首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein kinases ataxia‐telangiectasia mutated (ATM) and ATM‐Rad3 related (ATR) are activated in response to DNA damage, genotoxic stress and virus infections. Here we show that during infection with wild‐type adenovirus, ATR and its cofactors RPA32, ATRIP and TopBP1 accumulate at viral replication centres, but there is minimal ATR activation. We show that the Mre11/Rad50/Nbs1 (MRN) complex is recruited to viral centres only during infection with adenoviruses lacking the early region E4 and ATR signaling is activated. This suggests a novel requirement for the MRN complex in ATR activation during virus infection, which is independent of Mre11 nuclease activity and recruitment of RPA/ATR/ATRIP/TopBP1. Unlike other damage scenarios, we found that ATM and ATR signaling are not dependent on each other during infection. We identify a region of the viral E4orf3 protein responsible for immobilization of the MRN complex and show that this prevents ATR signaling during adenovirus infection. We propose that immobilization of the MRN damage sensor by E4orf3 protein prevents recognition of viral genomes and blocks detrimental aspects of checkpoint signaling during virus infection.  相似文献   

2.
Adenoviruses (Ad) with the early region E4 deleted (E4-deleted virus) are defective for DNA replication and late protein synthesis. Infection with E4-deleted viruses results in activation of a DNA damage response, accumulation of cellular repair factors in foci at viral replication centers, and joining together of viral genomes into concatemers. The cellular DNA repair complex composed of Mre11, Rad50, and Nbs1 (MRN) is required for concatemer formation and full activation of damage signaling through the protein kinases Ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR). The E4orf3 and E4orf6 proteins expressed from the E4 region of Ad type 5 (Ad5) inactivate the MRN complex by degradation and mislocalization, and prevent the DNA damage response. Here we investigated individual contributions of the MRN complex, concatemer formation, and damage signaling to viral DNA replication during infection with E4-deleted virus. Using virus mutants, short hairpin RNA knockdown and hypomorphic cell lines, we show that inactivation of MRN results in increased viral replication. We demonstrate that defective replication in the absence of E4 is not due to concatemer formation or DNA damage signaling. The C terminus of Nbs1 is required for the inhibition of Ad DNA replication and recruitment of MRN to viral replication centers. We identified regions of Nbs1 that are differentially required for concatemer formation and inhibition of Ad DNA replication. These results demonstrate that targeting of the MRN complex explains the redundant functions of E4orf3 and E4orf6 in promoting Ad DNA replication. Understanding how MRN impacts the adenoviral life cycle will provide insights into the functions of this DNA damage sensor.  相似文献   

3.
The DNA damage response (DDR) is a conglomerate of pathways designed to detect DNA damage and signal its presence to cell cycle checkpoints and to the repair machinery, allowing the cell to pause and mend the damage, or if the damage is too severe, to trigger apoptosis or senescence. Various DDR branches are regulated by kinases of the phosphatidylinositol 3-kinase-like protein kinase family, including ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). Replication intermediates and linear double-stranded genomes of DNA viruses are perceived by the cell as DNA damage and activate the DDR. If allowed to operate, the DDR will stimulate ligation of viral genomes and will inhibit virus replication. To prevent this outcome, many DNA viruses evolved ways to limit the DDR. As part of its attack on the DDR, adenovirus utilizes various viral proteins to cause degradation of DDR proteins and to sequester the MRN damage sensor outside virus replication centers. Here we show that adenovirus evolved yet another novel mechanism to inhibit the DDR. The E4orf4 protein, together with its cellular partner PP2A, reduces phosphorylation of ATM and ATR substrates in virus-infected cells and in cells treated with DNA damaging drugs, and causes accumulation of damaged DNA in the drug-treated cells. ATM and ATR are not mutually required for inhibition of their signaling pathways by E4orf4. ATM and ATR deficiency as well as E4orf4 expression enhance infection efficiency. Furthermore, E4orf4, previously reported to induce cancer-specific cell death when expressed alone, sensitizes cells to killing by sub-lethal concentrations of DNA damaging drugs, likely because it inhibits DNA damage repair. These findings provide one explanation for the cancer-specificity of E4orf4-induced cell death as many cancers have DDR deficiencies leading to increased reliance on the remaining intact DDR pathways and to enhanced susceptibility to DDR inhibitors such as E4orf4. Thus DDR inhibition by E4orf4 contributes both to the efficiency of adenovirus replication and to the ability of E4orf4 to kill cancer cells.  相似文献   

4.
Mutation of DNA damage checkpoint signaling kinases ataxia telangiectasia-mutated (ATM) or ATM- and Rad3-related (ATR) results in genomic instability disorders. However, it is not well understood how the instability observed in these syndromes relates to DNA replication/repair defects and failed checkpoint control of cell cycling. As a simple model to address this question, we have studied SV40 chromatin replication in infected cells in the presence of inhibitors of ATM and ATR activities. Two-dimensional gel electrophoresis and southern blotting of SV40 chromatin replication products reveal that ATM activity prevents accumulation of unidirectional replication products, implying that ATM promotes repair of replication-associated double strand breaks. ATR activity alleviates breakage of a functional fork as it converges with a stalled fork. The results suggest that during SV40 chromatin replication, endogenous replication stress activates ATM and ATR signaling, orchestrating the assembly of genome maintenance machinery on viral replication intermediates.  相似文献   

5.
The Mre11-Rad50-Nbs1 (MRN) complex plays critical roles in checkpoint activation and double-stranded break (DSB) repair. The Rad50 zinc hook domain mediates zinc-dependent intercomplex associations of MRN, which is important for DNA tethering. Studies in yeast suggest that the Rad50 zinc hook domain is essential for MRN functions, but its role in mammalian cells is not clear. We demonstrated that the human Rad50 hook mutants are severely defective in various DNA damage responses including ATM (Ataxia telangiectasia mutated) activation, homologous recombination, sensitivity to IR, and activation of the ATR pathway. By using live cell imaging, we observed that the Rad50 hook mutants fail to be recruited to chromosomal DSBs, suggesting a novel mechanism underlying the severe defects observed for the Rad50 hook mutants. In vitro analysis showed that Zn(2+) promotes wild type but not the hook mutant of MR to bind double-stranded DNA. In vivo, the Rad50 hook mutants are defective in being recruited to chromosomal DSBs in both H2AX-proficient and -deficient cells, suggesting that the Rad50 hook mutants are impaired in direct binding to chromosomal DSB ends. We propose that the Rad50 zinc hook domain is important for the initial binding of MRN to DSBs, leading to ATM activation to phosphorylate H2AX, which recruits more MRN to the DSB-flanking chromosomal regions. Our studies reveal a critical role for the Rad50 zinc hook domain in establishing and maintaining MRN recruitment to chromosomal DSBs and suggest an important mechanism of how the Rad50 zinc hook domain contributes to DNA repair and checkpoint activation.  相似文献   

6.
Evans JD  Hearing P 《Journal of virology》2005,79(10):6207-6215
Adenovirus replication is controlled by the relocalization or modification of nuclear protein complexes, including promyelocytic leukemia protein (PML) nuclear domains and the Mre11-Rad50-Nbs1 (MRN) DNA damage machinery. In this study, we demonstrated that the E4 ORF3 protein effects the relocalization of both PML and MRN proteins to similar structures within the nucleus at early times after infection. These proteins colocalize with E4 ORF3. Through the analysis of specific viral mutants, we found a direct correlation between MRN reorganization at early times after infection and the establishment of viral DNA replication domains. Further, the reorganization of MRN components may be uncoupled from the ability of E4 ORF3 to rearrange PML. At later stages of infection, components of the MRN complex disperse within the nucleus, Nbs1 is found within viral replication centers, Rad50 remains localized with E4 ORF3, and Mre11 is degraded. The importance of viral regulation of the MRN complex is underscored by the complementation of E4 mutant viruses in cells that lack Mre11 or Nbs1 activity. These results illustrate the importance of nuclear organization in virus growth and suggest that E4 ORF3 regulates activities in both PML nuclear bodies and the MRN complex to stimulate the viral replication program.  相似文献   

7.
Eukaryotic cells are equipped with machinery to monitor and repair damaged DNA. Herpes simplex virus (HSV) DNA replication occurs at discrete sites in nuclei, the replication compartment, where viral replication proteins cluster and synthesize a large amount of viral DNA. In the present study, HSV infection was found to elicit a cellular DNA damage response, with activation of the ataxia-telangiectasia-mutated (ATM) signal transduction pathway, as observed by autophosphorylation of ATM and phosphorylation of multiple downstream targets including Nbs1, Chk2, and p53, while infection with a UV-inactivated virus or with a replication-defective virus did not. Activated ATM and the DNA damage sensor MRN complex composed of Mre11, Rad50, and Nbs1 were recruited and retained at sites of viral DNA replication, probably recognizing newly synthesized viral DNAs as abnormal DNA structures. These events were not observed in ATM-deficient cells, indicating ATM dependence. In Nbs1-deficient cells, HSV infection induced an ATM DNA damage response that was delayed, suggesting a functional MRN complex requirement for efficient ATM activation. However, ATM silencing had no effect on viral replication in 293T cells. Our data open up an interesting question of how the virus is able to complete its replication, although host cells activate ATM checkpoint signaling in response to the HSV infection.  相似文献   

8.
The maintenance of genome integrity requires a rapid and specific response to many types of DNA damage. The conserved and related PI3-like protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate signal transduction pathways in response to genomic insults, such as DNA double-strand breaks (DSBs). It is unclear which proteins recognize DSBs and activate these pathways, but the Mre11/Rad50/NBS1 complex has been suggested to act as a damage sensor. Here we show that infection with an adenovirus lacking the E4 region also induces a cellular DNA damage response, with activation of ATM and ATR. Wild-type virus blocks this signaling through degradation of the Mre11 complex by the viral E1b55K/E4orf6 proteins. Using these viral proteins, we show that the Mre11 complex is required for both ATM activation and the ATM-dependent G(2)/M checkpoint in response to DSBs. These results demonstrate that the Mre11 complex can function as a damage sensor upstream of ATM/ATR signaling in mammalian cells.  相似文献   

9.
Although the mechanism of simian virus 40 (SV40) DNA replication has been extensively investigated with cell extracts, viral DNA replication in productively infected cells utilizes additional viral and host functions whose interplay remains poorly understood. We show here that in SV40-infected primate cells, the activated ataxia telangiectasia-mutated (ATM) damage-signaling kinase, gamma-H2AX, and Mre11-Rad50-Nbs1 (MRN) assemble with T antigen and other viral DNA replication proteins in large nuclear foci. During infection, steady-state levels of MRN subunits decline, although the corresponding mRNA levels remain unchanged. A proteasome inhibitor stabilizes the MRN complex, suggesting that MRN may undergo proteasome-dependent degradation. Analysis of mutant T antigens with disrupted binding to the ubiquitin ligase CUL7 revealed that MRN subunits are stable in cells infected with mutant virus or transfected with mutant viral DNA, implicating CUL7 association with T antigen in MRN proteolysis. The mutant genomes produce fewer virus progeny than the wild type, suggesting that T antigen-CUL7-directed proteolysis facilitates virus propagation. Use of a specific ATM kinase inhibitor showed that ATM kinase signaling is a prerequisite for proteasome-dependent degradation of MRN subunits as well as for the localization of T antigen and damage-signaling proteins to viral replication foci and optimal viral DNA replication. Taken together, the results indicate that SV40 infection manipulates host DNA damage-signaling to reprogram the cell for viral replication, perhaps through mechanisms related to host recovery from DNA damage.  相似文献   

10.
The phosphatidylinositol 3-kinase-like protein kinases, including ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3 related), and DNA-PKcs (DNA-dependent protein kinase catalytic subunit), are the main kinases activated following various assaults on DNA. Although ATM and DNA-PKcs kinases are activated upon DNA double-strand breaks, evidence suggests that these kinases are rapidly phosphorylated by ATR kinase upon UV irradiation; thus, these kinases may also participate in the response to replication stress. Using UV-induced replication stress, we further characterize whether ATM and DNA-PKcs kinase activities are also involved in the cellular response. Contrary to the rapid activation of the ATR-dependent pathway, ATM-dependent Chk2 and KAP-1 phosphorylations, as well as DNA-PKcs Ser2056 autophosphorylation, reach their peak level at 4 to 8 h after UV irradiation. The delayed kinetics of ATM- and DNA-PKcs-dependent phosphorylations also correlated with a surge in H2AX phosphorylation, suggesting that double-strand break formation resulting from collapse of replication forks is responsible for the activation of ATM and DNA-PKcs kinases. In addition, we observed that some phosphorylation events initiated by ATR kinase in the response to UV were mediated by ATM at a later phase of the response. Furthermore, the S-phase checkpoint after UV irradiation was defective in ATM-deficient cells. These results suggest that the late increase of ATM activity is needed to complement the decreasing ATR activity for maintaining a vigilant checkpoint regulation upon replication stress.  相似文献   

11.
Ciapponi L  Cenci G  Gatti M 《Genetics》2006,173(3):1447-1454
The Mre11/Rad50/Nbs (MRN) complex and the two protein kinases ATM and ATR play critical roles in the response to DNA damage and telomere maintenance in mammalian systems. It has been previously shown that mutations in the Drosophila mre11 and rad50 genes cause both telomere fusion and chromosome breakage. Here, we have analyzed the role of the Drosophila nbs gene in telomere protection and the maintenance of chromosome integrity. Larval brain cells of nbs mutants display telomeric associations (TAs) but the frequency of these TAs is lower than in either mre11 or rad50 mutants. Consistently, Rad50 accumulates in the nuclei of wild-type cells but not in those of nbs cells, indicating that Nbs mediates transport of the Mre11/Rad50 complex in the nucleus. Moreover, epistasis analysis revealed that rad50 nbs, tefu (ATM) nbs, and mei-41 (ATR) nbs double mutants have significantly higher frequencies of TAs than either of the corresponding single mutants. This suggests that Nbs and the Mre11/Rad50 complex play partially independent roles in telomere protection and that Nbs functions in both ATR- and ATM-controlled telomere protection pathways. In contrast, analysis of chromosome breakage indicated that the three components of the MRN complex function in a single pathway for the repair of the DNA damage leading to chromosome aberrations.  相似文献   

12.
The MRE11‐RAD50‐NBS1 (MRN) complex is essential for the detection of DNA double‐strand breaks (DSBs) and initiation of DNA damage signaling. Here, we show that Rad17, a replication checkpoint protein, is required for the early recruitment of the MRN complex to the DSB site that is independent of MDC1 and contributes to ATM activation. Mechanistically, Rad17 is phosphorylated by ATM at a novel Thr622 site resulting in a direct interaction of Rad17 with NBS1, facilitating recruitment of the MRN complex and ATM to the DSB, thereby enhancing ATM signaling. Repetition of these events creates a positive feedback for Rad17‐dependent activation of MRN/ATM signaling which appears to be a requisite for the activation of MDC1‐dependent MRN complex recruitment. A point mutation of the Thr622 residue of Rad17 leads to a significant reduction in MRN/ATM signaling and homologous recombination repair, suggesting that Thr622 phosphorylation is important for regulation of the MRN/ATM signaling by Rad17. These findings suggest that Rad17 plays a critical role in the cellular response to DNA damage via regulation of the MRN/ATM pathway.  相似文献   

13.
Gene amplification is a phenotype-causing form of chromosome instability and is initiated by DNA double-strand breaks (DSBs). Cells with mutant p53 lose G1/S checkpoint and are permissive to gene amplification. In this study we show that mammalian cells become proficient for spontaneous gene amplification when the function of the DSB repair protein complex MRN (Mre11/Rad50/Nbs1) is impaired. Cells with impaired MRN complex experienced severe replication stress and gained substrates for gene amplification during replication, as evidenced by the increase of replication-associated single-stranded breaks that were converted to DSBs most likely through replication fork reversal. Impaired MRN complex directly compromised ATM/ATR-mediated checkpoints and allowed cells to progress through cell cycle in the presence of DSBs. Such compromised intra-S phase checkpoints promoted gene amplification independently from mutant p53. Finally, cells adapted to endogenous replication stress by globally suppressing genes for DNA replication and cell cycle progression. Our results indicate that the MRN complex suppresses gene amplification by stabilizing replication forks and by securing DNA damage response to replication-associated DSBs.  相似文献   

14.
Ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia Rad3-related (ATR) and the Mre11/Rad50/Nbs1 complex ensure genome stability in response to DNA damage. However, their essential role in DNA metabolism remains unknown. Here we show that ATM and ATR prevent accumulation of DNA double-strand breaks (DSBs) during chromosomal replication. Replicating chromosomes accumulate DSBs in Xenopus laevis egg extracts depleted of ATM and ATR. Addition of ATM and ATR proteins to depleted extracts prevents DSB accumulation by promoting restart of collapsed replication forks that arise during DNA replication. We show that collapsed forks maintain MCM complex but lose Pol epsilon, and that Pol epsilon reloading requires ATM and ATR. Replication fork restart is abolished in Mre11 depleted extracts and is restored by supplementation with recombinant human Mre11/Rad50/Nbs1 complex. Using a novel fluorescence resonance energy transfer-based technique, we demonstrate that ATM and ATR induce Mre11/Rad50/Nbs1 complex redistribution to restarting forks. This study provides direct biochemical evidence that ATM and ATR prevent accumulation of chromosomal abnormalities by promoting Mre11/Rad50/Nbs1 dependent recovery of collapsed replication forks.  相似文献   

15.
When exposed to genotoxic stress, eukaryotic cells demonstrate a DNA damage response with delay or arrest of cell-cycle progression, providing time for DNA repair. Induction of the Epstein-Barr virus (EBV) lytic program elicited a cellular DNA damage response, with activation of the ataxia telangiectasia-mutated (ATM) signal transduction pathway. Activation of the ATM-Rad3-related (ATR) replication checkpoint pathway, in contrast, was minimal. The DNA damage sensor Mre11-Rad50-Nbs1 (MRN) complex and phosphorylated ATM were recruited and retained in viral replication compartments, recognizing newly synthesized viral DNAs as abnormal DNA structures. Phosphorylated p53 also became concentrated in replication compartments and physically interacted with viral BZLF1 protein. Despite the activation of ATM checkpoint signaling, p53-downstream signaling was blocked, with rather high S-phase CDK activity associated with progression of lytic infection. Therefore, although host cells activate ATM checkpoint signaling with response to the lytic viral DNA synthesis, the virus can skillfully evade this host checkpoint security system and actively promote an S-phase-like environment advantageous for viral lytic replication.  相似文献   

16.
Theadenovirus type 5 (Ad5) E1B-55K and E4orf6 proteins are required together to stimulate viral late nuclear mRNA export to the cytoplasm and to restrict host cell nuclear mRNA export during the late phase of infection. Previous studies have shown that these two viral proteins interact with the cellular proteins elongins B and C, cullin 5, RBX1, and additional cellular proteins to form an E3 ubiquitin-protein ligase that polyubiquitinates p53 and probably one or more subunits of the MRE11-RAD50-NBS1 (MRN) complex, directing their proteasomal degradation. The MRN complex is required for cellular DNA double-strand break repair and induction of the DNA damage response by adenovirus infection. To determine if the ability of E1B-55K and E4orf6 to stimulate viral late mRNA nuclear export requires the ubiquitin-protein ligase activity of this viral ubiquitin-protein ligase complex, we designed and expressed a dominant-negative mutant form of cullin 5 in HeLa cells before infection with wild-type Ad5 or the E1B-55K null mutant dl1520. The dominant-negative cullin 5 protein stabilized p53 and the MRN complex, indicating that it inhibited the viral ubiquitin-protein ligase but had no effect on viral early mRNA synthesis, early protein synthesis, or viral DNA replication. However, expression of the dominant-negative cullin 5 protein caused a decrease in viral late protein synthesis and viral nuclear mRNA export similar to the phenotype produced by mutations in E1B-55K. We conclude that the stimulation of adenovirus late mRNA nuclear export by E1B-55K and E4orf6 results from the ubiquitin-protein ligase activity of the adenovirus ubiquitin-protein ligase complex.  相似文献   

17.
DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.  相似文献   

18.
The interaction of ataxia-telangiectasia mutated (ATM) and the Mre11/Rad50/Nbs1 (MRN) complex is critical for the response of cells to DNA double-strand breaks; however, little is known of the role of these proteins in response to DNA replication stress. Here, we report a mutant allele of MRE11 found in a colon cancer cell line that sensitizes cells to agents causing replication fork stress. The mutant Mre11 weakly interacts with Rad50 relative to wild type and shows little affinity for Nbs1. The mutant protein lacks 3'-5' exonuclease activity as a result of loss of part of the conserved nuclease domain; however, it retains binding affinity for single-stranded DNA (ssDNA), double-stranded DNA with a 3' single-strand overhang, and fork-like structures containing ssDNA regions. In cells, the mutant protein shows a time- and dose-dependent accumulation in chromatin after thymidine treatment that corresponds with increased recruitment and hyperphosphorylation of replication protein A. ATM autophosphorylation, Mre11 foci, and thymidine-induced homologous recombination are suppressed in cells expressing the mutant allele. Together, our results suggest that the mutant Mre11 suppresses the cellular response to replication stress by binding to ssDNA regions at disrupted forks and impeding replication restart in a dominant negative manner.  相似文献   

19.
Rapid activation of ATR by ionizing radiation requires ATM and Mre11   总被引:16,自引:0,他引:16  
The ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases are crucial regulatory proteins in genotoxic stress response pathways that pause the cell cycle to permit DNA repair. Here we show that Chk1 phosphorylation in response to hydroxyurea and ultraviolet radiation is ATR-dependent and ATM- and Mre11-independent. In contrast, Chk1 phosphorylation in response to ionizing radiation (IR) is dependent on ATR, ATM, and Mre11. The ATR and ATM/Mre11 pathways are generally thought to be separate with ATM activation occurring early and ATR activation occurring as a late response to double strand breaks. However, we demonstrate that ATR is activated rapidly by IR, and ATM and Mre11 enhance ATR signaling. ATR-ATR-interacting protein recruitment to double strand breaks is less efficient in the absence of ATM and Mre11. Furthermore, IR-induced replication protein A foci formation is defective in ATM- and Mre11-deficient cells. Thus, ATM and Mre11 may stimulate the ATR signaling pathway by converting DNA damage generated by IR into structures that recruit and activate ATR.  相似文献   

20.
The presence of DNA damage activates a specific response cascade culminating in DNA repair activity and cell cycle checkpoints. Although the type of lesion dictates what proteins are involved in the response, replication protein A (RPA) and the Mre11/Rad50/Nbs1 complex (MRN) respond to most types of lesions. To examine the relationship of RPA and the MRN complex in DNA damage responses, we used siRNA-mediated protein depletion of RPA-p70 and Mre11. Depletion of RPA-p70 decreased the ability of cells to form phospho-Nbs1 foci and increased levels of DNA double-strand breaks (DSBs) following treatment with etoposide (ETOP). In contrast, depletion of Mre11 led to increased levels of RPA-p34 foci formation, but abrogated phospho-RPA-p34 foci formation. These data support a role for RPA as an initial signal/sensor for DNA damage that facilitates recruitment of MRN and ATM/ATR to sites of damage, where they then work together to fully activate the DNA damage response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号