首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Modified vaccinia virus Ankara (MVA), a highly attenuated strain of vaccinia virus, has been used as vaccine delivery vector in preclinical and clinical studies against infectious diseases and malignancies. Here, we investigated whether an MVA which does not encode any antigen (Ag) could be exploited as adjuvant per se.

Methodology/Principal Findings

We showed that dendritic cells infected in vitro with non-recombinant (nr) MVA expressed maturation and activation markers and were able to efficiently present exogenously pulsed Ag to T cells. In contrast to the dominant T helper (Th) 1 biased responses elicited against Ags produced by recombinant MVA vectors, the use of nrMVA as adjuvant for the co-administered soluble Ags resulted in a long lasting mixed Th1/Th2 responses.

Conclusions/Significance

These findings open new ways to potentiate and modulate the immune responses to vaccine Ags depending on whether they are co-administered with MVA or encoded by recombinant viruses.  相似文献   

2.
3.
Although major inroads into making antiretroviral therapy available in resource-poor countries have been made, there is an urgent need for an effective vaccine administered shortly after birth, which would protect infants from acquiring human immunodeficiency virus type 1 (HIV-1) through breast-feeding. Bacillus Calmette-Guérin (BCG) is given to most infants at birth, and its recombinant form could be used to prime HIV-1-specific responses for a later boost by heterologous vectors delivering the same HIV-1-derived immunogen. Here, two groups of neonate Indian rhesus macaques were immunized with either novel candidate vaccine BCG.HIVA401 or its parental strain AERAS-401, followed by two doses of recombinant modified vaccinia virus Ankara MVA.HIVA. The HIVA immunogen is derived from African clade A HIV-1. All vaccines were safe, giving local reactions consistent with the expected response at the injection site. No systemic adverse events or gross abnormality was seen at necropsy. Both AERAS-401 and BCG.HIVA401 induced high frequencies of BCG-specific IFN-γ-secreting lymphocytes that declined over 23 weeks, but the latter failed to induce detectable HIV-1-specific IFN-γ responses. MVA.HIVA elicited HIV-1-specific IFN-γ responses in all eight animals, but, except for one animal, these responses were weak. The HIV-1-specific responses induced in infants were lower compared to historic data generated by the two HIVA vaccines in adult animals but similar to other recombinant poxviruses tested in this model. This is the first time these vaccines were tested in newborn monkeys. These results inform further infant vaccine development and provide comparative data for two human infant vaccine trials of MVA.HIVA.Close to 2.3 million of children globally are infected with human immunodeficiency virus type 1 (HIV-1). The majority of neonatal infections occur in utero or intrapartum and, in the absence of preventative interventions, up to 29% of infants breast-fed by infected mothers acquire HIV-1 (6). Furthermore, HIV-1-infected children face a worse prognosis than adults in that, without antiretroviral treatment (ART), 25% of perinatally infected children progress to AIDS within 1 year (10), and the median time to AIDS for the remaining children is less than 7 years (2). It is now clearly established that maternal and extended infant ART can substantially reduce transmission of HIV-1 through breast-feeding (23). However, in a resource-poor setting, many logistical barriers to implementation of the ART-based prevention of mother-to-child-transmission (PMTCT) remain (23). Because nutrition and hygiene makes breast milk an important determinant of infant survival (22, 28), formula feeding as a protective measure against HIV-1 acquisition is recommended only if it is AFASS (acceptable, feasible, affordable, sustainable, and safe). Unfortunately, AFASS it is still not for majority of infected mothers in sub-Saharan Africa. Also, mixed bottle and breast feeding is associated with a 10-fold increase in HIV-1 transmission relative to exclusive breast-feeding (4). Thus, an effective infant vaccine against HIV-1 infection is the best and safest solution for PMTCT of HIV-1 with the added practical option of prolonging breast-feeding.Neonatal immunity is immature compared to the adult immune system (25). The differences include naivety of the immune cells, a tendency to develop Th2 responses (5) and antigen-presenting cells with inefficient cytokine production (35). For example, human cord blood T cells proliferated poorly and produced low levels of interleukin-2 (IL-2) and gamma interferon (IFN-γ) when endogenous antigen-presenting cells presented the antigen (35, 44). Also, infant myeloid dendritic cells are less efficient in priming Th1 responses because of their decreased responsiveness to Toll-like receptor stimulation, lower levels of surface costimulatory molecules, and lower production of IL-12 (8, 27). In several infections, qualitative and quantitative differences between human newborn and adult responses were detected (1, 9, 26, 37). In contrast, other studies of infants reported proliferation as well as IL-2 and IFN-γ production by T cells equal to that of adults following T-cell receptor-independent activation (21, 46). These latter observations indicate that neonate T cells are not intrinsically “locked” into an immature phenotype but, given the correct stimuli, they can develop mature immune responses (25). The requirement for specific stimuli will likely differ for different pathogens and vaccine vectors.Mycobacterium bovis bacillus Calmette-Guérin (BCG) is commonly delivered at birth as an antituberculosis vaccine as a part of the WHO Expanded Programme on Immunization (EPI). It has been reported by several studies to promote an adultlike Th1 response in newborns (16, 24, 34, 43), although it was also suggested that delaying the BCG delivery to 10 weeks of age benefits the quantity and quality of BCG-induced CD4 T-cell responses (20). BCG and related mycobacterial vectors have been explored as vaccines against other infectious agents, including human and simian immunodeficiency viruses (19), and in adult animals showed immunogenicity and protection (3, 36, 39, 47, 48). The only clinical study of recombinant BCG (rBCG) in adults failed to provide consistent efficacy (7). We have suggested the use of rBCG expressing an HIV-1-derived immunogen as the priming component of a heterologous vaccine platform for PMTCT of HIV-1 through infected breast milk (18), where it is critical to prime HIV-1-specific responses as soon as possible after birth. These responses could be boosted a few weeks later or shortly after the already busy EPI by heterologous vaccines delivering the same HIV-1-derived immunogen. To this extent, we constructed the novel candidate vaccine BCG.HIVA401 (36) by inserting a gene coding for the HIV-1 clade A-derived immunogen HIVA (14) into recombinant BCG strain AREAS-401 (40). AERAS-401 is a newly developed strain that displayed enhanced safety (40) and immunogenicity (11, 15) in murine models relative to its parental BCG vaccine strain Danish SSI-1331. Increased safety represents an important feature should the BCG.HIVA401 vaccine be deployed in babies born to HIV-1-infected mothers. We showed that BCG.HIVA401 in a heterologous combination with recombinant modified vaccinia virus Ankara MVA.HIVA and recombinant ovine atadenovirus OAdV.HIVA induced robust polyfunctional HIV-1-specific T-cell responses in adult macaques (36). Here, we assess the safety and immunogenicity of the BCG.HIVA prime-MVA.HIVA boost regimen in newborn rhesus macaques.  相似文献   

4.
Orthopoxviruses commonly enter into humans and animals via the respiratory tract. Herein, we show that immigration of leukocytes into the lung is triggered via intranasal infection of mice with modified vaccinia virus Ankara (MVA) and not with the vaccinia virus (VACV) Elstree, Wyeth, or Western Reserve (WR) strain. Immigrating cells were identified as monocytes, neutrophils, and CD4+ lymphocytes by flow cytometry and could be detected 24 h and 48 h postinfection. Using an in vitro chemotaxis assay, we confirmed that infection with MVA induces the expression of a soluble chemotactic factor for monocytes, identified as CCL2 (monocyte chemotactic protein-1 [MCP-1]). In contrast to infection with several other VACV strains, MVA induced the expression of CCL2, CCL3, CCL4, and CXCL10 in the human monocytic cell line THP-1 as well as in primary human monocytes. Thus, MVA, and not the VACV Elstree, Wyeth, or WR strain, consistently triggered the expression of a panel of chemokines, including CCL2, in the murine lung, correlating considerably with the immigration of leukocytes. Using CCL2-deficient mice, we demonstrate that CCL2 plays a key role in MVA-triggered respiratory immigration of leukocytes. Moreover, UV irradiation of MVA prevented CCL2 expression in vitro and in vivo as well as respiratory immigration of leukocytes, demonstrating the requirement for an activated molecular viral life cycle. We propose that MVA-triggered chemokine expression causes early immigration of leukocytes to the site of infection, a feature that is important for rapid immunization and its safety and efficiency as a viral vector.The World Health Organization (WHO) announced the worldwide eradication of smallpox at the end of the 1970s. Nevertheless, the threat of an outbreak of smallpox or a smallpox-like disease, either by natural means or via bioterrorism, exists to this day. This danger was illustrated in 2003 by the mini-epidemic of monkeypox in the U.S. Midwest (33). Thus, a vaccine against smallpox is, even today, essential. Although vaccination against smallpox using vaccinia virus (VACV) was quite successful, the incidence of severe side effects prompted the WHO to discontinue the use of the vaccine. Therefore, there is currently still a need for an effective and safe vaccine against smallpox.Among the orthopoxviruses, VACV is frequently used to study poxvirus infection, since it displays many properties of variola virus, the etiologic agent of smallpox, including the capability of modulating and suppressing the immune system by means of expressing several immunoregulatory proteins (44). The assumed natural primary infection site of variola virus is considered to be the respiratory tract (5). Here, the virus encounters lung epithelial cells, conventional dendritic cells, and macrophages. More than three decades ago, viral antigen was detected in alveolar macrophages after a sublethal infection of rabbits with inhaled VACV by using immunofluorescence assays (3). Additionally, under the electron microscope, the cells obtained from repeated washing of rabbit lungs demonstrated that VACV infects and replicates exclusively in macrophages (18). Macrophages, the most abundant hematopoietic cell type in the lung, play a key role in antiviral immune defense through the phagocytosis of infectious particles and the production of reactive oxygen species as well as leukotrienes and inflammatory cytokines (14).The coordinated migration, differentiation, and activation of dendritic cells as well as lymphocytes are required for the efficient elimination of microbes, including viruses, from the lung (15). Activated alveolar macrophages, in particular, enhance the cellular immune response by triggering the immigration of several leukocyte types into the lung owing to the production of chemokines (35). The importance of alveolar macrophages in limiting the replication of a recombinant VACV strain Western Reserve (WR) was recently demonstrated with mice (38). It is likely that the stimulation of cytokine production contributed to the elimination of the virus. In summary, the infection of resident alveolar macrophages with orthopoxviruses and the subsequent upregulation of chemokine expression attract several different leukocyte types, representing a critical event in antiviral defense.A highly attenuated orthopoxvirus strain, modified VACV Ankara (MVA), is being considered as a candidate for the production of a vaccine against smallpox and as a viral vector in gene therapeutic protocols (9). MVA, administered intranasally (i.n.) or intramuscularly as a short-term immunization, has been proven to be protective against a lethal challenge with the virulent VACV strain WR in a mouse model. In contrast, the VACV strain Elstree failed to protect mice when administered intramuscularly 48 h before challenge but was effective when the lethal challenge occurred 14 days postimmunization. Interestingly, an elevated concentration of various types of leukocytes, including monocytes, granulocytes, and T lymphocytes, was present in the lung 48 h after i.n. immunization with MVA (46). This respiratory immigration of leukocytes was most likely triggered by a chemoattractant factor produced by resident lung cells due to infection with MVA. In order to elucidate the mechanism underlying the migration of leukocytes, pilot experiments were performed to test whether MVA triggers the expression of a soluble factor capable of attracting leukocytes, especially monocytes.  相似文献   

5.
6.
7.
8.
A major goal in the control of hepatitis C infection is the development of a vaccine. Here, we have developed a novel HCV vaccine candidate based on the highly attenuated poxvirus vector MVA (referred to as MVA-HCV) expressing the nearly full-length (7.9-kbp) HCV sequence, with the aim to target almost all of the T and B cell determinants described for HCV. In infected cells, MVA-HCV produces a polyprotein that is subsequently processed into the structural and nonstructural HCV proteins, triggering the cytoplasmic accumulation of dense membrane aggregates. In both C57BL/6 and transgenic HLA-A2-vaccinated mice, MVA-HCV induced high, broad, polyfunctional, and long-lasting HCV-specific T cell immune responses. The vaccine-induced T cell response was mainly mediated by CD8 T cells; however, although lower in magnitude, the CD4+ T cells were highly polyfunctional. In homologous protocol (MVA-HCV/MVA-HCV) the main CD8+ T cell target was p7+NS2, whereas in heterologous combination (DNA-HCV/MVA-HCV) the main target was NS3. Antigenic responses were also detected against other HCV proteins (Core, E1-E2, and NS4), but the magnitude of the responses was dependent on the protocol used. The majority of the HCV-induced CD8+ T cells were triple or quadruple cytokine producers. The MVA-HCV vaccine induced memory CD8+ T cell responses with an effector memory phenotype. Overall, our data showed that MVA-HCV induced broad, highly polyfunctional, and durable T cell responses of a magnitude and quality that might be associated with protective immunity and open the path for future considerations of MVA-HCV as a prophylactic and/or therapeutic vaccine candidate against HCV.  相似文献   

9.
10.
11.
Mycobacterium bovis bacillus Calmette-Guérin (BCG), which elicits a degree of protective immunity against tuberculosis, is the most widely used vaccine in the world. Due to its persistence and immunogenicity, BCG has been proposed as a vector for vaccines against other infections, including HIV-1. BCG has a very good safety record, although it can cause disseminated disease in immunocompromised individuals. Here, we constructed a recombinant BCG vector expressing HIV-1 clade A-derived immunogen HIVA using the recently described safer and more immunogenic BCG strain AERAS-401 as the parental mycobacterium. Using routine ex vivo T-cell assays, BCG.HIVA401 as a stand-alone vaccine induced undetectable and weak CD8 T-cell responses in BALB/c mice and rhesus macaques, respectively. However, when BCG.HIVA401 was used as a priming component in heterologous vaccination regimens together with recombinant modified vaccinia virus Ankara-vectored MVA.HIVA and ovine atadenovirus-vectored OAdV.HIVA vaccines, robust HIV-1-specific T-cell responses were elicited. These high-frequency T-cell responses were broadly directed and capable of proliferation in response to recall antigen. Furthermore, multiple antigen-specific T-cell clonotypes were efficiently recruited into the memory pool. These desirable features are thought to be associated with good control of HIV-1 infection. In addition, strong and persistent T-cell responses specific for the BCG-derived purified protein derivative (PPD) antigen were induced. This work is the first demonstration of immunogenicity for two novel vaccine vectors and the corresponding candidate HIV-1 vaccines BCG.HIVA401 and OAdV.HIVA in nonhuman primates. These results strongly support their further exploration.Vaccine strategies must balance safety with immunogenicity. Recombinant attenuated subunit vaccines are generally regarded as safe, but not sufficiently immunogenic as stand-alone vaccines (17). Heterologous prime-boost regimens employing diverse attenuated viruses or bacteria as vectors delivering a common, often T cell-based, immunogen have been shown to induce stronger responses than multiple repeated dosings of the same vaccine modalities (19, 22, 39, 54). This is because heterologous regimens allow boosting of pathogen insert-specific responses while avoiding the accumulation of antivector immunity, which can significantly decrease vaccine “take” (1, 41). Results of the STEP study, which used a candidate single-vector human immunodeficiency virus type 1 (HIV-1) vaccine (6, 17, 41), have highlighted the need for novel alternative vaccine vectors and strategies. Such alternatives could complement the limited mainstream vectors and provide additional safety and immunogenicity through increased flexibility, for example, through the availability of personalized vaccination regimens based on preexisting immune status and/or responsiveness to vaccination.Mycobacterium bovis bacillus Calmette-Guérin (BCG) remains the world''s most widely used vaccine, with over three billion doses administered since its deployment in 1920s. It is the only licensed vaccine against tuberculosis and is administered at birth as part of the WHO Expanded Programme on Immunization (EPI). Due to its many attractive features, BCG or related mycobacterial vectors have also been explored in the context of vaccines against a number of infectious agents such as Leishmania, Borrelia burgdorferi, Streptococcus pneumoniae, Bordetella pertussis, malaria, cottontail rabbit papillomavirus, measles virus, and indeed human and simian immunodeficiency viruses (34). Many of these vaccines showed immunogenicity and protection in murine models, and some were also immunogenic in nonhuman primates (8, 56, 67, 68). In human adults, recombinant BCG (rBCG) vaccines alone failed to provide consistent protection against Lyme disease (13). In addition to adult applications, we have suggested the use of rBCG expressing an HIV-1-derived immunogen as the priming component of a vaccine platform against mother-to-child transmission of HIV-1 through infected breast milk (32), where it would be critical to elicit a protective HIV-1-specific response as soon as possible after birth.To compare vectors and heterologous prime-boost regimens directly, we have advocated and pioneered the development of a panel of vaccine modalities delivering the same shared immunogen (18). Our first such model immunogen is called HIVA (21). This is a T-cell immunogen comprising HIV-1 consensus clade A Gag and a string of partially overlapping immunodominant CD8 T-cell epitopes originating from Gag, Pol, Nef, and Env, which has already been tested extensively in human volunteers (20). To facilitate iterative preclinical improvements of the HIVA vaccines, epitopes recognized by murine (58) and rhesus macaque (44) CD8 T cells were also incorporated. Furthermore, we have formulated HIVA into various vaccine modalities, including plasmid DNA (21), modified vaccinia virus Ankara (MVA) (21), human adenovirus serotype 5 (HAdV-5) (5), Semliki Forest virus replicons (18, 49), recombinant lysine auxotroph BCG strain Pasteur (32), and baculovirus-expressed and purified, bluetongue virus-derived chimeric NS1 tubules (37); the immunogenicity of these vectors has been compared directly and in heterologous combinations. More recently, we reported on the immunogenicity of a novel and promising vaccine vector derived from ovine atadenovirus type 7 (OAdV) (5); OAdV is the prototype member of the genus Atadenovirus, which is structurally and biologically distinct from Mastadenovirus (e.g., HAdV-5) (2, 50). Importantly, no immunity to OAdV has so far been detected in human sera (26). In mice, OAdV.HIVA induced strong polyfunctional HIVA-specific T cell responses with distinct kinetics from those induced by HAdV5.HIVA and displayed demonstrable single-dose efficacy against a surrogate virus challenge (5). OAdV is approved for use in a phase I human clinical trial (http://clinicaltrials.gov identifier no. NCT00625430). All of the vectors/modalities we explore are perceived to be safe and acceptable for use in humans.Here, as a step toward translating our results into human volunteers, we constructed a novel vaccine designated BCG.HIVA401 vectored by AERAS-401, a Danish 1331 strain of BCG with improved immunogenicity and safety (57), and demonstrated priming of T cells to the HIVA transgene product in rhesus macaques. These BCG.HIVA401-primed HIV-1-specific CD4 and CD8 T-cell responses were readily boosted with MVA.HIVA and OAdV.HIVA vaccines to elicit broad and robust HIV-1-specific T cell responses.  相似文献   

12.
13.
从含人类免疫缺陷病毒Ⅰ型(HIV-1)Bostwana C亚型全基因的质粒pJM4-HIV中克隆了nef基因,并利用非复制型痘苗病毒载体构建表达Nef蛋白的重组病毒NTVJ1175nef,经PCR和Southern blot鉴定,nef基因正确整合到痘苗病毒基因组的J片段上;感染人源细胞后,经Western blot和免疫荧光检测表明,重组病毒能很好地表达Nef蛋白,并定位于细胞质中.NTVJ1175nef免疫BALB/c小鼠后,经Pep-IFN-'γ-Assay法检测,可诱导产生针对表位肽P1特异的可分泌IFN-'γ的C 8 T细胞(占脾细胞总数0.20%);经乳酸脱氮酶(LDH)法检测证实,诱导的细胞毒性T细胞(CTL)可特异性地杀伤表位肽P1特异P815靶细胞.这些结果表明,NTVJ1175nef具有良好的细胞免疫原性,为下一步构建表达包含HIV早期抗原的多组分重组痘苗病毒候选疫苗奠定了免疫学基础.  相似文献   

14.
15.
Here we report for the first time on the immunogenicity and protective efficacy of a vaccine strategy involving the adjuvanted fusion protein “H28” (consisting of Ag85B-TB10.4-Rv2660c) and Modified Vaccinia Virus Ankara expressing H28. We show that a heterologous prime-boost regimen involving priming with H28 in a Th1 adjuvant followed by boosting with H28 expressed by MVA (H28/MVA28) induced the highest percentage of IFN-γ expressing T cells, the highest production of IFN-γ per single cell and the highest induction of CD8 T cells compared to either of the vaccines given alone. In contrast, in mice vaccinated with adjuvanted recombinant H28 alone (H28/H28) we observed the highest production of IL-2 per single cell and the highest frequency of antigen specific TNF-α/IL-2 expressing CD4 T cells pre and post infection. Interestingly, TNF-α/IL-2 expressing central memory-like CD4 T cells showed a significant positive correlation with protection at week 6 post infection, whereas the opposite was observed for post infection CD4 T cells producing only IFN-γ. Moreover, as a BCG booster vaccine in a clinically relevant non-human primate TB model, the H28/H28 vaccine strategy induced a slightly more prominent reduction of clinical disease and pathology for up to one year post infection compared to H28/MVA28. Taken together, our data showed that the adjuvanted subunit and MVA strategies led to different T cell subset combinations pre and post infection and that TNF-α/IL-2 double producing but not IFN-γ single producing CD4 T cell subsets correlated with protection in the mouse TB model. Moreover, our data demonstrated that the H28 vaccine antigen was able to induce strong protection in both a mouse and a non-human primate TB model.  相似文献   

16.
利用毕赤酵母系统对O型口蹄疫病毒VP1基因与结核杆菌HSP70基因进行融合表达,并检测此融合蛋白对小鼠细胞免疫和体液免疫的影响。将人工合成的O型口蹄疫病毒VP1基因与结核杆菌HSP70基因克隆入酵母表达载体pPICZαA中,以电穿孔法转化酵母菌X-33,用Zeocin YPDS平板筛选重组子,经甲醇诱导表达后,SDS-PAGE和免疫印迹分析表达产物。以皮下接种的方式给小鼠进行3次免疫,同时设两组对照,分别免疫PBS和常规灭活疫苗,然后通过MTT法和ELISA分别检测淋巴细胞的增殖情况和抗体水平。结果表明融合蛋白既能诱导细胞免疫应答又能诱导体液免疫应答,其诱导产生的抗体水平略低于常规灭活疫苗,而细胞免疫水平则高于后者。  相似文献   

17.
18.
19.
为获得表达甲3型流感病毒(H3N2)M2蛋白的重组天坛株痘苗病毒RVJ1175M2,使用PCR方法扩增流感病毒全长M2基因,将其克隆到天坛株痘苗病毒同源重组质粒pJSC1175中,获得重组质粒pJSC1175M2,通过与痘苗病毒载体同源重组,构建了含流感病毒M2基因的重组痘苗病毒株RVJ1175M2。PCR检测结果证明,流感病毒(H3N2)M2蛋白基因准确插入到天坛株痘苗病毒TK区;Western blot、免疫荧光和流式细胞计数表明重组病毒RVJ1175M2可以有效地表达M2蛋白,表达的M2蛋白有两条带,分别为15kD和13kD,与相关文献报道一致;M2蛋白可有效分布在感染细胞的细胞膜上。这些结果表明重组痘苗病毒株RVJ1175M2可以有效地表达流感病毒M2蛋白,为使用表达M2蛋白的不同类型疫苗进行广谱流感疫苗效果的比较研究奠定了基础。  相似文献   

20.
Modified vaccinia virus Ankara (MVA) has a highly restricted host range in cell culture and is apathogenic in vivo. MVA was derived from the parental chorioallantois vaccinia virus Ankara (CVA) by more than 570 passages in chicken embryo fibroblast (CEF) cells. During CEF cell passaging, six major deletions comprising 24,668 nucleotides occurred in the CVA genome. We have cloned both the MVA and the parental CVA genome as bacterial artificial chromosomes (BACs) and have sequentially introduced the six major MVA deletions into the cloned CVA genome. Reconstituted mutant CVA viruses containing up to six major MVA deletions showed no detectable replication restriction in 12 of 14 mammalian cell lines tested; the exceptions were rabbit cell lines RK13 and SIRC. In mice, CVA mutants with up to three deletions showed slightly enhanced virulence, suggesting that gene deletion in replicating vaccinia virus (VACV) can result in gain of fitness in vivo. CVA mutants containing five or all six deletions were still pathogenic, with a moderate degree of attenuation. Deletion V was mainly responsible for the attenuated phenotype of these mutants. In conclusion, loss or truncation of all 31 open reading frames in the six major deletions is not sufficient to reproduce the specific MVA phenotype of strong attenuation and highly restricted host range. Mutations in viral genes outside or in association with the six major deletions appear to contribute significantly to this phenotype. Host range restriction and avirulence of MVA are most likely a cooperative effect of gene deletions and mutations involving the major deletions.Modified vaccinia virus Ankara (MVA) was derived from the parental strain chorioallantois vaccinia virus Ankara (CVA) by more than 570 passages in chicken embryo fibroblast (CEF) cells and became severely host cell restricted to avian cells (6, 9, 26). MVA is apathogenic in mammalian hosts, while maintaining excellent immunogenicity (5, 18, 41, 46). Due to the versatility of MVA as a gene expression vector and its immunogenicity, MVA offers an attractive basis for recombinant vector vaccines (17, 48, 50). In addition, the recent appreciation of the possibility of accidental or deliberate release of the smallpox virus renewed interest in an MVA-based smallpox vaccine. MVA was used in the 1970s as a priming vaccine prior to the administration of conventional smallpox vaccine in a two-step program. No significant adverse events were reported after the administration of MVA to more than 120,000 primary vaccinees in Germany (27, 45). Recent clinical studies using a third-generation vaccine, MVA-BN, as a stand-alone smallpox vaccine confirmed its excellent safety profile (56, 57) and underscored its potential as a safe vaccine vector against human infections with various pathogens as well as against cancer.One important reason for the versatility of MVA as a vaccine vector is its particular host range phenotype, which allows the viral gene expression program to proceed until late times in infection, resulting in efficient expression of viral as well as recombinant proteins. The block in viral replication occurs very late during assembly of mature and infectious viral particles (42, 48). With the notable exception of the Syrian hamster cell line BHK-21 and the recently described rat cell line IEC-6, MVA has a very limited ability to productively replicate in mammalian cells (9, 16, 35). The genetic basis of the particular host range restriction of MVA is still not well defined. Comparisons with NYVAC, another replication-deficient vaccinia virus vector (54), showed that significant differences in gene expression programs, apoptosis induction, and immunogenicity exist between NYVAC and MVA (19, 31, 32), although they have very similar host ranges in vitro. Thus, comprehensive knowledge of the genetic factors determining the host ranges of such vectors is necessary to provide a deeper understanding of the basis for the safety and immunogenicity to eventually allow their further optimization.In the course of passaging CVA on CEF cells, the virus acquired six large genomic deletions totaling more than 24 kbp of genomic DNA and deleting or truncating 31 open reading frames (ORFs). In addition to the six major deletions, a multitude of shorter deletions and insertions as well as point mutations have occurred in the MVA genome, resulting in gene fragmentation, truncation, short internal deletions, and amino acid exchanges (29). Some or all of these mutations might also contribute to the attenuated phenotype of MVA. MVA no longer encodes many of the known poxviral immune evasion and virulence factors (2). Of the five classical host range genes present in vaccinia virus (VACV), only C12L/SPI-1 and K1L are deleted or truncated in MVA, whereas C7L, K3L, and E3L are preserved. Deletion of C12L/SPI-1 and K1L contributed to the limited MVA host range, but their reconstitution only partially reversed the MVA host range restriction in selected cell lines (49, 59). Marker rescue experiments using large fragments of the CVA genome suggested that at least two further host range genes apart from C12L/SPI-1, C7L, and K1L might reside in the left part of the VACV genome (59).It is presently unknown how the multiple genetic alterations of MVA determine its limited ability to replicate in most mammalian cells and its lack of pathogenicity in vivo. Since restricted host range and lack of pathogenicity of MVA have commonly been associated with the large deletions in the MVA genome, we aimed at sequentially introducing the six major MVA-like deletions in CVA. To facilitate and accelerate mutagenesis, we have generated bacterial artificial chromosome (BAC) clones of both the MVA and CVA genomes. The use of a counterselectable marker allowed multiple consecutive rounds of mutagenesis of the CVA-BAC (39, 58, 62). The resulting CVA mutants showed that even the introduction of all six major MVA deletions did not create an MVA-like host range phenotype and caused only slight attenuation of the parental CVA virus in a murine intranasal infection model. This result indicates that major host range determinants of MVA are located outside the six large deletions. The host range and virulence phenotype of MVA most probably result from a combined effect of mutation of these unknown factors in conjunction with the six major deletions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号