首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiating between individuals with different knowledge states is an important step in child development and has been considered as a hallmark in human evolution. Recently, primates and corvids have been reported to pass knower–guesser tasks, raising the possibility of mental attribution skills in non-human animals. Yet, it has been difficult to distinguish ‘mind-reading’ from behaviour-reading alternatives, specifically the use of behavioural cues and/or the application of associatively learned rules. Here, I show that ravens (Corvus corax) observing an experimenter hiding food are capable of predicting the behaviour of bystanders that had been visible at both, none or just one of two caching events. Manipulating the competitors'' visual field independently of the view of the test-subject resulted in an instant drop in performance, whereas controls for behavioural cues had no such effect. These findings indicate that ravens not only remember whom they have seen at caching but also take into account that the other''s view was blocked. Notably, it does not suffice for the birds to associate specific competitors with specific caches. These results support the idea that certain socio-ecological conditions may select for similar cognitive abilities in distantly related species and that some birds have evolved analogous precursors to a human theory-of-mind.  相似文献   

2.
Previous studies have suggested that Plasmodium parasites can manipulate mosquito feeding behaviours such as probing, persistence and engorgement rate in order to enhance transmission success. Here, we broaden analysis of this ‘manipulation phenotype’ to consider proximate foraging behaviours, including responsiveness to host odours and host location. Using Anopheles stephensi and Plasmodium yoelii as a model system, we demonstrate that mosquitoes with early stage infections (i.e. non-infectious oocysts) exhibit reduced attraction to a human host, whereas those with late-stage infections (i.e. infectious sporozoites) exhibit increased attraction. These stage-specific changes in behaviour were paralleled by changes in the responsiveness of mosquito odourant receptors, providing a possible neurophysiological mechanism for the responses. However, we also found that both the behavioural and neurophysiological changes could be generated by immune challenge with heat-killed Escherichia coli and were thus not tied explicitly to the presence of malaria parasites. Our results support the hypothesis that the feeding behaviour of female mosquitoes is altered by Plasmodium, but question the extent to which this is owing to active manipulation by malaria parasites of host behaviour.  相似文献   

3.
As environments change, animals update their internal representations of the external world. New information about the environment is learned and retained whereas outdated information is disregarded or forgotten. Retroactive interference (RI) occurs when the retrieval of previously learned information is less available owing to the acquisition of recently acquired information. Even though RI is thought to be a major cause of forgetting, its functional significance is still under debate. We find that natural allelic variants of the Drosophila melanogaster foraging gene known to affect rover and sitter behaviour differ in RI. More specifically, rovers who were previously shown to experience greater environmental heterogeneity while foraging display RI whereas sitters do not. Rover responses are biased towards more recent learning events. These results provide an ecological context to investigate the function of forgetting via RI and a suitable genetic model organism to address the evolutionary relevance of cognitive tasks.  相似文献   

4.
Vocal learning is relatively common in birds but less so in mammals. Sexual selection and individual or group recognition have been identified as major forces in its evolution. While important in the development of vocal displays, vocal learning also allows signal copying in social interactions. Such copying can function in addressing or labelling selected conspecifics. Most examples of addressing in non-humans come from bird song, where matching occurs in an aggressive context. However, in other animals, addressing with learned signals is very much an affiliative signal. We studied the function of vocal copying in a mammal that shows vocal learning as well as complex cognitive and social behaviour, the bottlenose dolphin (Tursiops truncatus). Copying occurred almost exclusively between close associates such as mother–calf pairs and male alliances during separation and was not followed by aggression. All copies were clearly recognizable as such because copiers consistently modified some acoustic parameters of a signal when copying it. We found no evidence for the use of copying in aggression or deception. This use of vocal copying is similar to its use in human language, where the maintenance of social bonds appears to be more important than the immediate defence of resources.  相似文献   

5.
To investigate the effect of bacosides (alcoholic extract of brahmi) on scopolamine (3 mg kg(-1), ip), sodium nitrite (75 mg kg(-1), ip) and BN52021 (15 mg kg(-1), ip) induced experimental amnesia in mice, using Morris water maze test, all the agents were administered 30 min before the acquisition trials on each day and repeated for 4 consecutive days, and on 5th day during the retrieval trials. Bacosides on anterograde administration (before training) in mice, significantly decreased the escape latency time (ELT) during the acquisition trials for 4 consecutive days and increased the time spent (TS) in target quadrant during the retrieval trials on 5th day, and on retrograde administration (after training) bacosides were found not to affect TS significantly. Bacosides also significantly decreased the ELT and increased the TS in mice treated anterogradely with scopolamine and sodium nitrite. Bacosides did not exhibit any significant effect on TS of mice treated retrogradely with sodium nitrite. On the other hand, bacosides significantly increased the TS of mice treated retrogradely with BN52021. On the basis of the present results it can be concluded that bacosides facilitate anterograde memory and attenuate anterograde experimental amnesia induced by scopolamine and sodium nitrite possibly by improving acetylcholine level and hypoxic conditions, respectively. Beside this bacosides also reversed BN52021 induced retrograde amnesia, probably due to increase in platelet activating factor (PAF) synthesis by enhancing cerebral glutamate level.  相似文献   

6.
Many trainers of animals in the zoo now rely on positive reinforcement training to teach animals to voluntarily participate in husbandry and veterinary procedures in an effort to improve behavioral reliability, captive management, and welfare. However, captive elephant handlers in Nepal still rely heavily on punishment- and aversion-based methods. The aim of this project was to determine the effectiveness of secondary positive reinforcement (SPR) in training free-contact elephants in Nepal to voluntarily participate in a trunk wash for the purpose of tuberculosis testing. Five female elephants, 4 juveniles and 1 adult, were enrolled in the project. Data were collected in the form of minutes of training, number of offers made for each training task, and success rate for each task in performance tests. Four out of 5 elephants, all juveniles, successfully learned the trunk wash in 35 sessions or fewer, with each session lasting a mean duration of 12 min. The elephants' performance improved from a mean success rate of 39.0% to 89.3% during the course of the training. This study proves that it is feasible to efficiently train juvenile, free-contact, traditionally trained elephants in Nepal to voluntarily and reliably participate in a trunk wash using only SPR techniques.  相似文献   

7.
Using baited camera landers, the first images of living fishes were recorded in the hadal zone (6000–11 000 m) in the Pacific Ocean. The widespread abyssal macrourid Coryphaenoides yaquinae was observed at a new depth record of approximately 7000 m in the Japan Trench. Two endemic species of liparid were observed at similar depths: Pseudoliparis amblystomopsis in the Japan Trench and Notoliparis kermadecensis in the Kermadec Trench. From these observations, we have documented swimming and feeding behaviour of these species and derived the first estimates of hadal fish abundance. The liparids intercepted bait within 100–200 min but were observed to preferentially feed on scavenging amphipods. Notoliparis kermadecensis act as top predators in the hadal food web, exhibiting up to nine suction-feeding events per minute. Both species showed distinctive swimming gaits: P. amblystomopsis (mean length 22.5 cm) displayed a mean tail-beat frequency of 0.47 Hz and mean caudal : pectoral frequency ratio of 0.76, whereas N. kermadecensis (mean length 31.5 cm) displayed respective values of 1.04 and 2.08 Hz. Despite living at extreme depths, these endemic liparids exhibit similar activity levels compared with shallow-water liparids.  相似文献   

8.
Most research on the effects of exposure to stressful stimuli during embryonic development has focused on post-embryonic behaviour that appears to be abnormal or maladaptive. Here, we tested whether exposure to some stressful stimuli (predatory cues) can lead to post-embryonic behaviour that is adaptive. When eggs of ringed salamanders (Ambystoma annulatum) were exposed to chemical cues from predators, post-hatching larvae showed reduced activity and greater shelter-seeking behaviour; larvae that had been exposed to control cues did not show these behaviours. In addition, wood frog (Rana sylvatica)tadpoles learned to respond to chemical cues from unfamiliar predators with danger based on embryonic conditioning. Therefore, if embryonic experience is a good predictor of future risk, learning associated with exposure to negative stimuli during development may be adaptive.  相似文献   

9.
Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean''s biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study investigated the effects of increased seawater temperature on bacteria able to fix nitrogen (diazotrophs) that live in association with the mussid coral Mussismilia harttii. Consistent increases in diazotroph abundances and diversities were found at increased temperatures. Moreover, gradual shifts in the dominance of particular diazotroph populations occurred as temperature increased, indicating a potential future scenario of climate change. The temperature-sensitive diazotrophs may provide useful bioindicators of the effects of thermal stress on coral reef health, allowing the impact of thermal anomalies to be monitored. In addition, our findings support the development of research on different strategies to improve the fitness of corals during events of thermal stress, such as augmentation with specific diazotrophs.  相似文献   

10.
Receiver bias models of signal evolution are typically regarded as alternatives or complements to ornament evolution due to coevolving mate choice, whereas sexually or socially selected agonistic signals are rarely studied with respect to receiver psychology. Against the background of convergent evolution of red agonistic signals from yellow ancestors in the genus Euplectes (widowbirds and bishops), we experimentally test the function of a yellow signal in the montane marsh widowbird (E. psammocromius), as well as a hypothesized receiver bias for redder (longer wavelength) hues. In a field experiment in southern Tanzania, males that had their yellow wing patches blackened lost their territories or lost territorial contests more often than controls or reddened males, which together with a longer wavelength hue in territory holders, indicates an agonistic signal function. Males painted a novel red hue, matching that of red-signalling congeners, retained their territories and won contests more often than controls. To our knowledge, this is the first demonstration of a receiver bias driving agonistic signal evolution. Although the sensory or cognitive origin of this bias is yet unknown, it strengthens our view that genetically constrained signal production (i.e. carotenoid metabolism), rather than differential selection, explains the carotenoid colour diversification in Euplectes.  相似文献   

11.
Individuals of the same species differ consistently in risky actions. Such ‘animal personality’ variation is intriguing because behavioural flexibility is often assumed to be the norm. Recent theory predicts that between-individual differences in propensity to take risks should evolve if individuals differ in future fitness expectations: individuals with high long-term fitness expectations (i.e. that have much to lose) should behave consistently more cautious than individuals with lower expectations. Consequently, any manipulation of future fitness expectations should result in within-individual changes in risky behaviour in the direction predicted by this adaptive theory. We tested this prediction and confirmed experimentally that individuals indeed adjust their ‘exploration behaviour’, a proxy for risk-taking behaviour, to their future fitness expectations. We show for wild great tits (Parus major) that individuals with experimentally decreased survival probability become faster explorers (i.e. increase risk-taking behaviour) compared to individuals with increased survival probability. We also show, using quantitative genetics approaches, that non-genetic effects (i.e. permanent environment effects) underpin adaptive personality variation in this species. This study thereby confirms a key prediction of adaptive personality theory based on life-history trade-offs, and implies that selection may indeed favour the evolution of personalities in situations where individuals differ in future fitness expectations.  相似文献   

12.
Damage to the hippocampus (HPC) using the excitotoxin N-methyl-D-aspartate (NMDA) can cause retrograde amnesia for contextual fear memory. This amnesia is typically attributed to loss of cells in the HPC. However, NMDA is also known to cause intense neuronal discharge (seizure activity) during the hours that follow its injection. These seizures may have detrimental effects on retrieval of memories. Here we evaluate the possibility that retrograde amnesia is due to NMDA-induced seizure activity or cell damage per se. To assess the effects of NMDA induced activity on contextual memory, we developed a lesion technique that utilizes the neurotoxic effects of NMDA while at the same time suppressing possible associated seizure activity. NMDA and tetrodotoxin (TTX), a sodium channel blocker, are simultaneously infused into the rat HPC, resulting in extensive bilateral damage to the HPC. TTX, co-infused with NMDA, suppresses propagation of seizure activity. Rats received pairings of a novel context with foot shock, after which they received NMDA-induced, TTX+NMDA-induced, or no damage to the HPC at a recent (24 hours) or remote (5 weeks) time point. After recovery, the rats were placed into the shock context and freezing was scored as an index of fear memory. Rats with an intact HPC exhibited robust memory for the aversive context at both time points, whereas rats that received NMDA or NMDA+TTX lesions showed a significant reduction in learned fear of equal magnitude at both the recent and remote time points. Therefore, it is unlikely that observed retrograde amnesia in contextual fear conditioning are due to disruption of non-HPC networks by propagated seizure activity. Moreover, the memory deficit observed at both time points offers additional evidence supporting the proposition that the HPC has a continuing role in maintaining contextual memories.  相似文献   

13.
14.
The expression of neuropeptides is often extremely restricted in the nervous system, making them powerful markers for addressing cell specification . In the developing Drosophila ventral nerve cord, only six cells, the Ap4 neurons, of some 10,000 neurons, express the neuropeptide FMRFamide (FMRFa). Each Ap4/FMRFa neuron is the last-born cell generated by an identifiable and well-studied progenitor cell, neuroblast 5-6 (NB5-6T). The restricted expression of FMRFa and the wealth of information regarding its gene regulation and Ap4 neuron specification makes FMRFa a valuable readout for addressing many aspects of neural development, i.e., spatial and temporal patterning cues, cell cycle control, cell specification, axon transport, and retrograde signaling. To this end, we have conducted a forward genetic screen utilizing an Ap4-specific FMRFa-eGFP transgenic reporter as our readout. A total of 9781 EMS-mutated chromosomes were screened for perturbations in FMRFa-eGFP expression, and 611 mutants were identified. Seventy-nine of the strongest mutants were mapped down to the affected gene by deficiency mapping or whole-genome sequencing. We isolated novel alleles for previously known FMRFa regulators, confirming the validity of the screen. In addition, we identified novel essential genes, including several with previously undefined functions in neural development. Our identification of genes affecting most major steps required for successful terminal differentiation of Ap4 neurons provides a comprehensive view of the genetic flow controlling the generation of highly unique neuronal cell types in the developing nervous system.  相似文献   

15.

Background and Aims

Morphological and biomechanical alterations occurring in woody roots of many plant species in response to mechanical stresses are well documented; however, little is known about the molecular mechanisms regulating these important alterations. The first forest tree genome to be decoded is that of Populus, thereby providing a tool with which to investigate the mechanisms controlling adaptation of woody roots to changing environments. The aim of this study was to use a proteomic approach to investigate the response of Populus nigra woody taproot to mechanical stress.

Methods

To simulate mechanical perturbations, the taproots of 30 one-year-old seedlings were bent to an angle of 90 ° using a steel net. A spatial and temporal two-dimensional proteome map of the taproot axis was obtained. We compared the events occurring in the above-bending, central bending and below-bending sectors of the taproot.

Key Results

The first poplar woody taproot proteome map is reported here; a total of 207 proteins were identified. Spatial and temporal proteomic analysis revealed that factors involved in plant defence, metabolism, reaction wood formation and lateral root development were differentially expressed in the various sectors of bent vs. control roots, seemingly in relation to the distribution of mechanical forces along the stressed woody taproots. A complex interplay among different signal transduction pathways involving reactive oxygen species appears to modulate these responses.

Conclusions

Poplar woody root uses different temporal and spatial mechanisms to respond to mechanical stress. Long-term bending treatment seem to reinforce the defence machinery, thereby enabling the taproot to better overcome winter and to be ready to resume growth earlier than controls.  相似文献   

16.
This paper addresses the question of the organization of memory processes within the medial temporal lobe. Evidence obtained in patients with late-onset amnesia resulting from medial temporal pathology has given rise to two opposing interpretations of the effects of such damage on long-term cognitive memory. One view is that cognitive memory, including memory for both facts and events, is served in a unitary manner by the hippocampus and its surrounding cortices; the other is that the basic function affected in amnesia is event memory, the memory for factual material often showing substantial preservation. Recent findings in patients with amnesia resulting from relatively selective hippocampal damage sustained early in life suggest a possible reconciliation of the two views. The new findings suggest that the hippocampus may be especially important for event as opposed to fact memory, with the surrounding cortical areas contributing to both. Evidence from neuroanatomical and neurobehavioural studies in monkeys is presented in support of this proposal.  相似文献   

17.
Maternal behaviour has profound, long-lasting implications for the health and well-being of developing offspring. In the monogamous California mouse (Peromyscus californicus), care by both parents is critical for offspring survival. We tested the hypothesis that similar to maternal care in rodents, paternal huddling and grooming (HG) behaviour can be transmitted to future generations via behavioural mechanisms. In California mice, testosterone maintains paternal HG behaviour. In the present study, we randomly assigned a group of male California mice to castration or sham-operated conditions and allowed them to raise their offspring normally. Adult sons of these males were paired with a female, and they were observed interacting with their own offspring. We found that like their fathers, the sons of castrated males huddled and groomed their young at lower levels than the sons of sham-operated fathers. The sons of castrates also retrieved pups more frequently. When both parents were present, the sons of castrates also showed a trend towards engaging in less exploratory behaviour. These data support the hypothesis that paternal behaviour, like maternal behaviour, can be transferred to future generations via epigenetic mechanisms and suggest that in a biparental species both parents contribute to offspring behavioural development.  相似文献   

18.
Humans and a few select insect and reptile species synchronise inter-individual behaviour without any time lag by predicting the time of future events rather than reacting to them. This is evident in music performance, dance, and drill. Although repetition of equal time intervals (i.e. isochrony) is the central principle for such prediction, this simple information is used in a flexible and complex way that accommodates both multiples, subdivisions, and gradual changes of intervals. The scope of this flexibility remains largely uncharted, and the underlying mechanisms are a matter for speculation. Here I report an auditory illusion that highlights some aspects of this behaviour and that provides a powerful tool for its future study. A sound pattern is described that affords multiple alternative and concurrent rates of recurrence (temporal levels). An algorithm that systematically controls time intervals and the relative loudness among these levels creates an illusion that the perceived rate speeds up or slows down infinitely. Human participants synchronised hand movements with their perceived rate of events, and exhibited a change in their movement rate that was several times larger than the physical change in the sound pattern. The illusion demonstrates the duality between the external signal and the internal predictive process, such that people''s tendency to follow their own subjective pulse overrides the overall properties of the stimulus pattern. Furthermore, accurate synchronisation with sounds separated by more than 8 s demonstrate that multiple temporal levels are employed for facilitating temporal organisation and integration by the human brain. A number of applications of the illusion and the stimulus pattern are suggested.  相似文献   

19.
The social niche specialization hypothesis predicts that repeated social interactions will generate social niches within groups, thereby promoting consistent individual differences in behaviour. Current support for this hypothesis is mixed, probably because the importance of social niches is dependent upon the ecology of the species. We test whether repeated interactions among group mates generate consistent individual differences in boldness in the social spider, Stegodyphus dumicola. In support of the social niche specialization hypothesis, we found that consistent individual differences in boldness increased with longer group tenure. Interestingly, these differences took longer to appear than in previous work suggesting this species needs more persistent social interactions to shape its behaviour. Recently disturbed colonies were shyer than older colonies, possibly reflecting differences in predation risk. Our study emphasizes the importance of the social environment in generating animal personalities, but also suggests that the pattern of personality development can depend on subtle differences in species'' ecologies.  相似文献   

20.
The ability to plan for future events is one of the defining features of human intelligence. Whether non-human animals can plan for specific future situations remains contentious: despite a sustained research effort over the last two decades, there is still no consensus on this question. Here, we show that New Caledonian crows can use tools to plan for specific future events. Crows learned a temporal sequence where they were (a) shown a baited apparatus, (b) 5 min later given a choice of five objects and (c) 10 min later given access to the apparatus. At test, these crows were presented with one of two tool–apparatus combinations. For each combination, the crows chose the right tool for the right future task, while ignoring previously useful tools and a low-value food item. This study establishes that planning for specific future tool use can evolve via convergent evolution, given that corvids and humans shared a common ancestor over 300 million years ago, and offers a route to mapping the planning capacities of animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号