首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

The mdx mouse has proven to be useful in understanding the cardiomyopathy that frequently occurs in muscular dystrophy patients. Here we employed a comprehensive array of clinically relevant in vivo MRI techniques to identify early markers of cardiac dysfunction and follow disease progression in the hearts of mdx mice.

Methods and Results

Serial measurements of cardiac morphology and function were made in the same group of mdx mice and controls (housed in a non-SPF facility) using MRI at 1, 3, 6, 9 and 12 months after birth. Left ventricular (LV) and right ventricular (RV) systolic and diastolic function, response to dobutamine stress and myocardial fibrosis were assessed. RV dysfunction preceded LV dysfunction, with RV end systolic volumes increased and RV ejection fractions reduced at 3 months of age. LV ejection fractions were reduced at 12 months, compared with controls. An abnormal response to dobutamine stress was identified in the RV of mdx mice as early as 1 month. Late-gadolinium-enhanced MRI identified increased levels of myocardial fibrosis in 6, 9 and 12-month-old mdx mice, the extent of fibrosis correlating with the degree of cardiac remodeling and hypertrophy.

Conclusions

MRI could identify cardiac abnormalities in the RV of mdx mice as young as 1 month, and detected myocardial fibrosis at 6 months. We believe these to be the earliest MRI measurements of cardiac function reported for any mice, and the first use of late-gadolinium-enhancement in a mouse model of congenital cardiomyopathy. These techniques offer a sensitive and clinically relevant in vivo method for assessment of cardiomyopathy caused by muscular dystrophy and other diseases.  相似文献   

2.

Background

Healing after acute myocardial infarction (AMI) is characterized by an intense inflammatory response and increased Interleukin-1 (IL-1) tissue activity. Genetically engineered mice lacking the IL-1 receptor (IL-1R1-/-, not responsive to IL-1) or the IL-1 receptor antagonist (IL-1Ra, enhanced response to IL-1) have an altered IL-1/IL-1Ra balance that we hypothesize modulates infarct healing and cardiac remodeling after AMI.

Methods

IL-1R1-/- and IL-1Ra-/- male mice and their correspondent wild-types (WT) were subjected to permanent coronary artery ligation or sham surgery. Infarct size (trichrome scar size), apoptotic cell death (TUNEL) and left ventricular (LV) dimensions and function (echocardiography) were measured prior to and 7 days after surgery.

Results

When compared with the corresponding WT, IL-1R1-/- mice had significantly smaller infarcts (−25%), less cardiomyocyte apoptosis (−50%), and reduced LV enlargement (LV end-diastolic diameter increase [LVEDD], −20%) and dysfunction (LV ejection fraction [LVEF] decrease, −50%), whereas IL-1Ra-/- mice had significantly larger infarcts (+75%), more apoptosis (5-fold increase), and more severe LV enlargement (LVEDD increase,+30%) and dysfunction (LVEF decrease, +70%)(all P values <0.05).

Conclusions

An imbalance in IL-1/IL-1Ra signaling at the IL-1R1 level modulates the severity of cardiac remodeling after AMI in the mouse, with reduced IL-1R1 signaling providing protection and unopposed IL-1R1 signaling providing harm.  相似文献   

3.

Background

Left ventricular hypertrophy (LVH) is an independent predictor of cardiac mortality, regardless of its etiology. Previous studies have shown that high nocturnal blood pressure (BP) affects LV geometry in hypertensive patients. It has been suggested that continuous pressure overload affects the development of LVH, but it is unknown whether persistent pressure influences myocardial fibrosis or whether the etiology of LVH is associated with myocardial fibrosis. Comprehensive cardiac magnetic resonance (CMR) including the late gadolinium enhancement (LGE) technique can evaluate both the severity of changes in LV geometry and myocardial fibrosis. We tested the hypothesis that the nocturnal non-dipper BP pattern causes LV remodeling and fibrosis in patients with hypertension and LVH.

Methods

Forty-seven hypertensive patients with LVH evaluated by echocardiography (29 men, age 73.0±10.4 years) were examined by comprehensive CMR and 24-h ambulatory blood pressure monitoring (ABPM).

Results and Conclusions

Among the 47 patients, twenty-four had nocturnal non-dipper BP patterns. Patients with nocturnal non-dipper BP patterns had larger LV masses and scar volumes independent of etiologies than those in patients with dipper BP patterns (p = 0.035 and p = 0.015, respectively). There was no significant difference in mean 24-h systolic BP between patients with and without nocturnal dipper BP patterns (p = 0.367). Among hypertensive patients with LVH, the nocturnal non-dipper blood pressure pattern is associated with both LV remodeling and myocardial fibrosis independent of LVH etiology.  相似文献   

4.

Background

Type 2 diabetes is frequently associated with co-morbidities, including hypertension. Here we investigated if hypertension is a critical factor in myocardial remodeling and the development of cardiac dysfunction in type 2 diabetic db/db mice.

Methods

Thereto, 14-wks-old male db/db mice and non-diabetic db/+ mice received vehicle or angiotensin II (AngII) for 4 wks to induce mild hypertension (n = 9–10 per group). Left ventricular (LV) function was assessed by serial echocardiography and during a dobutamine stress test. LV tissue was subjected to molecular and (immuno)histochemical analysis to assess effects on hypertrophy, fibrosis and inflammation.

Results

Vehicle-treated diabetic mice neither displayed marked myocardial structural remodeling nor cardiac dysfunction. AngII-treatment did not affect body weight and fasting glucose levels, and induced a comparable increase in blood pressure in diabetic and control mice. Nonetheless, AngII-induced LV hypertrophy was significantly more pronounced in diabetic than in control mice as assessed by LV mass (increase +51% and +34%, respectively, p<0.01) and cardiomyocyte size (+53% and +31%, p<0.001). This was associated with enhanced LV mRNA expression of markers of hypertrophy and fibrosis and reduced activation of AMP-activated protein kinase (AMPK), while accumulation of Advanced Glycation End products (AGEs) and the expression levels of markers of inflammation were not altered. Moreover, AngII-treatment reduced LV fractional shortening and contractility in diabetic mice, but not in control mice.

Conclusions

Collectively, the present findings indicate that type 2 diabetes in its early stage is not yet associated with adverse cardiac structural changes, but already renders the heart more susceptible to hypertension-induced hypertrophic remodeling.  相似文献   

5.

Background

Circulating subclinical lipopolysaccharide (LPS) occurs in health and disease. Ingesting high fatty meals increases LPS that cause metabolic endotoxemia. Subclinical LPS in periodontal disease may impair endothelial function. The heart may be targeted as cardiac cells express TLR4, the LPS receptor. It was hypothesized that recurrent exposure to subclinical LPS increases mortality and causes cardiac fibrosis.

Methods

C57Bl/6 mice were injected with intraperitoneal saline (control), low dose LPS (0.1 or 1 mg/kg), or moderate dose LPS (10 or 20 mg/kg), once a week for 3 months. Left ventricular (LV) function (echocardiography), hemodynamics (tail cuff pressure) and electrocardiograms (telemetry) were measured. Cardiac fibrosis was assessed by picrosirius red staining and LV expression of fibrosis related genes (QRT-PCR). Adult cardiac fibroblasts were isolated and exposed to LPS.

Results

LPS injections transiently increased heart rate and blood pressure (<6 hours) and mildly decreased LV function with full recovery by 24 hours. Mice tolerated weekly LPS for 2–3 months with no change in activity, appearance, appetite, weight, blood pressure, LV function, oximetry, or blood chemistries. Mortality increased after 60–90 days with moderate, but not low dose LPS. Arrhythmias occurred a few hours before death. LV collagen fraction area increased dose-dependently from 3.0±0.5% (SEM) in the saline control group, to 5.6±0.5% with low dose LPS and 9.7±0.9% with moderate dose LPS (P<0.05 moderate vs low dose LPS, and each LPS dose vs control). LPS increased LV expression of collagen Iα1, collagen IIIα1, MMP2, MMP9, TIMP1, periostin and IL-6 (P<0.05 moderate vs low dose LPS and vs control). LPS increased α-SMA immunostaining of myofibroblasts. LPS dose-dependently increased IL-6 in isolated adult cardiac fibroblasts.

Conclusions

Recurrent exposure to subclinical LPS increases mortality and induces cardiac fibrosis.  相似文献   

6.

Background

Performance of the left ventricle during exercise stress in thalassaemia patients is uncertain. We aimed to explore the phenomenon of dynamic dyssynchrony and assess contractile reserve in patients with beta-thalassaemia major and determine their relationships with myocardial iron load.

Methods and Results

Thirty-two thalassaemia patients (16 males), aged 26.8±6.9 years, without heart failure and 17 healthy controls were studied. Their left ventricular (LV) volumes, ejection fraction, systolic dyssynchrony index (SDI), and myocardial acceleration during isovolumic LV contraction (IVA) were determined at rest and during submaximal bicycle exercise testing using 3-dimensional and tissue Doppler echocardiography. Myocardial iron load as assessed by T2* cardiac magnetic resonance in patients were further related to indices of LV dyssynchrony and contractile reserve. At rest, patients had significantly greater LV SDI (p<0.001) but similar IVA (p = 0.22) compared with controls. With exercise stress, the prevalence of mechanical dyssynchrony (SDI>4.6%, control+2SD) increased from baseline 25% to 84% in patients. Δ SDIexercise-baseline correlated with exercise-baseline differences in LV ejection fraction (p<0.001) and stroke volume (p = 0.006). Compared with controls, patients had significantly less exercise-induced increase in LV ejection fraction, cardiac index, and IVA (interaction, all p<0.05) and had impaired contractile reserve as reflected by the gentler IVA-heart rate slope (p = 0.018). Cardiac T2* in patients correlated with baseline LV SDI (r = −0.44, p = 0.011) and IVA-heart rate slope (r = 0.36, p = 0.044).

Conclusions

Resting LV dyssynchrony is associated with myocardial iron load. Exercise stress further unveils LV dynamic dyssynchrony and impaired contractile reserve in patients with beta-thalassaemia major.  相似文献   

7.

Background

The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC).

Methodology/Principal Findings

In patients with severe aortic stenosis (AS) undergoing valve replacement, we detected greater myocardial PDE5 expression than in control hearts. We observed robust expression in scattered cardiac myocytes of those AS patients with higher LV filling pressures and BNP serum levels. Following TAC, we detected similar, focal PDE5 expression in cardiac myocytes of C57BL/6NTac mice exhibiting the most pronounced LV remodeling. To examine the effect of cell-specific PDE5 expression, we subjected transgenic mice with cardiac myocyte-specific PDE5 overexpression (PDE5-TG) to TAC. LV hypertrophy and fibrosis were similar as in WT, but PDE5-TG had increased cardiac dimensions, and decreased dP/dtmax and dP/dtmin with prolonged tau (P<0.05 for all). Greater cardiac dysfunction in PDE5-TG was associated with reduced myocardial cGMP and SERCA2 levels, and higher passive force in cardiac myocytes in vitro.

Conclusions/Significance

Myocardial PDE5 expression is increased in the hearts of humans and mice with chronic pressure overload. Increased cardiac myocyte-specific PDE5 expression is a molecular hallmark in hypertrophic hearts with contractile failure, and represents an important therapeutic target.  相似文献   

8.

Aims

Myocardial CCN2/CTGF is induced in heart failure of various etiologies. However, its role in the pathophysiology of left ventricular (LV) remodeling after myocardial infarction (MI) remains unresolved. The current study explores the role of CTGF in infarct healing and LV remodeling in an animal model and in patients admitted for acute ST-elevation MI.

Methods and Results

Transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) and non-transgenic littermate controls (NLC) were subjected to permanent ligation of the left anterior descending coronary artery. Despite similar infarct size (area of infarction relative to area at risk) 24 hours after ligation of the coronary artery in Tg-CTGF and NLC mice, Tg-CTGF mice disclosed smaller area of scar tissue, smaller increase of cardiac hypertrophy, and less LV dilatation and deterioration of LV function 4 weeks after MI. Tg-CTGF mice also revealed substantially reduced mortality after MI. Remote/peri-infarct tissue of Tg-CTGF mice contained reduced numbers of leucocytes, macrophages, and cells undergoing apoptosis as compared with NLC mice. In a cohort of patients with acute ST-elevation MI (n = 42) admitted to hospital for percutaneous coronary intervention (PCI) serum-CTGF levels (s-CTGF) were monitored and related to infarct size and LV function assessed by cardiac MRI. Increase in s-CTGF levels after MI was associated with reduced infarct size and improved LV ejection fraction one year after MI, as well as attenuated levels of CRP and GDF-15.

Conclusion

Increased myocardial CTGF activities after MI are associated with attenuation of LV remodeling and improved LV function mediated by attenuation of inflammatory responses and inhibition of apoptosis.  相似文献   

9.

Background

Despite remarkable progress in treatment of chronic heart failure (CHF) over the last two decades, mortality, personal suffering and cost remain staggering, and effective interventions are still a challenge. Previously we reported that a blueberry-enriched diet (BD) attenuated necroapoptosis and inflammation in periinfarct area in a rat model of myocardial infarction (MI).

Objectives

To test the hypothesis that BD will attenuate the course of CHF, including mortality and cardiac remodeling during the first year after induction of MI in rats.

Method and Results

Two weeks after coronary artery ligation, rats were divided into two groups of similar average MI size, measured by echocardiography, and then12-mo dietary regimens were initiated as follows: ad libitum regular diet (control, CD, n = 27) and isocaloric food with 2% blueberry supplement (BD, n = 27) also available ad libitum. These dietary groups were compared to each other and to sham group (SH). Mortality over the 12 mo was reduced by 22% in BD compared with CD (p<0.01). In the course of developing CHF, BD had no effect on the body weight, heart rate or blood pressure. Bi-monthly Echo revealed significant attenuation of the LV chamber remodeling, LV posterior wall thinning, and MI expansion in BD compared with CD. In fact, BD arrested the MI expansion.

Conclusion

This is the first experimental evidence that a blueberry-enriched diet has positive effects on the course of CHF and thus warrants consideration for clinical evaluation.  相似文献   

10.

Background

The cardiac sodium channel (Nav1.5) controls cardiac excitability. Accordingly, SCN5A mutations that result in loss-of-function of Nav1.5 are associated with various inherited arrhythmia syndromes that revolve around reduced cardiac excitability, most notably Brugada syndrome (BrS). Experimental studies have indicated that Nav1.5 interacts with the cytoskeleton and may also be involved in maintaining structural integrity of the heart. We aimed to determine whether clinical evidence may be obtained that Nav1.5 is involved in maintaining cardiac structural integrity.

Methods

Using cardiac magnetic resonance (CMR) imaging, we compared right ventricular (RV) and left ventricular (LV) dimensions and ejection fractions between 40 BrS patients with SCN5A mutations (SCN5a-mut-positive) and 98 BrS patients without SCN5A mutations (SCN5a-mut-negative). We also studied 18 age/sex-matched healthy volunteers.

Results

SCN5a-mut-positive patients had significantly larger end-diastolic and end-systolic RV and LV volumes, and lower LV ejection fractions, than SCN5a-mut-negative patients or volunteers.

Conclusions

Loss-of-function SCN5A mutations are associated with dilatation and impairment in contractile function of both ventricles that can be detected by CMR analysis.  相似文献   

11.
Chronic kidney disease (CKD) is a major contributor to the development of heart failure with preserved ejection fraction (HFpEF), whereas the underlying mechanism of cardiorenal HFpEF is still elusive. The aim of this study was to investigate the role of cardiac fibrosis in a rat model of cardiorenal HFpEF and explore whether treatment with Telmisartan, an inhibitor of renin-angiotensin-aldosterone system (RAAS), can ameliorate cardiac fibrosis and preserve diastolic function in cardiorenal HFpEF. Male rats were subjected to 5/6 subtotal nephrectomy (SNX) or sham operation (Sham), and rats were allowed four weeks to recover and form a stable condition of CKD. Telmisartan or vehicle was then administered p.o. (8 mg/kg/d) for 12 weeks. Blood pressure, brain natriuretic peptide (BNP), echocardiography, and cardiac magnetic resonance imaging were acquired to evaluate cardiac structural and functional alterations. Histopathological staining, real-time polymerase chain reaction (PCR) and western blot were performed to evaluate cardiac remodeling. SNX rats showed an HFpEF phenotype with increased BNP, decreased early to late diastolic transmitral flow velocity (E/A) ratio, increased left ventricular (LV) hypertrophy and preserved ejection fraction (EF). Pathology revealed increased cardiac fibrosis in cardiorenal HFpEF rats compared with the Sham group, while chronic treatment with Telmisartan significantly decreased cardiac fibrosis, accompanied by reduced markers of fibrosis (collagen I and collagen III) and profibrotic cytokines (α-smooth muscle actin, transforming growth factor-β1, and connective tissue growth factor). In addition, myocardial inflammation was decreased after Telmisartan treatment, which was in a linear correlation with cardiac fibrosis. Telmisartan also reversed LV hypertrophy and E/A ratio, indicating that Telmisartan can improve LV remodeling and diastolic function in cardiorenal HFpEF. In conclusion, cardiac fibrosis is central to the pathology of cardiorenal HFpEF, and RAAS modulation with Telmisartan is capable of alleviating cardiac fibrosis and preserving diastolic dysfunction in this rat model.  相似文献   

12.
13.
14.
Sun D  Huang J  Zhang Z  Gao H  Li J  Shen M  Cao F  Wang H 《PloS one》2012,7(3):e33491

Background

The present study was to investigate the effects and mechanism of Luteolin on myocardial infarct size, cardiac function and cardiomyocyte apoptosis in diabetic rats with myocardial ischemia/reperfusion (I/R) injury.

Methodology/Principal Findings

Diabetic rats underwent 30 minutes of ischemia followed by 3 h of reperfusion. Animals were pretreated with or without Luteolin before coronary artery ligation. The severity of myocardial I/R induced LDH release, arrhythmia, infarct size, cardiac function impairment, cardiomyocyte apoptosis were compared. Western blot analysis was performed to elucidate the target proteins of Luteolin. The inflammatory cytokine production were also examined in ischemic myocardium underwent I/R injury. Our results revealed that Luteolin administration significantly reduced LDH release, decreased the incidence of arrhythmia, attenuated myocardial infarct size, enhanced left ventricular ejection fraction and decreased myocardial apoptotic death compared with I/R group. Western blot analysis showed that Luteolin treatment up-regulated anti-apoptotic proteins FGFR2 and LIF expression, increased BAD phosphorylation while decreased the ratio of Bax to Bcl-2. Luteolin treatment also inhibited MPO expression and inflammatory cytokine production including IL-6, IL-1a and TNF-a. Moreover, co-administration of wortmannin and Luteolin abolished the beneficial effects of Luteolin.

Conclusions/Significance

This study indicates that Luteolin preserves cardiac function, reduces infarct size and cardiomyocyte apoptotic rate after I/R injury in diabetic rats. Luteolin exerts its action by up-regulating of anti-apoptotic proteins FGFR2 and LIF expression, activating PI3K/Akt pathway while increasing BAD phosphorylation and decreasing ratio of Bax to Bcl-2.  相似文献   

15.

Background

Chronic lung diseases are the third leading cause of death in the United States due in part to an incomplete understanding of pathways that govern the progressive tissue remodeling that occurs in these disorders. Adenosine is elevated in the lungs of animal models and humans with chronic lung disease where it promotes air-space destruction and fibrosis. Adenosine signaling increases the production of the pro-fibrotic cytokine interleukin-6 (IL-6). Based on these observations, we hypothesized that IL-6 signaling contributes to tissue destruction and remodeling in a model of chronic lung disease where adenosine levels are elevated.

Methodology/Principal Findings

We tested this hypothesis by neutralizing or genetically removing IL-6 in adenosine deaminase (ADA)-deficient mice that develop adenosine dependent pulmonary inflammation and remodeling. Results demonstrated that both pharmacologic blockade and genetic removal of IL-6 attenuated pulmonary inflammation, remodeling and fibrosis in this model. The pursuit of mechanisms involved revealed adenosine and IL-6 dependent activation of STAT-3 in airway epithelial cells.

Conclusions/Significance

These findings demonstrate that adenosine enhances IL-6 signaling pathways to promote aspects of chronic lung disease. This suggests that blocking IL-6 signaling during chronic stages of disease may provide benefit in halting remodeling processes such as fibrosis and air-space destruction.  相似文献   

16.

Background

Cardiac oxidative stress, bioenergetics and catecholamine play major roles in heart failure progression. However, the relationships between these three dominant heart failure factors are not fully elucidated. Caffeic acid ethanolamide (CAEA), a synthesized derivative from caffeic acid that exerted antioxidative properties, was thus applied in this study to explore its effects on the pathogenesis of heart failure.

Results

In vitro studies in HL-1 cells exposed to isoproterenol showed an increase in cellular and mitochondria oxidative stress. Two-week isoproterenol injections into mice resulted in ventricular hypertrophy, myocardial fibrosis, elevated lipid peroxidation, cardiac adenosine triphosphate and left ventricular ejection fraction decline, suggesting oxidative stress and bioenergetics changes in catecholamine-induced heart failure. CAEA restored oxygen consumption rates and adenosine triphosphate contents. In addition, CAEA alleviated isoproterenol-induced cardiac remodeling, cardiac oxidative stress, cardiac bioenergetics and function insufficiency in mice. CAEA treatment recovered sirtuin 1 and sirtuin 3 activity, and attenuated the changes of proteins, including manganese superoxide dismutase and hypoxia-inducible factor 1-α, which are the most likely mechanisms responsible for the alleviation of isoproterenol-caused cardiac injury

Conclusion

CAEA prevents catecholamine-induced cardiac damage and is therefore a possible new therapeutic approach for preventing heart failure progression.  相似文献   

17.

Objectives

This study evaluates the association between microvascular obstruction and myocardial salvage, determined by cardiac magnetic resonance performed both in the acute stage of myocardial infarction and after 4 months.

Methods

In patients with acute ST-elevation myocardial infarction treated by primary percutaneous coronary intervention, myocardial salvage, infarct size, left ventricular volumes, and ejection fraction were assessed by early (1–4 days) and follow-up (4 months) cardiac magnetic resonance. These variables were related to the presence or absence of microvascular obstruction at early investigation. Myocardial salvage was determined by: (1) myocardium at risk and infarct size measured in the acute stage and (2) myocardium at risk, measured acutely, and infarct size measured after 4 months. Multivariate analyses were performed, adjusting for clinical confounders at baseline.

Results

Microvascular obstruction was present in 49 of 94 included patients, (52%). Myocardial salvage was significantly reduced in patients with microvascular obstruction, compared to those without: 23% vs. 38%, measured acutely, and 39.8% vs. 65.4%, after 4 months (p<0.001). The presence of microvascular obstruction was significantly and independently associated with large infarct size, lower left ventricular ejection fraction, and larger left ventricular end-systolic volume.

Conclusion

The presence of microvascular obstruction demonstrated by cardiac magnetic resonance early after infarction was associated with impaired myocardial salvage. This association was more marked when based on measurement of infarct size after 4 months compared to assessment in the acute stage.  相似文献   

18.

Background

Coexistence of left ventricular (LV) longitudinal myocardial systolic dysfunction with LV diastolic dysfunction could lead to heart failure with preserved ejection fraction (HFpEF). Diabetes mellitus (DM) is known as a significant factor associated with HFpEF. Although the mechanisms of DM-related LV myocardial injury are complex, it has been postulated that overweight contributes to the development of LV myocardial injury in type 2 diabetes mellitus (T2DM) patients. However, the precise impact of overweight on LV longitudinal myocardial systolic function in T2DM patients remains unclear.

Methods

We studied 145 asymptomatic T2DM patients with preserved LV ejection fraction (LVEF) without coronary artery disease. LV longitudinal myocardial systolic function was assessed by global longitudinal strain (GLS), which was defined as the average peak strain of 18-segments obtained from standard apical views. Overweight was defined as body mass index (BMI) ≥ 25 kg/m2. Ninety age-, gender- and LVEF-matched healthy volunteers served as controls.

Results

GLS of overweight T2DM patients was significantly lower than that of non-overweight patients (17.9 ± 2.4% vs. 18.9 ± 2.6%, p < 0.05), whereas GLS of both overweight and non-overweight controls was similar (19.8 ± 1.3% vs. 20.4 ± 2.1%, p = 0.38). Furthermore, multiple regression analysis revealed that for T2DM patients, BMI was the independent determinant parameters for GLS as well as LV mass index.

Conclusions

Overweight has a greater effect on LV longitudinal myocardial systolic function in T2DM patients than on that in non-DM healthy subjects. Our finding further suggests that the strict control of overweight in T2DM patients may be associated with prevention of the development of HFpEF.
  相似文献   

19.

Background

L-arginine (L-ARG) effectively protects against diabetic impediments. In addition, silent information regulator (SIRT-1) activators are emerging as a new clinical concept in treating diabetic complications. Accordingly, this study aimed at delineating a role for SIRT-1 in mediating L-ARG protection against streptozotocin (STZ) induced myocardial fibrosis.

Methods

Male Wistar rats were allocated into five groups; (i) normal control rats received 0.1 M sodium citrate buffer (pH 4.5); (ii) STZ at the dose of 60 mg/kg dissolved in 0.1 M sodium citrate buffer (pH 4.5); (iii) STZ + sirtinol (Stnl; specific inhibitor of SIRT-1; 2 mg/Kg, i.p.); (iv) STZ + L-ARG given in drinking water (2.25%) or (v) STZ + L-ARG + Stnl.

Results

L-ARG increased myocardial SIRT-1 expression as well as its protein content. The former finding was paralleled by L-ARG induced reduction in myocardial fibrotic area compared to STZ animals evidenced histopathologically. The reduction in the fibrotic area was accompanied by a decline in fibrotic markers as evident by a decrease in expression of collagen-1 along with reductions in myocardial TGF-β, fibronectin, CTGF and BNP expression together with a decrease in TGF-β and hydroxyproline contents. Moreover, L-ARG increased MMP-2 expression in addition to its protein content while decreasing expression of PAI-1. Finally, L-ARG protected against myocardial cellular death by reduction in NFκ-B mRNA as well as TNF-α level in association with decline in Casp-3 and FAS expressions andCasp-3protein content in addition to reduction of FAS positive cells. However, co-administration of L-ARG and Stnl diminished the protective effect of L-ARG against STZ induced myocardial fibrosis.

Conclusion

Collectively, these findings associate a role for SIRT-1 in L-ARG defense against diabetic cardiac fibrosis via equilibrating the balance between profibrotic and antifibrotic mediators.  相似文献   

20.

Background

Ischemic cardiac damage is associated with upregulation of cardiac pro-inflammatory cytokines, as well as invasion of lymphocytes into the heart. Regulatory T cells (Tregs) are known to exert a suppressive effect on several immune cell types. We sought to determine whether the Treg pool is influenced by myocardial damage and whether Tregs transfer and deletion affect cardiac remodeling.

Methods and Results

The number and functional suppressive activity of Tregs were assayed in mice subjected to experimental myocardial infarction. The numbers of splenocyte-derived Tregs in the ischemic mice were significantly higher after the injury than in the controls, and their suppressive properties were significantly compromised. Compared with PBS, adoptive Treg transfer to mice with experimental infarction reduced infarct size and improved LV remodeling and functional performance by echocardiography. Treg deletion with blocking anti-CD25 antibodies did not influence infarct size or echocardiographic features of cardiac remodeling.

Conclusion

Treg numbers are increased whereas their function is compromised in mice with that underwent experimental infarction. Transfer of exogeneous Tregs results in attenuation of myocardial remodeling whereas their ablation has no effect. Thus, Tregs may serve as interesting potential interventional targets for attenuating left ventricular remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号