首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MutY homologue (MYH) is a DNA glycosylase which excises adenine paired with the oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxoG, or Go) during base excision repair (BER). Base excision by MYH results in an apurinic/apyrimidinic (AP) site in the DNA where the DNA sugar–phosphate backbone remains intact. A key feature of MYH activity is its physical interaction and coordination with AP endonuclease I (APE1), which subsequently nicks DNA 5′ to the AP site. Because AP sites are mutagenic and cytotoxic, they must be processed by APE1 immediately after the action of MYH glycosylase. Our recent reports show that the interdomain connector (IDC) of human MYH (hMYH) maintains interactions with hAPE1 and the human checkpoint clamp Rad9–Rad1–Hus1 (9–1–1) complex. In this study, we used NMR chemical shift perturbation experiments to determine hMYH-binding site on hAPE1. Chemical shift perturbations indicate that the hMYH IDC peptide binds to the DNA-binding site of hAPE1 and an additional site which is distal to the APE1 DNA-binding interface. In these two binding sites, N212 and Q137 of hAPE1 are key mediators of the MYH/APE1 interaction. Intriguingly, despite the fact that hHus1 and hAPE1 both interact with the MYH IDC, hHus1 does not compete with hAPE1 for binding to hMYH. Rather, hHus1 stabilizes the hMYH/hAPE1 complex both in vitro and in cells. This is consistent with a common theme in BER, namely that the assembly of protein–DNA complexes enhances repair by efficiently coordinating multiple enzymatic steps while simultaneously minimizing the release of harmful repair intermediates.  相似文献   

2.
Oxidatively induced DNA damage is implicated in disease, unless it is repaired by DNA repair. Defects in DNA repair capacity may be a risk factor for various disease processes. Thus, DNA repair proteins may be used as early detection and therapeutic biomarkers in cancer and other diseases. For this purpose, the measurement of the expression level of these proteins in vivo will be necessary. We applied liquid chromatography/isotope-dilution tandem mass spectrometry (LC-MS/MS) for the identification and quantification of DNA repair proteins human 8-hydroxyguanine-DNA glycosylase (hOGG1) and Escherichia coli formamidopyrimidine DNA glycosylase (Fpg), which are involved in base-excision repair of oxidatively induced DNA damage. We overproduced and purified (15)N-labeled analogues of these proteins to be used as suitable internal standards to ensure the accuracy of quantification. Unlabeled and (15)N-labeled proteins were digested with trypsin and analyzed by LC-MS/MS. Numerous tryptic peptides of both proteins were identified on the basis of their full-scan mass spectra. These peptides matched the theoretical peptide fragments expected from trypsin digestion and provided statistically significant protein scores that would unequivocally identify these proteins. We also recorded the product ion spectra of the tryptic peptides and defined the characteristic product ions. Mixtures of the analyte proteins and their (15)N-labeled analogues were analyzed by selected-reaction monitoring on the basis of product ions. The results obtained suggest that the methodology developed would be highly suitable for the positive identification and accurate quantification of DNA repair proteins in vivo as potential biomarkers for cancer and other diseases.  相似文献   

3.
Trypanosoma cruzi is under the attack of reactive species produced by its mammalian and insect hosts. To survive, it must repair its damaged DNA. We have shown that a base excision DNA repair (BER)-specific parasite TcAP1 endonuclease is involved in the resistance to H2O2. However, a putative TcAP1 negative dominant form impairing TcAP1 activity in vitro did not show any in vivo effect. Here, we show that a negative dominant form of the human APE1 apurinic/apyrimidinic (AP) endonuclease (hAPE1DN) induces a decrease in epimastigote and metacyclic trypomastigote viability when parasites were exposed to H2O2. Those results confirm that TcAP1 AP endonuclease activity plays an important role in epimastigote and in infective metacyclic trypomastigote oxidative DNA damage resistance leading to parasite persistence in the insect and mammalian hosts. All along its biological cycle and in its different cellular forms, T. cruzi, the etiological parasite agent of Chagas’ disease, is under the attack of reactive species produced by its mammalian and insect hosts. To survive, T. cruzi must repair their oxidative damaged DNA. We have previously shown that a specific parasite TcAP1 AP endonuclease of the BER is involved in the T. cruzi resistance to oxidative DNA damage. We have also demonstrated that epimastigotes and cell-derived trypomastigotes parasite forms expressing a putative TcAP1 negative dominant form (that impairs the TcAP1 activity in vitro), did not show any in vivo effect in parasite viability when exposed to oxidative stress. In this work, we show the expression of a negative dominant form of the human APE1 AP endonuclease fused to a green fluorescent protein (GFP; hAPE1DN-GFP) in T. cruzi epimastigotes. The fusion protein is found both in the nucleus and cytoplasm of noninfective epimastigotes but only in the nucleus in metacyclic and cell-derived trypomastigote infective forms. Contrarily to the TcAP1 negative dominant form, the ectopic expression of hAPE1DN-GFP induces a decrease in epimastigote and metacyclic trypomastigote viability when parasites were exposed to increasing H2O2 concentrations. No such effect was evident in expressing hAPE1DN-GFP cell-derived trypomastigotes. Although the viability of both wild-type infective trypomastigote forms diminishes when parasites are submitted to acute oxidative stress, the metacyclic forms are more resistant to H2O2 exposure than cell-derived trypomastigotes.Those results confirm that the BER pathway and particularly the AP endonuclease activity play an important role in epimastigote and metacyclic trypomastigote oxidative DNA damage resistance leading to parasite survival and persistence inside the mammalian and insect host cells.  相似文献   

4.
Apurinic/apyrimidinic endonuclease 1 (APE1 or Ref-1) is the major enzyme in mammals for processing abasic sites in DNA. These cytotoxic and mutagenic lesions arise via spontaneous rupture of the base-sugar bond or the removal of damaged bases by a DNA glycosylase. APE1 cleaves the DNA backbone 5′ to an abasic site, giving a 3′-OH primer for repair synthesis, and mediates other key repair activities. The DNA repair functions are essential for embryogenesis and cell viability. APE1-deficient cells are hypersensitive to DNA-damaging agents, and APE1 is considered an attractive target for inhibitors that could potentially enhance the efficacy of some anti-cancer agents. To enable an important new method for studying the structure, dynamics, catalytic mechanism, and inhibition of APE1, we assigned the chemical shifts (backbone and 13Cβ) of APE1 residues 39-318. We also report a protocol for refolding APE1, which was essential for achieving complete exchange of backbone amide sites for the perdeuterated protein.  相似文献   

5.
6.
DNA glycosylases initiate base excision repair by removing damaged or mismatched bases, producing apurinic/apyrimidinic (AP) DNA. For many glycosylases, the AP-DNA remains tightly bound, impeding enzymatic turnover. A prominent example is thymine DNA glycosylase (TDG), which removes T from G.T mispairs and recognizes other lesions, with specificity for damage at CpG dinucleotides. TDG turnover is very slow; its activity appears to reach a plateau as the [product]/[enzyme] ratio approaches unity. The follow-on base excision repair enzyme, AP endonuclease 1 (APE1), stimulates the turnover of TDG and other glycosylases, involving a mechanism that remains largely unknown. We examined the catalytic activity of human TDG (hTDG), alone and with human APE1 (hAPE1), using pre-steady-state kinetics and a coupled-enzyme (hTDG-hAPE1) fluorescence assay. hTDG turnover is exceedingly slow for G.T (k(cat)=0.00034 min(-1)) and G.U (k(cat)=0.005 min(-1)) substrates, much slower than k(max) from single turnover experiments, confirming that AP-DNA release is rate-limiting. We find unexpectedly large differences in k(cat) for G.T, G.U, and G.FU substrates, indicating the excised base remains trapped in the product complex by AP-DNA. hAPE1 increases hTDG turnover by 42- and 26-fold for G.T and G.U substrates, the first quantitative measure of the effect of hAPE1. hAPE1 stimulates hTDG by disrupting the product complex rather than merely depleting (endonucleolytically) the AP-DNA. The enhancement is greater for hTDG catalytic core (residues 111-308 of 410), indicating the N- and C-terminal domains are dispensable for stimulatory interactions with hAPE1. Potential mechanisms for hAPE1 disruption of the of hTDG product complex are discussed.  相似文献   

7.
8.
Mammalian apurinic/apyrimidinic endonuclease (APE1) initiates the repair of abasic sites (AP-sites), which are highly toxic, mutagenic, and implicated in carcinogenesis. Also, reducing the activity of APE1 protein in cancer cells and tumors sensitizes mammalian tumor cells to a variety of laboratory and clinical chemotherapeutic agents. In general, mouse models are used in studies of basic mechanisms of carcinogenesis, as well as pre-clinical studies before transitioning into humans. Human APE1 (hAPE1) has previously been cloned, expressed, and extensively characterized. However, the knowledge regarding the characterization of mouse APE1 (mAPE1) is very limited. Here we have expressed and purified full-length hAPE1 and mAPE1 in and from E. coli to near homogeneity. mAPE1 showed comparable fast reaction kinetics to its human counterpart. Steady-state enzyme kinetics showed an apparent K(m) of 91 nM and k(cat) of 4.2 s(-1) of mAPE1 for the THF cleavage reaction. For hAPE1 apparent K(m) and k(cat) were 82 nM and 3.2 s(-1), respectively, under similar reaction conditions. However, k(cat)/K(m) were in similar range for both APE1s. The optimum pH was in the range of 7.5-8 for both APE1s and had an optimal activity at 50-100 mM KCl, and they showed Mg(2+) dependence and abrogation of activity at high salt. Circular dichroism spectroscopy revealed that increasing the Mg(2+) concentration altered the ratio of "turns" to "β-strands" for both proteins, and this change may be associated with the conformational changes required to achieve an active state. Overall, compared to hAPE1, mAPE1 has higher K(m) and k(cat) values. However, overall results from this study suggest that human and mouse APE1s have mostly similar biochemical and biophysical properties. Thus, the conclusions of mouse studies to elucidate APE1 biology and its role in carcinogenesis may be extrapolated to apply to human biology. This includes the development and validation of effective APE1 inhibitors as chemosensitizers in clinical studies.  相似文献   

9.
MTH1 protein sanitizes the nucleotide pool so that oxidized 2′-deoxynucleoside triphosphates (dNTPs) cannot be used in DNA replication. Cancer cells require MTH1 to avoid incorporation of oxidized dNTPs into DNA that results in mutations and cell death. Inhibition of MTH1 eradicates cancer, validating MTH1 as an anticancer target. By overexpressing MTH1, cancer cells may mediate cancer growth and resist therapy. To date, there is unreliable evidence suggesting that MTH1 is increased in cancer cells, and available methods to measure MTH1 levels are indirect and semi-quantitative. Accurate measurement of MTH1 in disease-free tissues and malignant tumors of patients may be essential for determining if the protein is truly upregulated in cancers, and for the development and use of MTH1 inhibitors in cancer therapy. Here, we present a novel approach involving liquid chromatography–isotope-dilution tandem mass spectrometry to positively identify and accurately quantify MTH1 in human tissues. We produced full length 15N-labeled MTH1 and used it as an internal standard for the measurements. Following trypsin digestion, seven tryptic peptides of both MTH1 and 15N-MTH1 were identified by their full scan and product ion spectra. These peptides provided a statistically significant protein score that would unequivocally identify MTH1. Next, we identified and quantified MTH1 in human disease-free breast tissues and malignant breast tumors, and in four human cultured cell lines, three of which were cancer cells. Extreme expression of MTH1 in malignant breast tumors was observed, suggesting that cancer cells are addicted to MTH1 for their survival. The approach described is expected to be applicable to the measurement of MTH1 levels in malignant tumors vs. surrounding disease-free tissues in cancer patients. This attribute may help develop novel treatment strategies and MTH1 inhibitors as potential drugs, and guide therapies.  相似文献   

10.
Glutamate, the major excitatory neurotransmitter in the brain, activates receptors coupled to membrane depolarization and Ca2+ influx that mediates functional responses of neurons including processes such as learning and memory. Here we show that reversible nuclear oxidative DNA damage occurs in cerebral cortical neurons in response to transient glutamate receptor activation using non-toxic physiological levels of glutamate. This DNA damage was prevented by intracellular Ca2+ chelation, the mitochondrial superoxide dismutase mimetic MnTMPyP (Mn-5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine chloride tetrakis(methochloride)), and blockade of the permeability transition pore. The repair of glutamate-induced DNA damage was associated with increased DNA repair activity and increased mRNA and protein levels of apurinic endonuclease 1 (APE1). APE1 knockdown induced accumulation of oxidative DNA damage after glutamate treatment, suggesting that APE1 is a key repair protein for glutamate-induced DNA damage. A cAMP-response element-binding protein (CREB) binding sequence is present in the Ape1 gene (encodes APE1 protein) promoter and treatment of neurons with a Ca2+/calmodulin-dependent kinase inhibitor (KN-93) blocked the ability of glutamate to induce CREB phosphorylation and APE1 expression. Selective depletion of CREB using RNA interference prevented glutamate-induced up-regulation of APE1. Thus, glutamate receptor stimulation triggers Ca2+- and mitochondrial reactive oxygen species-mediated DNA damage that is then rapidly repaired by a mechanism involving Ca2+-induced, CREB-mediated APE1 expression. Our findings reveal a previously unknown ability of neurons to efficiently repair oxidative DNA lesions after transient activation of glutamate receptors.  相似文献   

11.
12.
本研究拟建立心脏特异性表达hAPE1转基因小鼠,为研究hAPE1基因功能及其突变与心脏发育和心血管疾病的关系提供工具动物。将人APE1(human APE1,hAPE1)基因插入到心脏特异性启动子α-肌球蛋白重链(α-MHC)下游,构建了心肌细胞特异性表达hAPE1的转基因表达载体,显微注射法导入C57BL/6J小鼠受精卵中,经胚胎移植获得转基因首建者小鼠,建立hAPE1转基因小鼠,PCR鉴定转基因小鼠基因型,Western blotting鉴定h APE1蛋白在心脏中的表达并筛选高表达的转基因品系。研究表明,将含有心肌细胞特异性α-MHC启动子和hAPE1基因的转基因载体进行显微注射于小鼠胚胎中,接着将胚胎移植入假孕母鼠的输卵管中发育,建立了心脏组织特异性高表达hAPE1转基因小鼠品系,获得子代小鼠40只。PCR检测发现有15只小鼠在其基因组上整合有hAPE1基因,Western blotting检测hAPE1在这些小鼠心脏中高度特异性表达。本研究成功获得了在小鼠心肌细胞中特异性表达hAPE1的转基因小鼠,为研究基因在心脏发育与相关疾病中的功能提供了有利的工具。  相似文献   

13.
Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG, or G°), thus reducing G:C to T:A mutations. The resulting apurinic/apyrimidinic (AP) site is processed by an AP-endonuclease or a bifunctional glycosylase/lyase. We show here that the major Schizosaccharomyces pombe AP endonuclease, Apn2, binds to the inter-domain connector located between the N- and C-terminal domains of Myh1. This Myh1 inter-domain connector also interacts with the Hus1 subunit of the Rad9–Rad1–Hus1 checkpoint clamp. Mutagenesis studies indicate that Apn2 and Hus1 bind overlapping but different sequence motifs on Myh1. Mutation on I261 of Myh1 reduces its interaction with Hus1, but only slightly attenuates its interaction with Apn2. However, E262 of Myh1 is a key determinant for both Apn2 and Hus1 interactions. Like human APE1, Apn2 has 3′-phosphodiesterase activity. However, unlike hAPE1, Apn2 has a weak AP endonuclease activity which cleaves the AP sites generated by Myh1 glycosylase. Functionally, Apn2 stimulates Myh1 glycosylase activity and Apn2 phosphodiesterase activity is stimulated by Myh1. The cross stimulation of Myh1 and Apn2 enzymatic activities is dependent on their physical interaction. Thus, Myh1 and Apn2 constitute an initial BER complex.  相似文献   

14.
Our genomic DNA is endlessly exposed to a wide variety of exogenous and endogenous DNA-damaging agents. One of the most abundant DNA lesions is an apurinic/apyrimidinic (AP) site, which in vivo, can form spontaneously or through various cellular pathways, including the repair activity of DNA glycosylase enzymes (Wilson & Barsky, 2001). Persistence of these AP sites is both highly mutagenic and cytotoxic to the cell (Loeb & Preston, 1986). AP endonuclease 1 (APE1), an Mg2+ dependent enzyme, is the major human endonuclease responsible for incising the DNA backbone at AP sites. Repair to canonical duplex DNA is then completed by DNA polymerase and DNA ligase. Recently, APE1, in conjunction with delivery of DNA-damaging agents, has become a target for chemotherapeutic research with the aim to inhibit APE1 activity (Fishel & Kelley, 2007). Therefore, an understanding of APE1 activity and its molecular mechanism is essential. In vitro, the authentic AP site is highly unstable and can undergo β-elimination, leading to a strand break (Strauss, Beard, Patterson & Wilson, 1997). Due to the fragility of the AP site, stable AP site analogs, such as the reduced AP site or tetrahydrofuran (THF) site, are typically used to study APE1 (Maher & Bloom, 2007; Strauss, Beard, Patterson & Wilson, 1997). In this work, we have performed the first comprehensive kinetic study of APE1 acting on the authentic AP site as well the reduced AP site and THF AP site analog. Transient-state kinetic experiments reveal that the strand incision chemistry step is fast, upwards of ~700?s?1 for all substrates, making APE1 one of the fastest DNA repair enzymes. Steady-state kinetic experiments reveal for each substrate, a slow, post chemistry step limits the steady-state rate. The steady-state rate for APE1 acting on authentic AP and AP-Red substrates is highly dependent on Mg2+ concentration, while the steady-state rate for THF site was not dependent on Mg2+ concentration. This comprehensive kinetic analysis reveal differences and similarities in the way APE1 processes the authentic AP site compared to AP site analogs. Furthermore, these differences require consideration when choosing AP site analogs to study APE1.  相似文献   

15.
Interactions of APE1 (human apurinic/apyrimidinic endonuclease 1) and DNA polymerase beta with various DNA structures imitating intermediates of DNA repair and replication were investigated by gel retardation and photoaffinity labeling. Photoaffinity labeling of APE1 and DNA polymerase beta was accomplished by DNA containing photoreactive group at the 3 -end in mouse embryonic fibroblast (MEF) cell extract or for purified proteins. On the whole, modification efficiency was the same for MEF-extract proteins and for purified APE1 and DNA polymerase beta depending on the nature of the 5 -group of a nick/gap in the DNA substrate. Some of DNA duplexes used in this work can be considered as short-patch (DNA with the 5 -phosphate group in the nick/gap) or long-patch (DNA containing 5 -sugar phosphate or 5 -flap) base excision repair (BER) intermediates. Other DNA duplexes (3 -recessed DNA and DNA with the 5 -hydroxyl group in the nick/gap) have no relation to intermediates forming in the course of BER. As shown by both methods, APE1 binds with the highest efficiency to DNA substrate containing 5 -sugar phosphate group in the nick/gap, whereas DNA polymerase beta binds to DNA duplex with a mononucleotide gap flanked by the 5 -p group. When APE1 and DNA polymerase beta are both present, a ternary complex APE1-DNA polymerase beta-DNA is formed with the highest efficiency with DNA product of APE1 endonuclease activity and with DNA containing 5 -flap or mononucleotide-gapped DNA with 5 -p group. It was found that APE1 stimulates DNA synthesis catalyzed by DNA polymerase beta, and a human X-ray repair cross-complementing group 1 protein (XRCC1) stimulates APE1 3 -5 exonuclease activity on 3 -recessed DNA duplex.  相似文献   

16.
17.
The mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is an essential DNA repair/gene regulatory protein. Decrease of APE1 in cells by inducible shRNA knockdown or by conditional gene knockout caused apoptosis. Here we succeeded in establishing a unique mouse embryonic fibroblast (MEF) line expressing APE1 at a level far lower than those achieved with shRNA knockdown. The cells, named MEFla (MEFlowAPE1), were hypersensitive to methyl methanesulfonate (MMS), and showed little activity for repairing AP-sites and MMS induced DNA damage. While these results were consistent with the essential role of APE1 in repair of AP sites, the MEFla cells grew normally and the basal activation of poly(ADP-ribose) polymerases in MEFla was lower than that in the wild-type MEF (MEFwt), indicating the low DNA damage stress in MEFla under the normal growth condition. Oxidative phosphorylation activity in MEFla was lower than in MEFwt, while the glycolysis rates in MEFla were higher than in MEFwt. In addition, we observed decreased intracellular oxidative stress in MEFla. These results suggest that cells with low APE1 reversibly suppress mitochondrial respiration and thereby reduce DNA damage stress and increases the cell viability.  相似文献   

18.
Apurinic/apyrimidinic endonuclease 1 (APE1) is the major mammalian enzyme in DNA base excision repair that cleaves the DNA phosphodiester backbone immediately 5′ to abasic sites. Recently, we identified APE1 as an endoribonuclease that cleaves a specific coding region of c-myc mRNA in vitro, regulating c-myc mRNA level and half-life in cells. Here, we further characterized the endoribonuclease activity of APE1, focusing on the active-site center of the enzyme previously defined for DNA nuclease activities. We found that most site-directed APE1 mutant proteins (N68A, D70A, Y171F, D210N, F266A, D308A, and H309S), which target amino acid residues constituting the abasic DNA endonuclease active-site pocket, showed significant decreases in endoribonuclease activity. Intriguingly, the D283N APE1 mutant protein retained endoribonuclease and abasic single-stranded RNA cleavage activities, with concurrent loss of apurinic/apyrimidinic (AP) site cleavage activities on double-stranded DNA and single-stranded DNA (ssDNA). The mutant proteins bound c-myc RNA equally well as wild-type (WT) APE1, with the exception of H309N, suggesting that most of these residues contributed primarily to RNA catalysis and not to RNA binding. Interestingly, both the endoribonuclease and the ssRNA AP site cleavage activities of WT APE1 were present in the absence of Mg2+, while ssDNA AP site cleavage required Mg2+ (optimally at 0.5-2.0 mM). We also found that a 2′-OH on the sugar moiety was absolutely required for RNA cleavage by WT APE1, consistent with APE1 leaving a 3′-PO42− group following cleavage of RNA. Altogether, our data support the notion that a common active site is shared for the endoribonuclease and other nuclease activities of APE1; however, we provide evidence that the mechanisms for cleaving RNA, abasic single-stranded RNA, and abasic DNA by APE1 are not identical, an observation that has implications for unraveling the endoribonuclease function of APE1 in vivo.  相似文献   

19.
Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is a multifunctional enzyme involved in base excision repair (BER). APE1 cleaves DNA 5′ of an AP site to produce a single-strand break with 5′-OH and 3′-deoxyribose phosphate. In addition to its AP-endonucleolytic function, APE1 possesses 3′-phosphodiesterase, 3′–5′ exonuclease, and 3′-phosphatase activities. Independently of its function as a repair protein, APE1 was identified as a redox factor (Ref-1). The review summarizes the published and original data on the role of the additional functions of APE1 in DNA repair and apoptosis and regulation of the BER system via APE1 interaction with DNA and other repair proteins.  相似文献   

20.
XRCC1 protein is essential for mammalian viability and is required for the efficient repair of single strand breaks (SSBs) and damaged bases in DNA. XRCC1-deficient cells are genetically unstable and sensitive to DNA damaging agents. XRCC1 has no known enzymatic activity and is thought to act as a scaffold protein for both SSB and base excision repair activities. To further define the defects leading to genetic instability in XRCC1-deficient cells, we overexpressed the AP endonuclease APE1, shown previously to interact with and be stimulated by XRCC1. Here, we report that the overexpression of APE1 can compensate for the impaired capability of XRCC1-deficient cells to repair SSBs induced by oxidative DNA damage, both in vivo and in whole-cell extracts. We show that, for this kind of damage, the repair of blocked DNA ends is rate limiting and can be performed by APE1. Conversely, APE1 overproduction resulted in a 3-fold increase in the sensitivity of XRCC1-deficient cells to an alkylating agent, most probably due to the accumulation of SSBs. Finally, the overproduction of APE1 results in increases of 40% in the frequency of micronuclei and 33% in sister chromatid exchanges of XRCC1 cells. These data suggest that the spontaneous generation of AP sites could be at the origin of the SSBs responsible for the spontaneous genetic instability characteristic of XRCC1-deficient cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号