首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malate synthase (Mls), a key enzyme in the glyoxylate cycle, is required for virulence in microbial pathogens. In this study, we identified the AoMls gene from the nematode-trapping fungus Arthobotrys oligospora. The gene contains 4 introns and encodes a polypeptide of 540 amino acids. To characterize the function of AoMls in A. oligospora, we disrupted it by homologous recombination, and the ΔAoMls mutants were confirmed by PCR and Southern blot analyses. The growth rate and colony morphology of the ΔAoMls mutants showed no obvious difference from the wild-type strains on potato dextrose agar (PDA) plate. However, the disruption of gene AoMls led to a significant reduction in conidiation, failure to utilize fatty acids and sodium acetate for growth, and its conidia were unable to germinate on minimal medium supplemented with sodium oleate. In addition, the trap formation was retarded in the ΔAoMls mutants, which only produced immature traps containing one or two rings. Moreover, the nematicidal activity of the ΔAoMls mutants was significantly decreased. Our results suggest that the gene AoMls plays an important role in conidiation, trap formation and pathogenicity of A. oligospora.  相似文献   

2.
3.
4.
The nematode-trapping fungus Arthrobotrys oligospora is able to produce extracellular protease that degrades the body walls of parasitic nematode larvae found in livestock and immobilizes the nematodes. Our aim was to obtain a strain of A. oligospora with a strong ability to trap nematodes by production of high levels of extracellular protease. A wild type strain of A. oligospora was subjected to mutagenic treatments involving low-energy ion beam implantation to generate mutants. Among these mutants, A. oligospora N showed high efficiency in trapping nematodes and was also able to secrete more extracellular protease, helping it to penetrate and digest the body walls of larvae. This work represents the first application of low-energy ion beams to generate mutations in a nematode-trapping fungus, and provides a new method of obtaining a fungus with high potential application.  相似文献   

5.
This study measured trap induction and trapping on agar disks as affected by juvenile stages (J1, J2, J3, and J4) of the nematode Caenorhabditis elegans and by species of nematode-trapping fungi. Eight species of nematode-trapping fungi belonging to the family Orbiliaceae and producing four kinds of traps were studied: adhesive network-forming Arthrobotrys oligospora, A. vermicola, and A. eudermata, constricting ring-forming Drechslerella brochopaga, and Dr. stenobrocha, adhesive column-forming Dactylellina cionopaga, and adhesive knob-forming Da. ellipsospora, and Da. drechsleri. The number of traps induced generally increased with increasing juvenile stages of C. elegans. The ability to capture the juveniles tended to be similar among isolates that produced the same kind of trap but differed among species that produced different kinds of traps. Trapping by Dr. stenobrocha and Da. cionopaga was correlated with trap number and with juvenile stage. A. oligospora and A. vermicola respectively captured more than 92 and 88% of the J1, J3, and J4 but captured a lower percentage of J2. The knob-producing isolates captured more younger than elder juveniles. Partial correlation analyses demonstrated that the trap induction of the most fungal species positively correlated with the juvenile size and motility, which was juvenile stage dependent. Overall, trap induction and trapping correlated with C. elegans juvenile stage (size and motility) in six species of trapping fungi.  相似文献   

6.
7.
To understand why Arthrobotrys oligospora and other nematode-trapping fungi are common and sometimes abundant in the coastal grassland soils of the Bodega Marine Reserve (BMR, Sonoma County, CA), we examined how resident trapping fungi responded to the addition of eight organic substrates (lupine leaves, grass leaves, dead isopods, dead moth larvae, isopod faeces, deer faeces, shrimp shells, and powdered chitin). We were especially interested in the effects of dead isopods because isopods are abundant at BMR and because previous studies had documented strong responses of A. oligospora to other arthropods (dead moth larvae). Soil from BMR was packed into vials (40 g dry mass equivalent per vial with water potential at −230 kPa and bulk density at 0.9 g cm−3), and one substrate or no substrate was added to the soil surface. After 30 d at 20 °C, trapping fungi were quantified by dilution plating and most probable number procedures. The response of A. oligospora was inversely related to substrate carbon:nitrogen (C:N) ratio: substrates with low C:N ratios (dead isopods, lupine leaves, dead moth larvae) usually caused large increases in A. oligospora whereas those with higher C:N ratios (isopod faeces, deer faeces, grass leaves) did not. An exception was chitin powder, which had a low C:N ratio, but which did not cause A. oligospora to proliferate. Responses of A. oligospora were directly related to the quantity of nitrogen added with each substrate, and those substrates that caused large increases in resident nematodes usually caused large increases in A. oligospora. Other trapping fungi did not respond as strongly as A. oligospora.  相似文献   

8.
Nematode-trapping fungi are ubiquitous in terrestrial habitats in dung, soils, litter and woody debris and they also occur in freshwater, but only one species has been found in marine habitats. The purpose of this study was therefore to investigate whether nematode-trapping fungi occurred in mangrove habitats. To achieve this we assessed the diversity of nematode-trapping fungi on decaying litter from mangroves, freshwater and terrestrial habitats (22 sites) in Hong Kong. Composite samples (n = 1,320) of decaying litter (wood and leaves) were examined and a total of 31 species of nematode-trapping fungi belonging to four genera, Arthrobotrys, Monacrosporium, and Dactylella were recorded. Twenty-nine species reported in this study are new records for Hong Kong and 16 species are new records from mangrove habitats worldwide. Nematode trapping fungi are therefore present in marine environments. Commonly encountered taxa were Arthrobotrys oligospora and Monacrosporium thaumasium which are abundant in all habitats. A. oligospora, M. thaumasium and Arthrobotrys musiformis were frequent (> 10%). Twenty-six species were rare (0.16–9.32%). Species richness and diversity was higher in terrestrial than in freshwater and mangrove habitats (ANOVA, < 0.001). A higher mean diversity was observed on decaying leaves as compared to decaying wood in all habitats (< 0.001). Based on Shannon diversity index, it was also observed that taxa characterized by adhesive nets were more frequent in all habitats. This can be explained by the fact that these taxa may have a better competitive saprotrophic ability which would allow them to compete favourably in nutrient limited environments. Abiotic factors that could be linked to differences in species diversity between decaying wood and leaves are also discussed.  相似文献   

9.
Competivive stress imposed by common soil saprophytes may cause an increase in predation by the nematode-trapping fungi, Arthrobotrys oligospora and Monacrosporium cionopagum, on the bacteria-feeding nematode Acrobeloides buetschli. Nematode-trapping species grown with saprophytic competitors in an artificial soil substrate increased their trapping activity compared to control cultures. The results support the hypothesis that competition stimulates the predatory activity of nematode-trapping fungi as an adaptation to overcome their low competitive saprophytic ability.  相似文献   

10.
11.
To understand the biocontrol ability of Arthrobotrys oligospora isolated from the Northern Tianshan Mountain slope pasture, Xinjiang region, China, on livestock gastrointestinal nematode diseases, we acquired 68 soil samples and isolated 26 nematode-trapping fungi using Haemonchus contortus L3. Eight isolates were identified based on their morphological and molecular identification. The predacious activity against H. contortus was detected before and after passage through the sheep gastrointestinal tract. As a result, these eight isolates were identified as A. oligospora. They displayed predacious activities ranging from 90% to 97%. Six of the isolates could pass through the sheep gastrointestinal tract significantly reducing the number of H. contortus larvae by 76–79%. This study shows that A. oligospora isolated from the northern slope pasture of Tianshan Mountain has high predacious activity against H. contortus larvae and partly passing through the sheep gastrointestinal tract. This study also shows that conidial suspensions have no toxic side-effects on the sheep, indicating that they have the potential for the development of oral biological agents which prevent and control livestock gastrointestinal nematode diseases.  相似文献   

12.
13.
Nematophagous fungi can trap and capture nematodes and other small invertebrates. This unique ability has made them ideal organisms from which to develop biological control agents against plant‐ and animal‐parasitic nematodes. However, effective application of biocontrol agents in the field requires a comprehensive understanding about the ecology and population genetics of the nematophagous fungi in natural environments. Here, we genotyped 228 strains of the nematode‐trapping fungus Arthrobotrys oligospora using 12 single nucleotide polymorphic markers located on eight random DNA fragments. The strains were from different ecological niches and geographical regions from China. Our analyses identified that ecological niche separations contributed significantly, whereas geographic separation contributed relatively little to the overall genetic variation in our samples of A. oligospora. Interestingly, populations from stressful environments seemed to be more variable and showed more evidence for recombination than those from benign environments at the same geographic areas. We discussed the implications of our results to the conservation and biocontrol application of A. oligospora in agriculture and forestry.  相似文献   

14.
15.
16.
17.

Intracellular trehalose accumulation is relevant to fungal life and pathogenicity. Trehalose-6-phosphate synthase (TPS) is known to control the first step of trehalose synthesis, but functions of multiple TPS genes in some filamentous fungi are variable. Here, we examined the functions of two TPS genes (tpsA and tpsB) in Beauveria bassiana, a fungal insect pathogen widely applied in arthropod pest control. Intracellular TPS activity and trehalose content decreased by 71–75 and 72–80% in ΔtpsA, and 21–30 and 15–45% in ΔtpsB, respectively, and to undetectable levels in ΔtpsAΔtpsB, under normal and stressful conditions. The three mutants lost 33, 50, and 98% of conidiation capacity in standard cultures. Conidial quality indicated by viability, density, intracellular trehalose content, cell wall integrity, and hydrophobicity was more impaired in ΔtpsA than in ΔtpsB and mostly in ΔtpsAΔtpsB, which was also most sensitive to nutritional, chemical, and environmental stresses and least virulent to Galleria mellonella larvae. Almost all of phenotypic defects in ΔtpsAΔtpsB approached to the sums of those observed in ΔtpsA and ΔtpsB and were restored by targeted gene complementation. Altogether, TpsA and TpsB play complementary roles in sustaining trehalose synthesis, conidiation capacity, conidial quality, multiple stress tolerance, and virulence, highlighting a significance of both for the fungal adaptation to environment and host.

  相似文献   

18.
19.
Wang  Ji-ai  Huang  Xiaowei  Niu  Shanzhuang  Hu  Zhihong  Li  Heng  Ji  Xinglai  Yu  Hua  Zeng  Weikun  Tao  Jian  Chen  Weiwei  Li  Jun  Li  Juan  Zhang  Ke-Qin 《Annals of microbiology》2019,69(12):1267-1274
Arthrobotrys oligospora, a model nematophagous fungus that produces specific adhesive networks to capture nematodes, has been proposed as a potentially effective biological agent to control harmful plant-parasitic nematodes. Although thioredoxin has been characterized as playing important roles in many cellular processes in other species, its function in nematophagous fungi has not been studied. Here, the function of a thioredoxin homolog, Aotrx1, was investigated in A. oligospora. The encoding gene of Aotrx1 in the nematophagous fungus A. oligospora was knocked out by homologous recombination; strain growth was assessed. The ΔAotrx1 strain of A. oligospora showed a significant decrease in growth rate on different media (PDA, CMY, and TG), a 70% decrease of conidia production, and a lower germination rate compared with the wild type. The mutant strain was unable to form traps to capture nematodes and was more sensitive to SDS and H2O2. Thioredoxin is involved in conidia development, trap formation, normal mycelial growth, and resistance to environmental stresses in the nematode-trapping fungus A. oligospora.  相似文献   

20.
Soil cages (polyvinyl chloride pipe with mesh-covered ends) were used to determine how the quantity of two organic amendments affected the nematode-trapping fungi Dactylellina haptotyla and Arthrobotrys oligospora, which were studied independently in two different vineyards. Each cage contained 80 cm³ of field soil (120 g dry weight equivalent), fungal inoculum (two alginate pellets, each weighing 1.9 mg and containing assimilative hyphae of one fungus), and dried grape or alfalfa leaves (0, 360, or 720 mg equivalent to 0, 4,500, or 9,000 kg/ha) with a C:N of 28:1 and 8:1, respectively. Cages were buried in the vineyards, recovered after 25 to 39 days, and returned to the laboratory where fungus population density and trapping were quantified. Dactylellina haptotyla population density and trapping were most enhanced by the smaller quantity of alfalfa amendment and were not enhanced by the larger quantity of alfalfa amendment. Arthrobotrys oligospora population density was most enhanced by the larger quantity of alfalfa amendment, but A. oligospora trapped few or no nematodes, regardless of amendment. Trapping and population density were correlated for D. haptotyla but not for A. oligospora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号