peters anomaly genes, we identified a de novo missense mutation in PAX6, c.155G>A, p.(Cys52Tyr), in one patient. Analysis of 691 additional genes currently associated with a different ocular phenotype identified a heterozygous splicing mutation c.1025+2T>A in TFAP2A, a de novo heterozygous nonsense mutation c.715C>T, p.(Gln239*) in HCCS, a hemizygous mutation c.385G>A, p.(Glu129Lys) in NDP, a hemizygous mutation c.3446C>T, p.(Pro1149Leu) in FLNA, and compound heterozygous mutations c.1422T>A, p.(Tyr474*) and c.2544G>A, p.(Met848Ile) in SLC4A11; all mutations, except for the FLNA and SLC4A11 c.2544G>A alleles, are novel. This is the first study to use whole exome sequencing to discern the genetic etiology of a large cohort of patients with syndromic or isolated Peters anomaly. We report five new genes associated with this condition and suggest screening of TFAP2A and FLNA in patients with Peters anomaly and relevant syndromic features and HCCS, NDP and SLC4A11 in patients with isolated Peters anomaly.  相似文献   

15.
Temperature variation is an important factor determining the outcomes of interspecific interactions, including those involving hosts and parasites. This can apply to variation in average temperature or to relatively short but intense bouts of extreme temperature. We investigated the effect of heat shock on the ability of aphids (Aphis fabae) harbouring protective facultative endosymbionts (Hamiltonella defensa) to resist parasitism by Hymenopteran parasitoids (Lysiphlebus fabarum). Furthermore, we investigated whether heat shocks can modify previously observed genotype-by-genotype (G x G) interactions between different endosymbiont isolates and parasitoid genotypes. Lines of genetically identical aphids possessing different isolates of H. defensa were exposed to one of two heat shock regimes (35°C and 39°C) or to a control temperature (20°C) before exposure to three different asexual lines of the parasitoids. We observed strong G x G interactions on parasitism rates, reflecting the known genetic specificity of symbiont-conferred resistance, and we observed a significant G x G x E interaction induced by heat shocks. However, this three-way interaction was mainly driven by the more extreme heat shock (39°C), which had devastating effects on aphid lifespan and reproduction. Restricting the analysis to the more realistic heat shock of 35°C, the G x G x E interaction was weaker (albeit still significant), and it did not lead to any reversals of the aphid lines'' susceptibility rankings to different parasitoids. Thus, under conditions feasibly encountered in the field, the relative fitness of different parasitoid genotypes on hosts protected by particular symbiont strains remains mostly uncomplicated by heat stress, which should simplify biological control programs dealing with this system.  相似文献   

16.
The genotypic response of wheat cultivars as affected by two methods of heat stress treatment (treatment of intact plants in growth chambers versus treatment of detached leaves in test tubes) in a temperature controlled water bath were compared to investigate how such different methods of heat treatment affect chlorophyll fluorescence parameters. A set of 41 spring wheat cultivars differing in their maximum photochemical efficiency of photosystem (PS) II (Fv/Fm) under heat stress conditions was used. These cultivars were previously evaluated based on the heat treatment of intact plants. The responses of the same cultivars to heat stress were compared between the two methods of heat treatment. The results showed that in detached leaves, all of the fluorescence parameters remained almost unaffected in control (20 °C at all durations tested), indicating that the detachment itself did not affect the fluorescence parameters. In contrast, heat induced reduction in the maximum photochemical efficiency of PSII of detached leaves occurred within 2 h at 40 °C and within 30 min at 45 °C, and the response was more pronounced than when intact plants were heat stressed for three days at 40 °C. The proportion of total variation that can be ascribed to the genetic differences among cultivars for a trait was estimated as genetic determination. During heat treatment, the genetic determination of most of the fluorescence parameters was lower in detached leaves than in intact plants. In addition, the correlation of the cultivar response in intact plants versus detached leaves was low (r = 0.13 (with expt.1) and 0.02 with expt.2). The most important difference between the two methods was the pronounced difference in time scale of reaction, which may indicate the involvement of different physiological mechanisms in response to high temperatures. Further, the results suggest that genetic factors associated with cultivar differences are different for the two methods of heat treatment.  相似文献   

17.
During recent decades, many species have responded to global warming by poleward range expansions. We require a better mechanistic understanding of the nature and extent of such processes to assess how climate change might affect biodiversity. Wing-dimorphic bush-crickets are excellent objects to study dispersal and colonization processes at the range margin because the long-winged morphs (macropters) represent dispersal units of otherwise flightless species. Moreover, these insects produce noisy songs and can easily be mapped. The present study comprised a detailed investigation of the population dynamics and genetics at the edge of the range of Roesel's bush-cricket, Metrioptera roeselii . We mapped the distribution of this insect in a previously unoccupied area of 185 km2 and examined the genetic structure at the range margin using four polymorphic microsatellite loci. The results obtained demonstrate that the European heat wave in 2003 induced a strong immigration of macropters in the area stemming from multiple sources, whereas only few immigrants were recorded in the two subsequent years. Macropters were genotyped in a distance of up to 19.1 km from their origin, considerably exceeding the known dispersal distances for this species. Moreover, the data show that strong local founder effects are equalized on a large scale by the high number of immigrants from multiple sources. The present study demonstrates that macropters are of high significance for the range expansion of wing-dimorphic insects because a single-year climatic anomaly can induce strong dispersal processes.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 118–127.  相似文献   

18.
全球变暖背景下,亚热带地区极端气候热浪事件发生频率持续增加。高频热浪及其伴随的高温和干旱复合胁迫将严重影响植物的光合特性,抑制植物的生长,甚至造成死亡。然而,目前亚热带树木光合特性及生长对高频热浪及复合胁迫的响应仍不明确。以亚热带阔叶树种闽楠苗木为研究对象进行了热浪模拟实验,关注了补水和控水处理不同水分环境下连续热浪对闽楠光合特性及生长速率的影响。结果表明,补水处理下闽楠净光合速率(Pn)在单次热浪影响下显著下降了34%,同时水分利用效率显著(WUE)下降,但蒸腾速率(Tr)、气孔导度(Gs)和叶片水汽压亏缺(Leafvpd)显著上升(P<0.05)。表明水分充沛的高温环境中闽楠可通过增加蒸腾耗水加速水分蒸散来调节叶片的温度,增强植株光合特性对热浪的抗性。而控水处理下单次热浪处理组Tr和Gs未显著上升,以及Tr与Leafvpd在干湿环境下线性拟合的不同斜率,说明水分胁迫会降低叶片降温的效率,加剧热浪对闽楠光合特性的影响。水分和高温的复合胁迫还延长了闽楠光合特性在热浪后的恢复过程,高温胁迫下闽楠Pn在15 d后恢复至未干扰水平,但复合胁迫...  相似文献   

19.
Climate change can benefit individual species, but when pest species are enhanced by warmer temperatures agricultural productivity may be placed at greater risk. We analyzed the effects of temperature anomaly on arrival date and infestation severity of potato leafhopper, Empoasca fabae Harris, a classic new world long distance migrant, and a significant pest in several agricultural crops. We compiled E. fabae arrival dates and infestation severity data at different states in USA from existing literature reviews and agricultural extension records from 1951–2012, and examined the influence of temperature anomalies at each target state or overwintering range on the date of arrival and severity of infestation. Average E. fabae arrival date at different states reveal a clear trend along the south-north axis, with earliest arrival closest to the overwintering range. E. fabae arrival has advanced by 10 days over the last 62 years. E. fabae arrived earlier in warmer years in relation to each target state level temperature anomaly (3.0 days / °C increase in temperature anomaly). Increased temperature had a significant and positive effect on the severity of infestation, and arrival date had a marginal negative effect on severity. These relationships suggest that continued warming could advance the time of E. fabae colonization and increase their impact on affected crops.  相似文献   

20.
The consequences of variations in environmental temperature on innate immune responses in birds are by and large not known. We investigated the influence of ambient temperature on the febrile response in female Pekin ducks (Anas platyrhynchos). Ducks, implanted with temperature data loggers to measure body temperature, were injected with lipopolysaccharide (100 μg kg−1) to evoke febrile responses and kept at ambient temperatures higher, within, and lower than their thermoneutral zone (n=10), and in conditions that simulated one day of a heat wave (n=6). Compared to the febrile response at thermoneutrality, at low temperatures, febrile responses were significantly attenuated; fevers reached lower magnitudes (from basal body temperature of 41.2±0.3 °C to a peak of 42.0±0.3 °C). In contrast, at high ambient temperatures, ducks rapidly developed significantly enhanced fevers, which reached markedly higher febrile peaks (from basal body temperature of 41.6 °C to a peak of 44.0 °C in a simulated heat wave when ambient temperature reached 40 °C). These results indicate that ambient temperature affects the febrile response in female Pekin ducks. Our findings reveal a key difference in febrile mediation between ducks and mammals, and have implications for avian survival because high environmental temperatures during febrile mediation could lead to febrile responses becoming physiologically deleterious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号