首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an adult onset cerebral small vessel disorder caused by the mutations of the neurogenic locus notch homolog protein 3 (NOTCH3) gene. The extracellular part of NOTCH3 is composed of 34 epidermal growth factor-like (EGF-like) repeat domains. Each EGF-like domain is rich of cysteine and glycine to produce three loops that are essential for high-affinity binding to its ligand. Nearly all reported CADASIL-associated mutations result in gain or loss of a cysteine residue within the EGF-like domains. Only a few cysteine-sparing NOTCH3 mutations have been documented in the patients with CADASIL to date. Here, we reported a Chinese CADASIL family with a cysteine-sparing NOTCH3 mutation. In this family, affected patients had dizziness, memory loss, gait instability, or hemiplegia. Brain magnetic resonance imaging (MRI) showed diffuse leukoencephalopathy with confluent signal abnormalities in the periventricular white matter, basal ganglia, and centrum semiovale bilaterally. By screening the entire coding region of NOTCH3, a novel missense mutation p.G149V (c.446G>T) was found. This mutation was not detected in 400 normal controls. Considering the critical position of glycine within the C-loop of EGF-like domain and its high conservation through evolution, p.G149V mutation could be a potential pathogenic cause for CADASIL.  相似文献   

2.
3.
4.
Hereditary spherocytosis (HS), a common form of inherited hemolytic anemia, is a heterogeneous group of disorders with regard to clinical severity, protein defects, and mode of inheritance. Causal mutations in at least five genes have been reported so far. Because multiple genes have been associated with HS, clinical genetic testing that relies on direct sequencing will be a challenge. In this study, we used whole exome sequencing to identify a novel nonsense mutation in ANK1 (p.Q1772X, NM_020476) that resulted in a truncated protein in a Korean patient with HS. Sanger sequencing confirmed the two affected individuals in the patient’s family were heterozygous for the mutation. This is the first report of a Korean family that carries an ANK1 mutation responsible for HS. Our results demonstrate that next generation sequencing is a powerful approach for rapidly determining the genetic etiology of HS.  相似文献   

5.
Spondyloepiphyseal dysplasia congenita (SEDC) is an autosomal dominant chondrodysplasia characterized by disproportionate short-trunk dwarfism, skeletal and vertebral deformities. Exome sequencing and Sanger sequencing were performed in a Chinese Han family with typical SEDC, and a novel mutation, c.620G>A (p.Gly207Glu), in the collagen type II alpha-1 gene (COL2A1) was identified. The mutation may impair protein stability, and lead to dysfunction of type II collagen. Family-based study suggested that the mutation is a de novo mutation. Our study extends the mutation spectrum of SEDC and confirms genotype-phenotype relationship between mutations at glycine in the triple helix of the alpha-1(II) chains of the COL2A1 and clinical findings of SEDC, which may be helpful in the genetic counseling of patients with SEDC.  相似文献   

6.
目的:I型神经纤维瘤病是一种常见的常染色体显性遗传病,主要累及皮肤和神经系统。其临床表现多样,主要以”咖啡牛奶斑”、皮肤神经纤维瘤、虹膜Lisch结节、腋窝和腹股沟斑点为特征,I型神经纤维瘤病由NF1基因突变所致,神经纤维瘤蛋白是NFI基因编码蛋白,是一种肿瘤抑制蛋白,可抑制细胞的过度生长。NF1基因突变不仅可导致细胞过度生长,还可增加良性及恶性肿瘤的发生风险。本研究中,我们通过基因突变分析,确定中国东北地区一个伴有先天性白内障的I型神经纤维瘤家系NF1基因的突变位点。方法:通过聚合酶链反应(PCR)和NF1基因直接测序分析对家系中的3名患者及2名健康成员进行基因突变检测,以确定其突变位点。结果:此家系呈常染色体显性遗传。通过基因序列分析发现NF1基因第1140密码子第二个碱基呈杂合子点突变C—G,导致一个无义突变S1140X,家系中健康成员和正常对照未检测到此突变存在。结论:通过NF1基因测序分析,我们发现NF1基因的S1140X突变是引起该家系NF1疾病的致病原因,该突变导致NF1基因终止密码提前,神经纤维瘤素蛋白截短。本研究丰富了我国关于I型神经纤维瘤病在眼科的临床表现。  相似文献   

7.

Introduction

We functionally analyzed a frameshift mutation in the SCN5A gene encoding cardiac Na+ channels (Nav1.5) found in a proband with repeated episodes of ventricular fibrillation who presented bradycardia and paroxysmal atrial fibrillation. Seven relatives also carry the mutation and showed a Brugada syndrome with an incomplete and variable expression. The mutation (p.D1816VfsX7) resulted in a severe truncation (201 residues) of the Nav1.5 C-terminus.

Methods and Results

Wild-type (WT) and mutated Nav1.5 channels together with hNavβ1 were expressed in CHO cells and currents were recorded at room temperature using the whole-cell patch-clamp. Expression of p.D1816VfsX7 alone resulted in a marked reduction (≈90%) in peak Na+ current density compared with WT channels. Peak current density generated by p.D1816VfsX7+WT was ≈50% of that generated by WT channels. p.D1816VfsX7 positively shifted activation and inactivation curves, leading to a significant reduction of the window current. The mutation accelerated current activation and reactivation kinetics and increased the fraction of channels developing slow inactivation with prolonged depolarizations. However, late INa was not modified by the mutation. p.D1816VfsX7 produced a marked reduction of channel trafficking toward the membrane that was not restored by decreasing incubation temperature during cell culture or by incubation with 300 μM mexiletine and 5 mM 4-phenylbutirate.

Conclusion

Despite a severe truncation of the C-terminus, the resulting mutated channels generate currents, albeit with reduced amplitude and altered biophysical properties, confirming the key role of the C-terminal domain in the expression and function of the cardiac Na+ channel.  相似文献   

8.
《Endocrine practice》2014,20(9):e162-e165
ObjectiveMultiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant tumor syndrome caused by mutations in the MEN1 gene. Mutations in this tumor suppressor gene are often associated with neuroendocrine tumors. Here we describe a novel deletion mutation at codon 304 in the MEN1 gene of a patient with a prolactinoma and strong family history of pancreatic tumors.MethodsWe describe the patient’s clinical course and mutational analysis and review the relevant literature. Results: A 30-year-old pregnant female was referred to our institution’s psychological department for treatment of depression. She had developed a prolactinoma at age 17 and was being treated with 1 mg/week of cabergoline. A medical interview revealed a family history of pancreatic islet cell and other tumors; her mother died of pancreatic cancer, her brother is living with gastrinoma, and her sister died of leiomyosarcoma. Extensive examinations performed after delivery, including laboratory tests and computed tomography (CT) scans, did not reveal any other tumors. Mutational analysis of the MEN1 gene identified a heterozygous deletion mutation (c911_914delAGGT) at codon 304. This mutation produces a frameshift at p.304Lys and might disturb the splicing of intron 6 due to the lack of a donor site. The predicted menin protein from the mutated allele is truncated at amino acid 328.ConclusionWe report a novel deletion mutation (c911_914delAGGT) in the MEN1 gene that was likely associated with the patient’s prolactinoma and her strong family history of pancreatic tumors. (Endocr Pract. 2014; 20:e162-e165)  相似文献   

9.
一中国脑海绵状血管瘤家系中发现krit1基因新的缺失突变   总被引:1,自引:0,他引:1  
脑海绵状血管瘤(CCM)是多定位于中枢神经系统的一种脑部血管异常,少数在皮肤和视网膜处有并发症。依据致病基因在染色体上的不同位置分为CCM1、CCM2和CCM33种类型。目前,CCM1、CCM2和CCM3的致病基因已经被克隆,分别为krit1、MGC4607和细胞程序性死亡10基因(PDCD10)。利用连锁分析发现内蒙古的一个家系属于CCM1,突变检测发现患者CCM1基因(krit1)第9内含子和第10外显子拼接位点处存在一“GTA”缺失,该突变导致终止密码子提前出现,产生截短蛋白。实验结果支持krit1为CCM1致病基因。  相似文献   

10.
通过对国人Ⅰ型遗传性淋巴水肿一家系分子遗传学检测,报告VEGFR-3基因新突变。首先在Ⅰ型遗传性淋巴水肿对该家系进行致病基因的连锁分析,然后用DNA直接测序方法进行基因突变分析。连锁分析和单倍体分析确定该家系致病基因位于5q35.3,与Ⅰ型遗传性淋巴水肿连锁。VEGFR-3基因突变分析发现了一个新的错义突变D1055V,该错义突变在家系中共分离,且在100个正常对照组中未发现该序列改变。本研究首次报告了国内Ⅰ型遗传性淋巴水肿VEGFR-3基因新的错义突变D1055V,丰富了VEGFR-3基因基因突变谱,为今后开展遗传性淋巴水肿的基因诊断和遗传咨询奠定基础。  相似文献   

11.
Dowling-Degos disease (DDD) is an autosomal dominant genodermatosis characterized by reticular pigmented anomaly mainly affecting flexures. Though KRT5 has been identified to be the causal gene of DDD, the heterogeneity of this disease was displayed: for example, POFUT1 and POGLUT1 were recently identified and confirmed to be additional pathogenic genes of DDD. To identify other DDD causative genes, we performed genome-wide linkage and exome sequencing analyses in a multiplex Chinese DDD family, in which the KRT5 mutation was absent. Only a novel 1-bp deletion (c.246+5delG) in POFUT1 was found. No other novel mutation or this deletion was detected in POFUT1 in a second DDD family and a sporadic DDD case by Sanger Sequencing. The result shows the genetic-heterogeneity and complexity of DDD and will contribute to the further understanding of DDD genotype/phenotype correlations and to the pathogenesis of this disease.  相似文献   

12.
The SNRNP200 gene encodes hBrr2, a helicase essential for pre-mRNA splicing. Six mutations in SNRNP200 have recently been discovered to be associated with autosomal dominant retinitis pigmentosa (adRP). In this work, we analyzed a Chinese family with adRP and identified a novel missense mutation in SNRNP200. To identify the genetic defect in this family, exome of the proband was captured and sequencing analysis was performed to exclude known genetic defects and find possible pathogenic mutations. Subsequently, candidate mutations were validated in affected family members using Sanger sequencing. A novel missense mutation, c.2653C>G transition (p.Q885E), in exon 20 of SNRNP200 was identified. The mutation co-segregated with the disease phenotype over four generations and was absent in 100 normal unaffected individuals. This mutation occurs at highly conserved position in hBrr2 and is predicted to have a functional impact, suggesting that hBrr2-dependent small nuclear riboproteins (snRNPs) unwinding and spliceosome activation is important in the pathogenesis of some variants of RP.  相似文献   

13.
Cerebral Cavernous Malformations (CCM) are vascular malformations that are mostly located in the central nervous system (CNS) and occasionally within the skin and retina, which are classified into three types (CCM1, CCM2 and CCM3) by being located at different loci on chromosomes. At present, CCM1 (7q21), CCM2 (7p13-p15) and CCM3 (3q25.2-q27) are respectively linked to krit1 (Krev interaction trapped gene 1), MGC4607 and PDCD10 (programmed cell death 10). In this work, we identified a novel “GTA” deletion mutation at the acceptor splicing site of intron9/exon 10 on krit1. The mutation results in an abnormally spliced protein by creating a premature termination code at the 23rd amino acid downstream from the sequence alteration. Our results are consistent with previous research on krit1 mutations and confirm the conclusion that KR1T1 haploinsufficiency may be the underlying mechanism of CCM1.  相似文献   

14.
Marfan syndrome is an autosomal dominant disease caused by mutations in the gene encoding for fibrillin-1 (FBN1). More than 1,000 FBN1 mutations have been identified, which may lead to multiple organ involvement, particularly of the ocular, skeletal, and cardiovascular systems. Mutations in exons 59–65 have been reported in the past to cause mild Marfan-like fibrillinopathies. We report a family with a mutation in exon 63 that manifests with significant cardiovascular system involvement such as aortic root dilatations, dissection of the aorta, and sudden death at a young age. Genetic analysis revealed that four related individuals are positive for a novel heterozygous Cys2633Arg mutation in exon 63. Their genotype–phenotype profile (based on the revised Ghent nosology) is described. We postulate that the Cys2633Arg mutation may manifest with significant and progressive enlargement of the aortic root, risk of aortic dissections, and minor skeletal abnormalities, without involving the ocular system (i.e., ectopia lentis).  相似文献   

15.
Congenital cataracts are major cause of visual impairment and blindness in children and previous studies have shown about 1/3 of non-syndromic congenital cataracts are inherited. Major intrinsic protein of the lens (MIP), also known as AQP0, plays a critical role in transparency and development of the lens. To date, more than 10 mutations in MIP have been linked to hereditary cataracts in humans. In this study, we investigated the genetic and functional defects underlying a four-generation Chinese family affected with congenital progressive cortical punctate cataract. Mutation screening of the candidate genes revealed a missense mutation at position 448 (c.448G>C) of MIP, which resulted in the substitution of a conserved aspartic acid with histidine at codon 150 (p.D150H). By linkage and haplotype analysis, we obtained positive multipoint logarithm of odds (LOD) scores at microsatellite markers D12S1632 (Zmax = 1.804 at α = 1.000) and D12S1691 (Zmax = 1.806 at α = 1.000), which flanked the candidate locus. The prediction results of PolyPhen-2 and SIFT indicated that the p.D150H mutation was likely to damage to the structure and function of AQP0. The wild type and p.D150H mutant AQP0 were expressed in HeLa cells separately and the immunofluorescence results showed that the WT-AQP0 distributed at the plasma membrane and in cytoplasm, while AQP0-D150H failed to reach the plasma membrane and was mainly retained in the Golgi apparatus. Moreover, protein levels of AQP0-D150H were significantly lower than those of wide type AQP0 in membrane-enriched lysates when the HEK-293T cells were transfected with the same amount of wild type and mutant plasmids individually. Taken together, our data suggest the p.D150H mutation is a novel disease-causing mutation in MIP, which leads to congenital progressive cortical punctate cataract by impairing the trafficking mechanism of AQP0.  相似文献   

16.
Autosomal recessive nonsyndromic hearing loss (ARNSHL) is a genetically heterogeneous sensorineural disorder, generally manifested with prelingual hearing loss and absence of other clinical manifestations. The aim of this study is to identify the pathogenic gene in a four-generation consanguineous Chinese family with ARNSHL. A novel homozygous variant, c.9316dupC (p.H3106Pfs*2), in the myoxin XVa gene (MYO15A) was identified by exome sequencing and Sanger sequencing. The homozygous MYO15A c.9316dupC variant co-segregated with the phenotypes in the ARNSHL family and was absent in two hundred normal controls. The variant was predicted to interfere with the formation of the Myosin XVa-whirlin-Eps8 complex at the tip of stereocilia, which is indispensable for stereocilia elongation. Our data suggest that the homozygous MYO15A c.9316dupC variant might be the pathogenic mutation, and exome sequencing is a powerful molecular diagnostic strategy for ARNSHL, an extremely heterogeneous disorder. Our findings extend the mutation spectrum of the MYO15A gene and have important implications for genetic counseling for the family.  相似文献   

17.
18.
通过PCR和直接测序的方法,对一性连锁Alport综合征家系17个受检个体的COL4A5基因所有51个外显子及其相邻内含子的DNA序列进行检测。结果发现,在第26外显子2240位点,男患者存在C碱基缺失(2240delc),女患者存在杂合缺失,同时对女患者相应的PCR产物进行克隆和测序以验证PCR测序结果的可靠性,而在正常家系成员和80例对照中均未发现此位点异常,说明2240delc为引起该家系临床病变的突变位点,不是多态性位点。在性连锁Alport综合征中,COL4A5基因的这个单碱基缺失突变位点为首次报道。  相似文献   

19.
Muscle tissues contain the most classic sarcomeric myosin, called myosin II, which consists of 2 heavy chains (MYHs) and 4 light chains. In the case of humans (tetrapod), a total of 6 fast skeletal-type MYH genes (MYHs) are clustered on a single chromosome. In contrast, torafugu (teleost) contains at least 13 fast skeletal MYHs, which are distributed in 5 genomic regions; the MYHs are clustered in 3 of these regions. In the present study, the evolutionary relationship among fast skeletal MYHs is elucidated by comparing the MYHs of teleosts and tetrapods with those of cyclostome lampreys, one of two groups of extant jawless vertebrates (agnathans). We found that lampreys contain at least 3 fast skeletal MYHs, which are clustered in a head-to-tail manner in a single genomic region. Although there was apparent synteny in the corresponding MYH cluster regions between lampreys and tetrapods, phylogenetic analysis indicated that lamprey and tetrapod MYHs have independently duplicated and diversified. Subsequent transgenic approaches showed that the 5′-flanking sequences of Japanese lamprey fast skeletal MYHs function as a regulatory sequence to drive specific reporter gene expression in the fast skeletal muscle of zebrafish embryos. Although zebrafish MYH promoters showed apparent activity to direct reporter gene expression in myogenic cells derived from mice, promoters from Japanese lamprey MYHs had no activity. These results suggest that the muscle-specific regulatory mechanisms are partially conserved between teleosts and tetrapods but not between cyclostomes and tetrapods, despite the conserved synteny.  相似文献   

20.

Purpose

This study was intended to identify the disease causing genes in a large Chinese family with autosomal dominant retinitis pigmentosa and macular degeneration.

Methods

A genome scan analysis was conducted in this family for disease gene preliminary mapping. Snapshot analysis of selected SNPs for two-point LOD score analysis for candidate gene filter. Candidate gene PRPF31 whole exons'' sequencing was executed to identify mutations.

Results

A novel nonsense mutation caused by an insertion was found in PRPF31 gene. All the 19 RP patients in 1085 family are carrying this heterozygous nonsense mutation. The nonsense mutation is in PRPF31 gene exon9 at chr19:54629961-54629961, inserting nucleotide “A” that generates the coding protein frame shift from p.307 and early termination at p.322 in the snoRNA binding domain (NOP domain).

Conclusion

This report is the first to associate PRPF31 gene''s nonsense mutation and adRP and JMD. Our findings revealed that PRPF31 can lead to different clinical phenotypes in the same family, resulting either in adRP or syndrome of adRP and JMD. We believe our identification of the novel “A” insertion mutation in exon9 at chr19:54629961-54629961 in PRPF31 can provide further genetic evidence for clinical test for adRP and JMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号