首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EndA is a membrane-attached surface-exposed DNA-entry nuclease previously known to be required for genetic transformation of Streptococcus pneumoniae. More recent studies have shown that the enzyme also plays an important role during the establishment of invasive infections by degrading extracellular chromatin in the form of neutrophil extracellular traps (NETs), enabling streptococci to overcome the innate immune system in mammals. As a virulence factor, EndA has become an interesting target for future drug design. Here we present the first mutational and biochemical analysis of recombinant forms of EndA produced either in a cell-free expression system or in Escherichia coli. We identify His160 and Asn191 to be essential for catalysis and Asn182 to be required for stability of EndA. The role of His160 as the putative general base in the catalytic mechanism is supported by chemical rescue of the H160A variant of EndA with imidazole added in excess. Our study paves the way for the identification and development of protein or low-molecular-weight inhibitors for EndA in future high-throughput screening assays.  相似文献   

2.
Streptococcus pneumoniae (pneumococcus) is the most common cause of community-acquired pneumonia, with high morbidity and mortality worldwide. A major feature of pneumococcal pneumonia is an abundant neutrophil infiltration . It was recently shown that activated neutrophils release neutrophil extracellular traps (NETs), which contain antimicrobial proteins bound to a DNA scaffold. NETs provide a high local concentration of antimicrobial components and bind, disarm, and kill microbes extracellularly. Here, we show that pneumococci are trapped but, unlike many other pathogens, not killed by NETs. NET trapping in the lungs, however, may allow the host to confine the infection, reducing the likelihood for the pathogen to spread into the bloodstream. DNases are expressed by many Gram-positive bacterial pathogens, but their role in virulence is not clear. Expression of a surface endonuclease encoded by endA is a common feature of many pneumococcal strains. We show that EndA allows pneumococci to degrade the DNA scaffold of NETs and escape. Furthermore, we demonstrate that escaping NETs promotes spreading of pneumococci from the upper airways to the lungs and from the lungs into the bloodstream during pneumonia.  相似文献   

3.
EndA is a sequence non-specific endonuclease that serves as a virulence factor during Streptococcus pneumoniae infection. Expression of EndA provides a strategy for evasion of the host''s neutrophil extracellular traps, digesting the DNA scaffold structure and allowing further invasion by S. pneumoniae. To define mechanisms of catalysis and substrate binding, we solved the structure of EndA at 1.75 Å resolution. The EndA structure reveals a DRGH (Asp-Arg-Gly-His) motif-containing ββα-metal finger catalytic core augmented by an interesting ‘finger-loop’ interruption of the active site α-helix. Subsequently, we delineated DNA binding versus catalytic functionality using structure-based alanine substitution mutagenesis. Three mutants, H154A, Q186A and Q192A, exhibited decreased nuclease activity that appears to be independent of substrate binding. Glu205 was found to be crucial for catalysis, while residues Arg127/Lys128 and Arg209/Lys210 contribute to substrate binding. The results presented here provide the molecular foundation for development of specific antibiotic inhibitors for EndA.  相似文献   

4.
Genetic transformation, in which cells internalize exogenous DNA and integrate it into their chromosome, is widespread in the bacterial kingdom. It involves a specialized membrane-associated machinery for binding double-stranded (ds) DNA and uptake of single-stranded (ss) fragments. In the human pathogen Streptococcus pneumoniae, this machinery is specifically assembled at competence. The EndA nuclease, a constitutively expressed virulence factor, is recruited during competence to play the key role of converting dsDNA into ssDNA for uptake. Here we use fluorescence microscopy to show that EndA is uniformly distributed in the membrane of noncompetent cells and relocalizes at midcell during competence. This recruitment requires the dsDNA receptor ComEA. We also show that under ‘static’ binding conditions, i.e., in cells impaired for uptake, EndA and ComEA colocalize at midcell, together with fluorescent end-labelled dsDNA (Cy3-dsDNA). We conclude that midcell clustering of EndA reflects its recruitment to the DNA uptake machinery rather than its sequestration away from this machinery to protect transforming DNA from extensive degradation. In contrast, a fraction of ComEA molecules were located at cell poles post-competence, suggesting the pole as the site of degradation of the dsDNA receptor. In uptake-proficient cells, we used Cy3-dsDNA molecules enabling expression of a GFP fusion upon chromosomal integration to identify transformed cells as GFP producers 60–70 min after initial contact between DNA and competent cells. Recording of images since initial cell-DNA contact allowed us to look back to the uptake period for these transformed cells. Cy3-DNA foci were thus detected at the cell surface 10–11 min post-initial contact, all exclusively found at midcell, strongly suggesting that active uptake of transforming DNA takes place at this position in pneumococci. We discuss how midcell uptake could influence homology search, and the likelihood that midcell uptake is characteristic of cocci and/or the growth phase-dependency of competence.  相似文献   

5.
Ceragenin CSA-13, a cationic steroid, is here reported to show a concentration-dependent bactericidal/bacteriolytic activity against pathogenic streptococci, including multidrug-resistant Streptococcus pneumoniae. The autolysis promoted by CSA-13 in pneumococcal cultures appears to be due to the triggering of the major S. pneumoniae autolysin LytA, an N-acetylmuramoyl-L-alanine amidase. CSA-13 also disintegrated pneumococcal biofilms in a very efficient manner, although at concentrations slightly higher than those required for bactericidal activity on planktonic bacteria. CSA-13 has little hemolytic activity which should allow testing its antibacterial efficacy in animal models.  相似文献   

6.
The release of chromosomal DNA into culture media has been reported for several naturally transformable bacterial species, but a direct link between competence development and the liberation of DNA is generally lacking. Based on the analysis of strains with mutations in competence-regulatory genes and the use of conditions favouring or preventing competence, we provide evidence that DNA release is triggered by the induction of competence in Streptococcus pneumoniae. Kinetic analyses revealed that whereas competence was maximal 20 min after addition of competence-stimulating peptide, and then decreased, the amount of liberated DNA continued to increase and reached a maximum in stationary phase, when cells are no longer competent for DNA uptake. These data are not consistent with the proposal that release of DNA by a fraction of the population is coordinated with uptake by the remainder. Moreover, we observed that an unidentified DNase was specifically induced or released in competent cultures, and that together with the major pneumococcal endonuclease, EndA, it could degrade released DNA. Nearby complete abolition of release in a mutant lacking both the major autolysin, LytA, and the autolytic lysozyme, LytC, indicated that DNA liberation occurs by LytA-LytC-dependent cell lysis. These observations suggest that competence-dependent DNA release is one facet of a more general phenomenon of sensitization to autolysis that reaches its maximum in stationary phase.  相似文献   

7.
Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material.  相似文献   

8.
9.
The naturally transformable bacterium Streptococcus pneumoniae is able to take up extracellular DNA and incorporate it into its genome. Maintaining natural transformation within a species requires that the benefits of transformation outweigh its costs. Although much is known about the distribution of natural transformation among bacterial species, little is known about the degree to which transformation frequencies vary within species. Here we find that there is significant variation in transformation frequency between strains of Streptococcus pneumoniae isolated from asymptomatic carriage, and that this variation is not concordant with isolate genetic relatedness. Polymorphism in the signalling system regulating competence is also not causally related to differences in transformation frequency, although this polymorphism does influence the degree of genetic admixture experienced by bacterial strains. These data suggest that bacteria can evolve new transformation frequencies over short evolutionary timescales. This facility may permit cells to balance the potential costs and benefits of transformation by regulating transformation frequency in response to environmental conditions.  相似文献   

10.
DNA acquisition promotes the spread of resistance to antibiotics and virulence among bacteria. It is also linked to several natural phenomena including recombination, genome dynamics, adaptation and speciation. Horizontal DNA transfer between bacteria occurs via conjugation, transduction or competence for natural transformation by DNA uptake. Among these, competence is the only mechanism of transformation initiated and entirely controlled by the chromosome of the recipient bacteria. While the molecular mechanisms allowing the uptake of extracellular DNA are increasingly characterized, the function of competence for natural transformation by DNA uptake, the selective advantage maintaining it and the reasons why bacteria take up DNA in the first place are still debated. In this synthesis, I review some of the literature and discuss the four hypotheses on how and why do bacteria take up DNA. I argue that DNA uptake by bacteria is an accidental by-product of bacterial adhesion and twitching motility. Adhesion and motility are generally increased in stressful conditions, which may explain why bacteria increase DNA uptake in these conditions. In addition to its fundamental scientific relevance, the new hypothesis suggested here has significant clinical implications and finds further support from the fact that antibiotics sometimes fail to eliminate the targeted bacterium while inevitably causing stress to others. The widespread misuse of antibiotics may thus not only be selecting for resistant strains, but may also be causing bacteria to take up more DNA with the consequent increase in the chances of acquiring drug resistance and virulence—a scenario in full concordance with the previously reported induction of competence genes by antibiotics in Streptococcus pneumoniae and Legionella pneumophila.  相似文献   

11.
12.
13.
Wild-type strains of Streptococcus pneumoniae were non-mutable by UV radiation and thymidine starvation. Moreover, UV-irradiated pneumococcal ω2 phages were not reactivated in an irradiated host. This suggests that, in pneumococcus, there is no efficient inducible repair process similar to the SOS repair described in detail for E. coli. We also report that mutations cannot be induced by a process thought to be linked to competence during transformation with isogenic wild-type DNA either on wild-type strains or in strains in which the hex function of excision and repair of mismatched bases in inactive.  相似文献   

14.
Disulfide bonds are important for the stability of many extracellular proteins, including bacterial virulence factors. Formation of these bonds is catalyzed by thiol-disulfide oxidoreductases (TDORs). Little is known about their formation in Gram-positive bacteria, particularly among facultative anaerobic Firmicutes, such as streptococci. To investigate disulfide bond formation in Streptococcus gordonii, we identified five putative TDORs from the sequenced genome. Each of the putative TDOR genes was insertionally inactivated with an erythromycin resistance cassette, and the mutants were analyzed for autolysis, extracellular DNA release, biofilm formation, bacteriocin production, and genetic competence. This analysis revealed a single TDOR, SdbA, which exhibited a pleiotropic mutant phenotype. Using an in silico analysis approach, we identified the major autolysin AtlS as a natural substrate of SdbA and showed that SdbA is critical to the formation of a disulfide bond that is required for autolytic activity. Analysis by BLAST search revealed homologs to SdbA in other Gram-positive species. This study provides the first in vivo evidence of an oxidoreductase, SdbA, that affects multiple phenotypes in a Gram-positive bacterium. SdbA shows low sequence homology to previously identified oxidoreductases, suggesting that it may belong to a different class of enzymes. Our results demonstrate that SdbA is required for disulfide bond formation in S. gordonii and indicate that this enzyme may represent a novel type of oxidoreductase in Gram-positive bacteria.  相似文献   

15.
Competence for genetic transformation in Streptococcus pneumoniae has previously been described as a quorum-sensing trait regulated by a secreted peptide pheromone. Recently we demonstrated that competence is also activated by reduction in the accuracy of protein biosynthesis. We have now investigated whether errors upstream of translation in the form of random genomic mutations can provide a similar stimulus. Here we show that generation of a mutator phenotype in S. pneumoniae through deletions of mutX, hexA or hexB enhanced the expression of competence. Similarly, chemical mutagenesis with the nucleotide analog dPTP promoted development of competence. To investigate the relationship between mutational load and the activation of competence, replicate lineages of the mutX strain were serially passaged under conditions of relaxed selection allowing random accumulation of secondary mutations. Competence increased with propagation in these lineages but not in control lineages having wild-type mutX. Resequencing of these derived strains revealed between 1 and 9 single nucleotide polymorphisms (SNPs) per lineage, which were broadly distributed across the genome and did not involve known regulators of competence. Notably, the frequency of competence development among the sequenced strains correlated significantly with the number of nonsynonymous mutations that had been acquired. Together, these observations provide support for the hypothesis that competence in S. pneumoniae is regulated in response to the accumulated burden of coding mutations in the bacterial genome. In contrast to previously described DNA damage response systems that are activated by physical lesions in the chromosome, this pneumococcal pathway may represent a unique stress response system that monitors the coding integrity of the genome.  相似文献   

16.
Zhu L  Lau GW 《PLoS pathogens》2011,7(9):e1002241
Competence stimulating peptide (CSP) is a 17-amino acid peptide pheromone secreted by Streptococcus pneumoniae. Upon binding of CSP to its membrane-associated receptor kinase ComD, a cascade of signaling events is initiated, leading to activation of the competence regulon by the response regulator ComE. Genes encoding proteins that are involved in DNA uptake and transformation, as well as virulence, are upregulated. Previous studies have shown that disruption of key components in the competence regulon inhibits DNA transformation and attenuates virulence. Thus, synthetic analogues that competitively inhibit CSPs may serve as attractive drugs to control pneumococcal infection and to reduce horizontal gene transfer during infection. We performed amino acid substitutions on conserved amino acid residues of CSP1 in an effort to disable DNA transformation and to attenuate the virulence of S. pneumoniae. One of the mutated peptides, CSP1-E1A, inhibited development of competence in DNA transformation by outcompeting CSP1 in time and concentration-dependent manners. CSP1-E1A reduced the expression of pneumococcal virulence factors choline binding protein D (CbpD) and autolysin A (LytA) in vitro, and significantly reduced mouse mortality after lung infection. Furthermore, CSP1-E1A attenuated the acquisition of an antibiotic resistance gene and a capsule gene in vivo. Finally, we demonstrated that the strategy of using a peptide inhibitor is applicable to other CSP subtype, including CSP2. CSP1-E1A and CSP2-E1A were able to cross inhibit the induction of competence and DNA transformation in pneumococcal strains with incompatible ComD subtypes. These results demonstrate the applicability of generating competitive analogues of CSPs as drugs to control horizontal transfer of antibiotic resistance and virulence genes, and to attenuate virulence during infection by S. pneumoniae.  相似文献   

17.
Summary We have worked out conditions for the study of competence development and genetic transformation in Streptococcus oralis NCTC 11427 (type strain), a species that contains choline in the cell wall. The peak of competence was found at the early exponential phase of growth and the optimal conditions for transformation were achieved with shuttle plasmids prepared from S. pneumoniae or from Escherichia coli serving as donor DNA. Transformation with dye-bouyant density gradient purified plasmid preparations followed first-order kinetics. The pneumococcal amidase can be expressed in S. oralis harbouring a plasmid carrying the lytA gene. This enzyme lysed the cell wall of the transformed cell in the presence of detergents.  相似文献   

18.
Bacterial species such as Shewanella oneidensis MR-1 require extracellular nucleolytic activity for the utilization of extracellular DNA (eDNA) as a source of nutrients and for the turnover of eDNA as a structural matrix component during biofilm formation. We have previously characterized two extracellular nucleases of S. oneidensis MR-1, ExeM and ExeS. Although both are involved in biofilm formation, they are not specifically required for the utilization of eDNA as a nutrient. Here we identified and characterized EndA, a third extracellular nuclease of Shewanella. The heterologously overproduced and purified protein was highly active and rapidly degraded linear and supercoiled DNAs of various origins. Divalent metal ions (Mg(2+) or Mn(2+)) were required for function. endA is cotranscribed with phoA, an extracellular phosphatase, and is not upregulated upon phosphostarvation. Deletion of endA abolished both extracellular degradation of DNA by S. oneidensis MR-1 and the ability to use eDNA as a sole source of phosphorus. PhoA is not strictly required for the exploitation of eDNA as a nutrient. The activity of EndA prevents the formation of large cell aggregates during planktonic growth. However, in contrast to the findings for ExeM, endA deletion had only minor effects on biofilm formation. The findings strongly suggest that the extracellular nucleases of S. oneidensis exert specific functions required under different conditions.  相似文献   

19.
Nasopharyngeal colonization by Streptococcus pneumoniae is an important initial step for the subsequent development of pneumococcal infections. Pneumococci have many virulence factors that play a role in colonization. Pneumolysin (PLY), a pivotal pneumococcal virulence factor for invasive disease, causes severe tissue damage and inflammation with disruption of epithelial tight junctions. In this study, we evaluated the role of PLY in nasal colonization of S. pneumoniae using a mouse colonization model. A reduction of numbers of PLY-deficient pneumococci recovered from nasal tissue, as well as nasal wash, was observed at days 1 and 2 post-intranasal challenges, but not later. The findings strongly support an important role for PLY in the initial establishment nasal colonization. PLY-dependent invasion of local nasal mucosa may be required to establish nasal colonization with S. pneumoniae. The data help provide a rationale to explain why an organism that exists as an asymptomatic colonizer has evolved virulence factors that enable it to occasionally invade and kill its hosts. Thus, the same pneumococcal virulence factor, PLY that can contribute to killing the host, may also play a role early in the establishment of nasopharynx carriage.  相似文献   

20.
Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. Pneumococci can counteract the action of neutrophils with an antiphagocytic capsule and through electrochemical repulsion of antimicrobial peptides via addition of positive charge to the surface. Pneumococci are captured, but not killed in neutrophil extracellular traps (NETs). Here, we study the role of the polysaccharide capsule and lipoteichoic acid (LTA) modification on pneumococcal interaction with NETs. Expression of capsule (serotypes 1, 2, 4 and 9V) significantly reduced trapping by NETs, but was not required for resistance to NET-mediated killing. Pneumococci contain a dlt operon that mediates the incorporation of d-alanine residues into LTAs, thereby introducing positive charge. Genetic inactivation of dltA in non-encapsulated pneumococci rendered the organism sensitive to killing by antimicrobial components present in NETs. However, the encapsulated dltA mutant remained resistant to NET-mediated killing in vitro. Nevertheless, in a murine model of pneumococcal pneumonia, the encapsulated dltA-mutant strain was outcompeted by the wild-type upon invasion into the lungs and bloodstream. This suggests a non-redundant role for LTA alanylation in pneumococcal virulence at the early stage of invasive disease when capsule expression has been shown to be low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号