共查询到20条相似文献,搜索用时 0 毫秒
1.
Self-assembling Plants and Integration across Ecological Scales 总被引:1,自引:0,他引:1
Annals of Botany 99: 1023–1034, 2007 There were errors in the colour reproduction of Figs 7 相似文献
2.
Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for these relationships and the implications for landscape planning in agricultural areas. 相似文献
3.
Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. 相似文献
4.
This article aims to introduce the nature of data integration to life scientists. Generally, the subject of data integration is not discussed outside the field of computational science and is not covered in any detail, or even neglected, when teaching/training trainees. End users (hereby defined as wet-lab trainees, clinicians, lab researchers) will mostly interact with bioinformatics resources and tools through web interfaces that mask the user from the data integration processes. However, the lack of formal training or acquaintance with even simple database concepts and terminology often results in a real obstacle to the full comprehension of the resources and tools the end users wish to access. Understanding how data integration works is fundamental to empowering trainees to see the limitations as well as the possibilities when exploring, retrieving, and analysing biological data from databases. Here we introduce a game-based learning activity for training/teaching the topic of data integration that trainers/educators can adopt and adapt for their classroom. In particular we provide an example using DAS (Distributed Annotation Systems) as a method for data integration. 相似文献
5.
6.
Chiara Pastrello David Otasek Kristen Fortney Giuseppe Agapito Mario Cannataro Elize Shirdel Igor Jurisica 《PLoS computational biology》2013,9(1)
High-throughput technologies produce massive amounts of data. However, individual methods yield data specific to the technique used and biological setup. The integration of such diverse data is necessary for the qualitative analysis of information relevant to hypotheses or discoveries. It is often useful to integrate these datasets using pathways and protein interaction networks to get a broader view of the experiment. The resulting network needs to be able to focus on either the large-scale picture or on the more detailed small-scale subsets, depending on the research question and goals. In this tutorial, we illustrate a workflow useful to integrate, analyze, and visualize data from different sources, and highlight important features of tools to support such analyses. 相似文献
7.
8.
9.
For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence. 相似文献
10.
11.
12.
13.
Shoot system of a plant can be divided into elementary molecules composed of phyllome, internode, and meristem of the lateral bud. The capacity of plants for open growth is manifested as multiple reproductions of the modules. These main principles of plant structural organization can be used to formalize and integrate the data from various disciplines studying shoot development—genetics of development, morphology, etc. At the example of a model species Arabidopsis thaliana we show that the data on genetic control of shoot development can be considered in terms of rearrangement of individual modules. Several variants of the module structural reorganization are allowed: reduction or transformation of phyllome, change in the internode length, and triggering active/inactive status of the lateral shoot meristem. Each variant of module structure corresponds to specific pattern of genes activity. Such integration of the data on genetic and structural aspects of morphogenesis can form a basis for mathematical modeling of plant development. 相似文献
14.
Zhao Fang Bingxin Lu Mingyao Liu Meixia Zhang Zhenghui Yi Chengping Wen Tieliu Shi 《PloS one》2013,8(11)
Si-Wu-Tang (SWT) is a Traditional Chinese Medicine (TCM) formula widely used for the treatments of gynecological diseases. To explore the pharmacological mechanism of SWT, we incorporated microarray data of SWT with our herbal target database TCMID to analyze the potential activity mechanism of SWT''s herbal ingredients and targets. We detected 2,405 differentially expressed genes in the microarray data, 20 of 102 proteins targeted by SWT were encoded by these DEGs and can be targeted by 2 FDA-approved drugs and 39 experimental drugs. The results of pathway enrichment analysis of the 20 predicted targets were consistent with that of 2,405 differentially expressed genes, elaborating the potential pharmacological mechanisms of SWT. Further study from a perspective of protein-protein interaction (PPI) network showed that the predicted targets of SWT function cooperatively to perform their multi-target effects. We also constructed a network to combine herbs, ingredients, targets and drugs together which bridges the gap between SWT and conventional medicine, and used it to infer the potential mechanisms of herbal ingredients. Moreover, based on the hypothesis that the same or similar effects between different TCM formulae may result from targeting the same proteins, we analyzed 27 other TCM formulae which can also treat the gynecological diseases, the subsequent result provides additional insight to understand the potential mechanisms of SWT in treating amenorrhea. Our bioinformatics approach to detect the pharmacology of SWT may shed light on drug discovery for gynecological diseases and could be utilized to investigate other TCM formulae as well. 相似文献
15.
Advances in computational methods that allow for exploration of the combinatorial mutation space are needed to realize the potential of synthetic biology based strain engineering efforts. Here, we present Constrictor, a computational framework that uses flux balance analysis (FBA) to analyze inhibitory effects of genetic mutations on the performance of biochemical networks. Constrictor identifies engineering interventions by classifying the reactions in the metabolic model depending on the extent to which their flux must be decreased to achieve the overproduction target. The optimal inhibition of various reaction pathways is determined by restricting the flux through targeted reactions below the steady state levels of a baseline strain. Constrictor generates unique in silico strains, each representing an “expression state”, or a combination of gene expression levels required to achieve the overproduction target. The Constrictor framework is demonstrated by studying overproduction of ethylene in Escherichia coli network models iAF1260 and iJO1366 through the addition of the heterologous ethylene-forming enzyme from Pseudomonas syringae. Targeting individual reactions as well as combinations of reactions reveals in silico mutants that are predicted to have as high as 25% greater theoretical ethylene yields than the baseline strain during simulated exponential growth. Altering the degree of restriction reveals a large distribution of ethylene yields, while analysis of the expression states that return lower yields provides insight into system bottlenecks. Finally, we demonstrate the ability of Constrictor to scan networks and provide targets for a range of possible products. Constrictor is an adaptable technique that can be used to generate and analyze disparate populations of in silico mutants, select gene expression levels and provide non-intuitive strategies for metabolic engineering. 相似文献
16.
Non-native (alien, exotic) plant invasions are affecting ecological processes and threatening biodiversity worldwide. Patterns of plant invasions, and the ecological processes which generate these patterns, vary across spatial scales. Thus, consideration of spatial scale may help to illuminate the mechanisms driving biological invasions, and offer insight into potential management strategies. We review the processes driving movement of non-native plants to new locations, and the patterns and processes at the new locations, as they are variously affected by spatial scale. Dispersal is greatly influenced by scale, with different mechanisms controlling global, regional and local dispersal. Patterns of invasion are rarely documented across multiple spatial scales, but research using multi-scale approaches has generated interesting new insights into the invasion process. The ecological effects of plant invasions are also scale-dependent, ranging from altered local community diversity and homogenization of the global flora, to modified biogeochemical cycles and disturbance regimes at regional or global scales. Therefore, the study and control of invasions would benefit from documenting invasion processes at multiple scales. 相似文献
17.
Yi Kan Wang Daniel G. Hurley Santiago Schnell Cristin G. Print Edmund J. Crampin 《PloS one》2013,8(8)
We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data. 相似文献
18.
《Journal of biological education》2012,46(4):321-344
19.
Response of cells to changing environmental conditions is governed by the dynamics of intricate biomolecular interactions. It may be reasonable to assume, proteins being the dominant macromolecules that carry out routine cellular functions, that understanding the dynamics of protein∶protein interactions might yield useful insights into the cellular responses. The large-scale protein interaction data sets are, however, unable to capture the changes in the profile of protein∶protein interactions. In order to understand how these interactions change dynamically, we have constructed conditional protein linkages for Escherichia coli by integrating functional linkages and gene expression information. As a case study, we have chosen to analyze UV exposure in wild-type and SOS deficient E. coli at 20 minutes post irradiation. The conditional networks exhibit similar topological properties. Although the global topological properties of the networks are similar, many subtle local changes are observed, which are suggestive of the cellular response to the perturbations. Some such changes correspond to differences in the path lengths among the nodes of carbohydrate metabolism correlating with its loss in efficiency in the UV treated cells. Similarly, expression of hubs under unique conditions reflects the importance of these genes. Various centrality measures applied to the networks indicate increased importance for replication, repair, and other stress proteins for the cells under UV treatment, as anticipated. We thus propose a novel approach for studying an organism at the systems level by integrating genome-wide functional linkages and the gene expression data. 相似文献