首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Pollinator species are widely accepted as an important factor in plant reproductive isolation. Although mostly investigated in plants visited by different groups of pollinators (e.g., hummingbirds vs bees), few studies have examined the role of pollinators belonging to the same taxonomic group (e.g., only bees) on plant reproductive isolation. In this study, we investigate this question by evaluating pre- and post-zygotic mechanisms putatively involved in the reproductive isolation of two oil-rewarding sympatric Calceolaria species (i.e., Calceolaria filicaulis and C. arachnoidea) in an Andean ecosystem of Chile. We estimated reproductive isolation values using a combination of field (pollinator visitation rates) and experimental (intra and interspecific manual cross-pollination and seed germination of parents and hybrids) evidence. The two Calceolaria species were preferentially visited by different oil-collecting bee species. Results from hand cross-pollination experiments indicate that intraspecific crossings produced significantly more seeds than interspecific ones. Notwithstanding, seed germination essays did not reveal differences between parental and hybrids. Taken together, these results suggest that pollinator species are responsible for most of the reproductive isolation in the two Calceolaria species studied here. This study is the first assessment of pollinator-mediated reproductive isolation in Calceolaria species and the first to document reproductive barriers in oil-rewarding plants.  相似文献   

2.
Evolutional study on acetylcholine expression   总被引:1,自引:0,他引:1  
Acetylcholine (ACh) is a well-known neurotransmitter in the cholinergic nervous systems of vertebrates and insects; however, there is only indirect evidence for its presence in lower invertebrates, such as plants and fungi. We therefore investigated the expression of ACh in invertebrates (sea squirt, sea urchin, trepang, squid, abalone, nereis, sea anemone, coral and sponge), plants (arabidopsis, eggplant, bamboo shoot, cedar, hinoki, pine, podcarp, fern, horsetail and moss), fungi (yeast and mushroom) and bacteria by assaying ACh content and synthesis, focusing on the presence of two synthetic enzymes, choline acetyltransferase (ChAT) and carnitine acetyltransferase (CarAT). Using a specific radioimmunoassay, ACh was detected in all samples tested. The levels varied considerably, however, with the upper portion of bamboo shoots having the highest content (2.9 micromol/g). ACh synthesis was also detected in all samples tested; moreover, the activity in most samples from the animal kingdom, as well as bamboo shoots and the stem of the shiitake mushroom, were sensitive to both ChAT and CarAT inhibitors. Levels of ACh synthesis were lower in samples from other plants, fungi and bacteria and were insensitive to ChAT and CarAT inhibitors. These findings demonstrate the presence of ACh and ACh-synthesizing activity in evolutionally primitive life as well as in more complex multicellular organisms. In the context of the recent discovery of non-neuronal ACh in various mammalian species, these findings suggest that ACh been expressed in organisms from the beginning of life, functioning as a local mediator as well as a neurotransmitter.  相似文献   

3.
It has been acknowledged that land-use change has negative effects on genetic diversity and sex ratio in dioecious species, but less attention has been paid on the influence that land-use change has on the biotic interactions, especially between dioecious species and arbuscular mycorrhizal (AM) fungi. AM mutualism involves reciprocal transfer of carbohydrates and mineral nutrients between the host plant’s roots and these fungi. Here, we report spatial and temporal variation in AM colonization in dioecious wild Carica papaya plants growing in sites with different land use intensity. We tagged, recorded the basal stem circumference and collected roots of reproductive female and male Carica papaya plants in three wild sites during dry and rainy seasons of western Mexico. We also collected soil samples in each site to conduct soil chemical analyses. The sexes of C. papaya did not show significant differences in the frequency (percentage of root colonized by intraradical fungal structures) and abundance (length of intraradical hyphae) of AM fungi but the higher AM colonization was observed during the dry season, and in the site with the lowest disturbance. There was no relationship between soil chemistry and AM colonization. Overall, our findings suggest that land-use intensity has a negative effect on AM colonization and we discuss the consequences of habitat loss for the reproductive female and male plants, the implications of decreasing AM colonization for wild Carica papaya plants an important species that provides a source of genetic variation for the C. papaya varieties.  相似文献   

4.
Mate recognition mechanisms resulting in assortative mating constitute an effective reproductive barrier that may promote sexual isolation and speciation. While such mechanisms are widely documented for animals and plants, they remain poorly studied in fungi. We used two interfertile species of Epichloë (Clavicipitaceae, Ascomycota), E. typhina and E. clarkii, which are host-specific endophytes of two sympatrically occurring grasses. The life cycle of these obligatory outcrossing fungi entails dispersal of gametes by a fly vector among external fungal structures (stromata). To test for assortative mating, we mimicked the natural fertilization process by applying mixtures of spermatia from both species and examined their reproductive success. Our trials revealed that fertilization is non-random and preferentially takes place between conspecific mating partners, which is indicative of assortative mating. Additionally, the viability of hybrid and non-hybrid ascospore offspring was assessed. Germination rates were lower in E. clarkii than in E. typhina and were reduced in ascospore progeny from treatments with high proportions of heterospecific spermatia. The preferential mating between conspecific genotypes and reduced hybrid viability represent important reproductive barriers that have not been documented before in Epichloë. Insights from fungal systems will deepen our understanding of the evolutionary mechanisms leading to reproductive isolation and speciation.  相似文献   

5.
The Evolution of Plant Body Plans--A Biomechanical Perspective   总被引:3,自引:0,他引:3  
Niklas  Karl J. 《Annals of botany》2000,85(4):411-438
Defining ‘plants’ inclusively as ‘photosyntheticeukaryotes’, four basic body plans are identifiable amongplant lineages (unicellular, siphonous, colonial and multicellular).All of these body plans occur in most plant lineages, but onlythe multicellular body plan was carried onto land by the embryophytes.Extensive morphological and anatomical homoplasy is evidentamong species with different body plans. This is ascribed tothe facts that the acquisition of nutrients and radiant energyis affected by plant body size, shape and geometry, and that,with the exception of the unicellular body plan, each of theother body plans involves an ‘open and indeterminate’ontogeny capable of modifying body size, shape and geometryregardless of how organized growth is achieved. In terms ofunicellular species, the available data indicate that size-dependentvariations in surface area, metabolic constituents (e.g. photosyntheticpigments), and reproductive rates limit maximum body size innutrient poor habitats or those that change rapidly or unpredictably.This maximum size can be exceeded in more stable niches by eitherthe cooperation of conspecific cells sharing a common extracellularmatrix (i.e. the ‘colonial’ body plan) or by repeatedmitotic cellular division associated with sustained cytoplasmic(symplastic) continuity (i.e. multicellularity). The siphonousplant body plan may have been evolutionarily derived from aunicellular or multicellular ancestral life form. Each of theplant body plans is reviewed in terms of its biomechanical advantagesand disadvantages. Variants of the multicellular body plan,especially those of the Chlorophyta, Charophyta, and Embryophyta,are given special emphasis. Copyright 2000 Annals of BotanyCompany Algae, biomechanics, body plans, body size, embryophytes, evolution, multicellularity, plants  相似文献   

6.
In order to document the species richness of plants and fungi in a tropical area, a trail of 500?m in tropical lowlands in the Chiriquí province, on the Pacific side of western Panama, was sampled each month during 2?years with 2?h dedicated to plants and 2?h dedicated to fungi, each by two botanists or mycologists respectively. The 24 sampling events yielded approximately 4,000 records of plants corresponding to 311 species as well as 1,614 records of fungi corresponding to approximately 567 species. Lists of more or less certain names of plants and fungi as well as voucher specimens are provided. The randomized species accumulation curve for plants approaches an asymptote and estimators yield stable values of 310–318 predicted plant species in the area of investigation. The curve for records of fungal species, however, did not saturate and all applied estimator functions failed to predict the total richness of fungi for the area convincingly. Two plant collections correspond to new records for Panama and 54 species and infraspecific taxa are new for the Chiriquí province. The identification of fungi is still in process and yielded two species probably new to science as well as 17 new records of species for Panama to date. In order to assess biodiversity patterns (e.g. fungi to plant ratios) of tropical fungi more accurately, it is necessary to repeat such investigations in other areas and to improve the tools for taxonomic identification of these highly diverse but mostly microscopic organisms.  相似文献   

7.
Reproduction is one of the requirements for evolution and a defining feature of life. Yet, across the tree of life, organisms reproduce in many different ways. Groups of cells (e.g., multicellular organisms, colonial microbes, or multispecies biofilms) divide by releasing propagules that can be single-celled or multicellular. What conditions determine the number and size of reproductive propagules? In multicellular organisms, existing theory suggests that single-cell propagules prevent the accumulation of deleterious mutations (e.g., cheaters). However, groups of cells, such as biofilms, sometimes contain multiple metabolically interdependent species. This creates a reproductive dilemma: small daughter groups, which prevent the accumulation of cheaters, are also unlikely to contain the species diversity that is required for ecological success. Here, we developed an individual-based, multilevel selection model to investigate how such multi-species groups can resolve this dilemma. By tracking the dynamics of groups of cells that reproduce by fragmenting into smaller groups, we identified fragmentation modes that can maintain cooperative interactions. We systematically varied the fragmentation mode and calculated the maximum mutation rate that communities can withstand before being driven to extinction by the accumulation of cheaters. We find that for groups consisting of a single species, the optimal fragmentation mode consists of releasing single-cell propagules. For multi-species groups we find various optimal strategies. With migration between groups, single-cell propagules are favored. Without migration, larger propagules sizes are optimal; in this case, group-size dependent fissioning rates can prevent the accumulation of cheaters. Our work shows that multi-species groups can evolve reproductive strategies that allow them to maintain cooperative interactions.  相似文献   

8.
This article presents a survey of ontogenetic studies in paleobotany, and of biologically relevant mathematical results available from such techniques as finite element analyses, algorithmic systems, and computer simulation. Dynamic representations of growth are possible when the observed cellular arrangements in fossils are mathematically described. Successive computer solutions of parameterizing equations allow for the extrapolation of ontogenetic trends forwards and backwards in time (i.e., more and less mature stages, respectively), as well as the interpolation of missing stages or portions of an organism's development. The hypothetical constructions derived from these techniques may be tested against direct comparisons with the fossil being simulated and/pr proposed modern analogues. Similarly, multicellular organisms or portions of organisms (e.g., leaves, sporangia) may be constructed as arrays of symbols — each symbol representing a cell or group of cells. Development in such models is simulated by providing instructions for cell division, cell death, or alteration in cellular states, e.g., vegetative to reproductive. Illustrative simulations of Parka, Mastopora, Rhynia and Calamites are presented and paleobotanical conclusions concerning their respective growth patterns are drawn.  相似文献   

9.
This paper examines the cost of meiosis in a species with an alternation of sexual and asexual generations (e.g. Daphnia), by means of calculations of the survival probabilities of mutant genes causing patterns of wholly asexual reproduction. It is shown that the survival probabilities of such mutations are lower with an alternation of sexual and asexual generations than with an initial population which reproduces exclusively sexually. The survival probabilities decrease as the number of asexual generations within each reproductive cycle increases. It is argued that these results imply a lower than usual cost of meiosis when there is an alternation of generations, and that asexual reproduction cannot simply be equated with vegetative growth of a single multicellular organism.  相似文献   

10.
Transitions from outcrossing to selfing have been a frequent evolutionary shift in plants and clearly play a role in species divergence. However, many questions remain about the initial mechanistic basis of reproductive isolation during the evolution of selfing. For instance, how important are pre-zygotic pre-pollination mechanisms (e.g. changes in phenology and pollinator visitation) in maintaining reproductive isolation between newly arisen selfing populations and their outcrossing ancestors? To test whether changes in phenology and pollinator visitation isolate selfing populations of Arabidopsis lyrata from outcrossing populations, we conducted a common garden experiment with plants from selfing and outcrossing populations as well as their between-population hybrids. Specifically, we asked whether there was isolation between outcrossing and selfing plants and their between-population hybrids through differences in (1) the timing or intensity of flowering; and/or (2) pollinator visitation. We found that phenology largely overlapped between plants from outcrossing and selfing populations. There were also no differences in pollinator preference related to mating system. Additionally, pollinators preferred to visit flowers on the same plant rather than exploring nearby plants, creating a large opportunity for self-fertilization. Overall, this suggests that pre-zygotic pre-pollination mechanisms do not strongly reproductively isolate plants from selfing and outcrossing populations of Arabidopsis lyrata.  相似文献   

11.
Up to 6,800 plant species endemic to oceanic islands are highly threatened with extinction. Although habitat destruction and fragmentation have greatly contributed to this, it is generally recognised that invasive alien species currently pose the single most important threat to island plants. Most studies exploring the role of novel interspecific interactions in driving declines of island plants, focus on threats mediated by animals, be it direct (e.g. browsing, seed predation, mutualism disruption) or indirect (e.g. extinction of seed dispersal or pollination mutualists). Relatively few studies have investigated the specific role of plant-plant interactions, particularly in-situ. We studied a threatened island endemic plant in rapid decline to evaluate the short (1–2 years) and medium-term (about 1–2 decades) influence of invasive alien plants (IAPs) on individuals and a variety of proxies of plant fitness. We compared mortality of traceable individuals that were recorded 12–20 years previously between habitats that are invaded with IAPs and habitats where IAPs are absent, or have been removed decades ago. We also carried out an in-situ manipulative experiment using 14 randomly chosen plants from around which IAPs were removed, paired with controls, at two sites. Canopy cover change before and after IAPs’ removal was quantified along with above ground biomass of IAPs removed for use as potential explanatory variables of change in proxies of plant fitness. Ten branches were randomly selected per plant and branch dynamics, leaves’ sizes and reproductive structure production were monitored quarterly for two years. Over the medium term, plant mortality was recorded only in presence of IAPs (X2 = 4.80, df = 1, p < 0.05). Over the short term, at the plant level, IAPs’ removal triggered overall weak to moderate improvements in the number of surviving and new branches as well as change in number of branches at one of the sites. At the leaf and branch levels, we found weak evidence for positive effects of IAPs removal on surviving leaves, flower buds produced and difference in leaf surface area per branch in one site. We therefore provide some experimental evidence of negative effects of alien plants on overall fitness of the threatened species in-situ presumably through competitive interactions. We posit that these effects were found to be weak to moderate due to the short experimental period over which they could develop (1–2 years). Overall, IAPs stand out as the most severe threat from among all documented threats to the species, for being the only one capable of causing mortality of adult plants. Results hence highlight island plants’ vulnerability to IAPs, and how their timely control would improve the survival and fitness of threatened plants, even at the scale of single individuals. Such a strategy could be more often employed. Our study stresses on prioritising IAPs’ control for rescuing long-lived threatened plants that grow in habitats invaded by alien plants (itself a very common situation on oceanic islands) before addressing other subtler, slower-acting threats, like disrupted pollination or seed dispersal mutualisms, florivory or seed predation.  相似文献   

12.
‘Gynodioecy–dioecy’ is one of the pathways by which dioecy can arise from hermaphroditism. Studies on sex determination and development of gynodioecious systems have focused on temperate and/or annual species. Little is known about the evolutionary dynamics of gynodioecy and dioecy in perennial tropical species, where these systems have more frequently evolved. Maytenus obtusifolia is an abundant species in restingas in southeastern Brazil. The sexual system of M. obtusifolia was investigated by studying the floral structure and reproductive biology. We considered the sexual system as an intermediate step in the pathway gynodioecy-dioecy. The characterization of the hermaphrodite morph was complex, because of a gradient of variation in floral morphology and reproductive characteristics (sizes of the style and stigmatic surface, pollen viability, embryo sacs containing hypertrophied synergids, and fruit set). This variation leads to different proportions of functional male and female flowers among hermaphrodite plants and is responsible for the different levels of reproductive success. Female reproductive success and pollen viability were negatively correlated with the hermaphrodite morph (r = ?0.67). The higher fruiting intensity and fruit/flower ratio of females (41 %) compared to hermaphrodites (2 %) and the fact that female plants produce more and better-quality seeds support the female compensation. We suggest that female sterility may be linked to the set of changes in the carpels. The differences in the quality and quantity of pollen grains of hermaphrodite plants, and the similar individual rates of pollen viability observed for three consecutive flowering events, may indicate a relationship with nuclear cytoplasmic sex determination.  相似文献   

13.
Similarly to plants from terrestrial ecosystems, aquatic species harbour wide spectra of root-associated fungi (RAF). However, comparably less is known about fungal diversity in submerged roots. We assessed the incidence and diversity of RAF in submerged aquatic plants using microscopy, culture-dependent and culture-independent techniques. We studied RAF of five submerged isoetid species collected in four oligotrophic freshwater lakes in Norway. Levels of dark septate endophytes (DSE) colonization differed among the lakes and were positively related to the organic matter content and negatively related to pH. In total, we identified 41 fungal OTUs using culture-dependent and culture-independent techniques, belonging to Mucoromycotina, Chytridiomycota, Glomeromycota, Ascomycota as well as Basidiomycota. Sequences corresponding to aquatic hyphomycetes (e.g. Nectria lugdunensis, Tetracladium furcatum and Varicosporium elodeae) were obtained. Eight arbuscular mycorrhizal taxa belonging to the orders Archaeosporales, Diversisporales and Glomerales were also detected. However, the vast majority of the fungal species detected (e.g. Ceratobasidium sp., Cryptosporiopsis rhizophila, Leptodontidium orchidicola, and Tuber sp.) have previously been known only from roots of terrestrial plants. The abundance and phylogenetic distribution of mycorrhizal as well as nonmycorrhizal fungi in the roots of submerged plants have reshaped our views on the fungal diversity in aquatic environment.  相似文献   

14.
Phytoextraction involves use of plants to remove toxic metals from soil. We examined the effects of phytoextraction practices with three plant species (Silene vulgaris, Thlaspi caerulescens, and Zea mays) and a factorial variation of soil amendments (either an ammonium or nitrate source of nitrogen and the presence or absence of an elemental sulfur supplement) on arbuscular mycorrhizal (AM) fungi (Glomales, Zygomycetes) at a moderately metal-contaminated landfill located in St. Paul, Minn. Specifically, we tested whether the applied treatments affected the density of glomalean spores and AM root colonization in maize. Glomalean fungi from the landfill were grouped into two morphotypes characterized by either light-colored spores (LCS) or dark-colored spores (DCS). Dominant species of the LCS morphotype were Glomus mosseae and an unidentified Glomus sp., whereas the DCS morphotype was dominated by Glomus constrictum. The density of spores of the LCS morphotype from the phytoremediated area was lower than the density of these spores in the untreated landfill soil. Within the experimental area, spore density of the LCS morphotype in the rhizosphere of mycorrhizal maize was significantly higher than in rhizospheres of nonmycorrhizal S. vulgaris or T. caerulescens. Sulfur supplement increased vesicular root colonization in maize and exerted a negative effect on spore density in maize rhizosphere. We conclude that phytoextraction practices, e.g., the choice of plant species and soil amendments, may have a great impact on the quantity and species composition of glomalean propagules as well as on mycorrhiza functioning during long-term metal-remediation treatments.  相似文献   

15.

Background and Aims

Plants exhibit a variety of reproductive systems where unisexual (females or males) morphs coexist with hermaphrodites. The maintenance of dimorphic and polymorphic reproductive systems may be problematic. For example, to coexist with hermaphrodites the females of gynodioecious species have to compensate for the lack of male function. In our study species, Geranium sylvaticum, a perennial gynodioecious herb, the relative seed fitness advantage of females varies significantly between years within populations as well as among populations. Differences in reproductive investment between females and hermaphrodites may lead to differences in future survival, growth and reproductive success, i.e. to differential costs of reproduction. Since females of this species produce more seeds, higher costs of reproduction in females than in hermaphrodites were expected. Due to the higher costs of reproduction, the yearly variation in reproductive output of females might be more pronounced than that of hermaphrodites.

Methods

Using supplemental hand-pollination of females and hermaphrodites of G. sylvaticum we examined if increased reproductive output leads to differential costs of reproduction in terms of survival, probability of flowering, and seed production in the following year.

Key Results

Experimentally increased reproductive output had differential effects on the reproduction of females and hermaphrodites. In hermaphrodites, the probability of flowering decreased significantly in the following year, whereas in females the costs were expressed in terms of decreased future seed production.

Conclusions

When combining the probability of flowering and seed production per plant to estimate the multiplicative change in fitness, female plants showed a 56 % and hermaphrodites showed a 39 % decrease in fitness due to experimentally increased reproduction. Therefore, in total, female plants seem to be more sensitive to the cost of reproduction in terms of seed fitness than hermaphrodites.  相似文献   

16.
The effects of climate change on plant reproductive performance affects the sequence of different plant reproductive stages from flowering to seed production and viability, as well as the network of relationships between them. These effects are expected to respond to different components of climate change, such as temperature and water availability, and may be sensitive to differences in species phenology.We used long-term experimental drought and warming treatments to study the effect of climate change on flower production, fruit and seed-set, seed size and seed germination rate (proportion of germinating seeds) in three Mediterranean shrubs coexisting in a coastal shrubland.Larger plants produced significantly more flowers in all three species, and higher fruit-set in Dorycnium pentaphyllum. Flower production was reduced in drought and warming treatments in the spring-flowering species D. pentaphyllum and Helianthemum syriacum, but not in the autumn–winter species Erica multiflora, which increased flowering in the warming treatment. However, the drought treatment eventually resulted in a decreased seed-set in E. multiflora. Structural equation modelling revealed strong correlations between the sequential reproductive stages. Specifically, flower density in inflorescences determined seed-set in H. syriacum, and seed size and germination rate in E. multiflora. Nevertheless, the relevance of relationships between reproductive traits changed between climatic treatments: in D. pentaphyllum a direct relationship between plant size and seed size only arised in the drought treatment, while in H. syriacum climate treatments resulted in a stronger relationship between the number of flowers and seed-set.This experimental study shows the ability of changing climatic variables to determine the reproductive sequential process of woody species. We show that several parameters of the reproductive performance of some Mediterranean species are affected by drought and warming treatments simulating climate change, highlighting the importance of changes in both water availability and temperature, and the sequential relationship between reproductive stages. Phenological patterns also contribute to species’ differential responses to climatic change, due to the relationship of these patterns with resource availability, environmental conditions and plant–pollinator interactions.  相似文献   

17.
Microbes influence plant phenotypes but most known examples of this are from the study of below-ground microbes and plant disease modification. To examine the potential importance of phyllosphere microbes on non-disease related plant traits, we used sterile Arabidopsis clones to test the effects of foliar fungi on flowering phenology and reproductive allocation under conditions of varying water stress. We inoculated the sterile plants with fully-factorial combinations of four fungal isolates, then measured flowering time and reproductive allocation for each treatment group under normal and water-stressed conditions. All plants inoculated with foliar fungi had significantly later flowering and greater seed mass than the sterile control groups. The magnitude of this effect depended on the specific fungi present, but individual fungal effects diminished as inoculum richness increased. Above-ground microbes likely influence other plant traits as well and should be considered in any study measuring plant phenotypes.  相似文献   

18.
Most fungi are saprophytic and not pathogenic to plants, animals and humans. However, a relative few fungal species are phytopathogenic, cause disease (e.g., infections, allergies) in man, and produce toxins that affect plants, animals and humans. Among such fungi are members of the Aspergillus and Fusarium genera as well as other genera (e.g., Alternaria, Mucor) comprising the emerging pathogen group in humans. These fungi present a common threat to both agricultural production and the health of healthy and immunocompromised individuals. Taken together, these relative few fungi can cause huge economic losses to agriculture, loss of food for consumption, and serious, often fatal diseases in humans and animals. Plants may be a source of antifungal compounds since they have had to develop compounds to resist infections by fungi present in their environment.  相似文献   

19.
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.  相似文献   

20.
Results of mycological surveys of root-knot and cyst nematodes from tropical regions indicate that most fungal species associated with females or cysts of species of Globodera, Heterodera, and Meloidogyne are those found with nematodes from temperate areas. Some fungal species, however, were found in higher frequency in tropical regions than in temperate countries; e.g., Cylindrocarpon destructans and Ulocladium atrum were the most common species associated with G. pallida and G. rostochiensis cysts in Peru. These fungi are not so frequent in nematodes from temperate areas. Fungi associated with diseased nematodes in the tropics vary greatly in nutritional requirements and include thermophilic species as well as cold-tolerant fungi. Multi-cropping systems possible in most tropical regions may be designed to increase the frequency of occurrence of microbial species antagonistic to phytonematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号