首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple myeloma (MM), a malignant plasma cell disease, remains incurable and novel drugs are required to improve the prognosis of patients. Due to the lack of the bone microenvironment and auto/paracrine growth factors human MM cells are difficult to cultivate. Therefore, there is an urgent need to establish proper in vitro and in vivo culture systems to study the action of novel therapeutics on human MM cells. Here we present a model to grow human multiple myeloma cells in a complex 3D environment in vitro and in vivo. MM cell lines OPM-2 and RPMI-8226 were transfected to express the transgene GFP and were cultivated in the presence of human mesenchymal cells and collagen type-I matrix as three-dimensional spheroids. In addition, spheroids were grafted on the chorioallantoic membrane (CAM) of chicken embryos and tumor growth was monitored by stereo fluorescence microscopy. Both models allow the study of novel therapeutic drugs in a complex 3D environment and the quantification of the tumor cell mass after homogenization of grafts in a transgene-specific GFP-ELISA. Moreover, angiogenic responses of the host and invasion of tumor cells into the subjacent host tissue can be monitored daily by a stereo microscope and analyzed by immunohistochemical staining against human tumor cells (Ki-67, CD138, Vimentin) or host mural cells covering blood vessels (desmin/ASMA).In conclusion, the onplant system allows studying MM cell growth and angiogenesis in a complex 3D environment and enables screening for novel therapeutic compounds targeting survival and proliferation of MM cells.  相似文献   

2.
Three-dimensional (3D) tumor spheroids are utilized in cancer research as a more accurate model of the in vivo tumor microenvironment, compared to traditional two-dimensional (2D) cell culture. The spheroid model is able to mimic the effects of cell-cell interaction, hypoxia and nutrient deprivation, and drug penetration. One characteristic of this model is the development of a necrotic core, surrounded by a ring of G1 arrested cells, with proliferating cells on the outer layers of the spheroid. Of interest in the cancer field is how different regions of the spheroid respond to drug therapies as well as genetic or environmental manipulation. We describe here the use of the fluorescence ubiquitination cell cycle indicator (FUCCI) system along with cytometry and image analysis using commercial software to characterize the cell cycle status of cells with respect to their position inside melanoma spheroids. These methods may be used to track changes in cell cycle status, gene/protein expression or cell viability in different sub-regions of tumor spheroids over time and under different conditions.  相似文献   

3.
Most in vitro studies in experimental skin biology have been done in 2-dimensional (2D) monocultures, while accumulating evidence suggests that cells behave differently when they are grown within a 3D extra-cellular matrix and also interact with other cells (1-5). Mouse models have been broadly utilized to study tissue morphogenesis in vivo. However mouse and human skin have significant differences in cellular architecture and physiology, which makes it difficult to extrapolate mouse studies to humans. Since melanocytes in mouse skin are mostly localized in hair follicles, they have distinct biological properties from those of humans, which locate primarily at the basal layer of the epidermis. The recent development of 3D human skin reconstruct models has enabled the field to investigate cell-matrix and cell-cell interactions between different cell types. The reconstructs consist of a "dermis" with fibroblasts embedded in a collagen I matrix, an "epidermis", which is comprised of stratified, differentiated keratinocytes and a functional basement membrane, which separates epidermis from dermis. Collagen provides scaffolding, nutrient delivery, and potential for cell-to-cell interaction. The 3D skin models incorporating melanocytic cells recapitulate natural features of melanocyte homeostasis and melanoma progression in human skin. As in vivo, melanocytes in reconstructed skin are localized at the basement membrane interspersed with basal layer keratinocytes. Melanoma cells exhibit the same characteristics reflecting the original tumor stage (RGP, VGP and metastatic melanoma cells) in vivo. Recently, dermal stem cells have been identified in the human dermis (6). These multi-potent stem cells can migrate to the epidermis and differentiate to melanocytes.  相似文献   

4.
Cutaneous malignant melanoma, the most lethal of the skin cancers, known for its intractability to current therapies, continues to increase in incidence, providing a significant public health challenge. There is a consensus that skin cancer is initiated by sunlight exposure. For non-melanoma skin cancer there is substantial evidence that chronic exposure to the ultraviolet B radiation (UVB) (280-320 nm) portion of the sunlight spectrum is responsible. Experimentally, UVB is mutagenic and chronic UVB exposure can cause non-melanoma skin cancer in laboratory animals. Non-melanoma tumors in animals and in humans show characteristic UVB signature lesions in the tumor suppressor p53 and/or in the patched (PTCH) gene. An action spectrum or wavelength dependence for squamous cell carcinoma in the mouse shows a major peak of efficacy in the UVB. For malignant melanoma, however, the situation is unclear and the critical direct target(s) of sunlight in initiating melanoma and even the wavelengths responsible are as yet unidentified. This lack of information is in major part a result of a paucity of animal models for melanoma which recapitulate the role of sunlight in initiating this disease. The epidemiology of melanoma differs significantly from non-melanoma skin cancer. Intense sporadic sunlight exposure in childhood, probably exacerbated by additional adult exposure, is associated with elevated melanoma risk. Melanoma is also a disease of gene-environment interactions with underlying genetic factors playing a significant role. These major differences indicate that extrapolation from information for non-melanoma skin cancer to melanoma is unlikely to be useful. We summarize in this review the experimental information available on the role of UV radiation in melanoma and give an overview of animal melanoma models. A new model derived by neonatal UV irradiation of hepatocyte growth factor/scatter factor (HGF/SF) transgenic mice is described which recapitulates the etiology, the histopathology and molecular pathogenesis of human disease. It is anticipated that the HGF/SF transgenic model will provide a means to access the mechanism(s) by which sunlight initiates this lethal disease and provide an appropriate vehicle for derivation of appropriate therapeutic and preventive strategies.  相似文献   

5.
Multiple myeloma (MM) is an incurable malignancy with an unmet need for innovative treatment options. Histone deacetylase inhibitors (HDACi) are a new class of anticancer agent that have demonstrated activity in hematological malignancies. Here, we investigated the efficacy and safety of HDACi (vorinostat, panobinostat, romidepsin) and novel combination therapies using in vitro human MM cell lines and in vivo preclinical screening utilizing syngeneic transplanted Vk*MYC MM. HDACi were combined with ABT-737, which targets the intrinsic apoptosis pathway, recombinant human tumour necrosis factor-related apoptosis-inducing ligand (rhTRAIL/MD5-1), that activates the extrinsic apoptosis pathway or the DNA methyl transferase inhibitor 5-azacytidine. We demonstrate that in vitro cell line-based studies provide some insight into drug activity and combination therapies that synergistically kill MM cells; however, they do not always predict in vivo preclinical efficacy or toxicity. Importantly, utilizing transplanted Vk*MYC MM, we report that panobinostat and 5-azacytidine synergize to prolong the survival of tumor-bearing mice. In contrast, combined HDACi/rhTRAIL-based strategies, while efficacious, demonstrated on-target dose-limiting toxicities that precluded prolonged treatment. Taken together, our studies provide evidence that the transplanted Vk*MYC model of MM is a useful screening tool for anti-MM drugs and should aid in the prioritization of novel drug testing in the clinic.  相似文献   

6.
7.
When grown in 3D cultures as spheroids, mesothelioma cells acquire a multicellular resistance to apoptosis that resembles that of solid tumors. We have previously found that resistance to the proteasome inhibitor bortezomib in 3D can be explained by a lack of upregulation of Noxa, the pro-apoptotic BH3 sensitizer that acts via displacement of the Bak/Bax-activator BH3-only protein, Bim. We hypothesized that the histone deacetylase inhibitor vorinostat might reverse this block to Noxa upregulation in 3D. Indeed, we found that vorinostat effectively restored upregulation of Noxa protein and message and abolished multicellular resistance to bortezomib in the 3D spheroids. The ability of vorinostat to reverse resistance was ablated by knockdown of Noxa or Bim, confirming the essential role of the Noxa/Bim axis in the response to vorinostat. Addition of vorinostat similarly increased the apoptotic response to bortezomib in another 3D model, the tumor fragment spheroid, which is grown from human mesothelioma ex vivo. In addition to its benefit when used with bortezomib, vorinostat also enhanced the response to cisplatin plus pemetrexed, as shown in both 3D models. Our results using clinically relevant 3D models show that the manipulation of the core apoptotic repertoire may improve the chemosensitivity of mesothelioma. Whereas neither vorinostat nor bortezomib alone has been clinically effective in mesothelioma, vorinostat may undermine chemoresistance to bortezomib and to other therapies thereby providing a rationale for combinatorial strategies.  相似文献   

8.
Our group has previously reported that the majority of human melanomas (> 60%) express the metabotropic glutamate receptor 1 (GRM1) and that the glutamate release inhibitor riluzole, a drug currently used to treat amyotrophic lateral sclerosis, can induce apoptosis in GRM1-expressing melanoma cells. Our group previously reported that in vitro riluzole treatment reduces cell growth in three-dimensional (3D) soft agar colony assays by 80% in cells with wildtype phosphoinositide 3-kinase (PI3K) pathway activation. However, melanoma cell lines harboring constitutive activating mutations of the PI3K pathway (PTEN and NRAS mutations) showed only a 35% to 40% decrease in colony formation in soft agar in the presence of riluzole. In this study, we have continued our preclinical studies of riluzole and its effect on melanoma cells alone and in combination with inhibitors of the PI3 kinase pathway: the AKT inhibitor, API-2, and the mammalian target of rapamycin (mTOR) inhibitor, rapamycin. We modeled these combinatorial therapies on various melanoma cell lines in 3D and 2D systems and in vivo. Riluzole combined with mTOR inhibition is more effective at halting melanoma anchorage-independent growth and xenograft tumor progression than either agent alone. PI3K signaling changes associated with this combinatorial treatment shows that 3D (nanoculture) modeling of cell signaling more closely resembles in vivo signaling than monolayer models. Riluzole combined with mTOR inhibition is effective at halting tumor cell progression independent of BRAF mutational status. This makes this combinatorial therapy a potentially viable alternative for metastatic melanoma patients who are BRAF WT and are therefore ineligible for vemurafenib therapy.  相似文献   

9.
While 3-D tissue models have received increasing attention over the past several decades in the development of traditional anti-cancer therapies, their potential application for the evaluation of advanced drug delivery systems such as nanomedicines has been largely overlooked. In particular, new insight into drug resistance associated with the 3-D tumor microenvironment has called into question the validity of 2-D models for prediction of in vivo anti-tumor activity. In this work, a series of complementary assays was established for evaluating the in vitro efficacy of docetaxel (DTX) -loaded block copolymer micelles (BCM+DTX) and Taxotere® in 3-D multicellular tumor spheroid (MCTS) cultures. Spheroids were found to be significantly more resistant to treatment than monolayer cultures in a cell line dependent manner. Limitations in treatment efficacy were attributed to mechanisms of resistance associated with properties of the spheroid microenvironment. DTX-loaded micelles demonstrated greater therapeutic effect in both monolayer and spheroid cultures in comparison to Taxotere®. Overall, this work demonstrates the use of spheroids as a viable platform for the evaluation of nanomedicines in conditions which more closely reflect the in vivo tumor microenvironment relative to traditional monolayer cultures. By adaptation of traditional cell-based assays, spheroids have the potential to serve as intermediaries between traditional in vitro and in vivo models for high-throughput assessment of therapeutic candidates.  相似文献   

10.
Multicellular spheroids provide a physiologically relevant platform to study the microenvironment of tumors and therapeutic applications, such as microparticle-based drug delivery. The goal of this study was to investigate the incorporation/penetration of compliant polyacrylamide microparticles (MPs), into either cancer or normal human cell spheroids. Incorporation of collagen-1-coated MPs (stiffness: 0.1 and 9 kPa; diameter: 15–30 µm) into spheroids (diameter ∼100 µm) was tracked for up to 22 h. Results indicated that cells within melanoma spheroids were more influenced by MP mechanical properties than cells within normal cell spheroids. Melanoma spheroids had a greater propensity to incorporate and displace the more compliant MPs over time. Mature spheroids composed of either cell type were able to recognize and integrate MPs. While many tumor models exist to study drug delivery and efficacy, the study of uptake and incorporation of cell-sized MPs into established spheroids/tissues or tumors has been limited. The ability of hyper-compliant MPs to successfully penetrate 3D tumor models with natural extracellular matrix deposition provides a novel platform for potential delivery of drugs and other therapeutics into the core of tumors and micrometastases.  相似文献   

11.
Malignant pleural mesothelioma is a highly chemoresistant solid tumor. We have studied this apoptotic resistance using in vitro and ex vivo three-dimensional models, which acquire a high level of chemoresistance that can be reduced by PI3K/mTOR inhibitors. Here, we investigate the activity of GDC-0980, a novel dual PI3K/mTOR inhibitor, which has been proposed to be effective in mesothelioma. In this work, we aimed to identify mechanisms and markers of efficacy for GDC-0980 by utilizing 3D models of mesothelioma, both in vitro multicellular spheroids and ex vivo tumor fragment spheroids grown from patient tumor samples. We found that a subset of mesothelioma spheroids is sensitive to GDC-0980 alone and to its combination with chemotherapy. Unexpectedly, this sensitivity did not correlate with the activation of the Akt/mTOR pathway. Instead, sensitivity to GDC-0980 correlated with the presence of constitutive ATG13 puncta, a feature of autophagy, a cellular program that supports cells under stress. In tumor fragment spheroids grown from 21 tumors, we also found a subset (n = 11) that was sensitive to GDC-0980, a sensitivity that also correlated with the presence of ATG13 puncta. Interference with autophagy by siRNA of ATG7, an essential autophagic protein, increased the response to chemotherapy, but only in the sensitive multicellular spheroids. In the spheroids resistant to GDC-0980, autophagy appeared to play no role. In summary, we show that GDC-0980 is effective in mesothelioma 3D models that display ATG13 puncta, and that blockade of autophagy increases their response to chemotherapy. For the first time, we show a role for autophagy in the response to chemotherapy of 3D models of mesothelioma and propose ATG13 as a potential biomarker of the therapeutic responsiveness of mesothelioma.  相似文献   

12.
While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells.  相似文献   

13.
Neuroendocrine tumors (NETs) are rare tumors, with an incidence of two per 100, 000 individuals per year, and they account for 0.5% of all human malignancies.1 Other than surgery for the minority of patients who present with localized disease, there is little or no survival benefit of systemic therapy. Therefore, there is a great need to better understand the biology of NETs, and in particular define new therapeutic targets for patients with nonresectable or metastatic neuroendocrine tumors. 3D cell culture is becoming a popular method for drug screening due to its relevance in modeling the in vivo tumor tissue organization and microenvironment.2,3 The 3D multicellular spheroids could provide valuable information in a more timely and less expensive manner than directly proceeding from 2D cell culture experiments to animal (murine) models.To facilitate the discovery of new therapeutics for NET patients, we have developed an in vitro 3D multicellular spheroids model using the human NET cell lines. The NET cells are plated in a non-adhesive agarose-coated 24-well plate and incubated under physiological conditions (5% CO2, 37 °C) with a very slow agitation for 16-24 hr after plating. The cells form multicellular spheroids starting on the 3rd or 4th day. The spheroids become more spherical by the 6th day, at which point the drug treatments are initiated. The efficacy of the drug treatments on the NET spheroids is monitored based on the morphology, shape and size of the spheroids with a phase-contrast light microscope. The size of the spheroids is estimated automatically using a custom-developed MATLAB program based on an active contour algorithm. Further, we demonstrate a simple method to process the HistoGel embedding on these 3D spheroids, allowing the use of standard histological and immunohistochemical techniques. This is the first report on generating 3D spheroids using NET cell lines to examine the effect of therapeutic drugs. We have also performed histology on these 3D spheroids, and displayed an example of a single drug''s effect on growth and proliferation of the NET spheroids. Our results support that the NET spheroids are valuable for further studies of NET biology and drug development.  相似文献   

14.
Spheroids are increasingly being employed to answer a wide range of clinical and biomedical inquiries ranging from pharmacology to disease pathophysiology, with the ultimate goal of using spheroids for tissue engineering and regeneration. When compared to traditional two-dimensional cell culture, spheroids have the advantage of better replicating the 3D extracellular microenvironment and its associated growth factors and signaling cascades. As knowledge about the preparation and maintenance of spheroids has improved, there has been a plethora of translational experiments investigating in vivo implantation of spheroids into various animal models studying tissue regeneration.We review methods for spheroid delivery and how they have been utilized in tissue engineering experiments. We break down efforts in this field by organ systems, discussing applications of spheroids to various animal models of disease processes and their potential clinical implications. These breakthroughs have been made possible by advancements in spheroid formation, in vivo delivery and assessment. There is unexplored potential and room for further research and development in spheroid-based tissue engineering approaches. Regenerative medicine and other clinical applications ensure this exciting area of research remains relevant for patient care.  相似文献   

15.
16.
CYLD is a gene mutated in familial cylindromatosis and related diseases, leading to the development of skin appendages tumors. Although the deubiquitinase CYLD is a skin tumor suppressor, its role in skin physiology is unknown. Using skin organotypic cultures as experimental model to mimic human skin, we have found that CYLD acts as a regulator of epidermal differentiation in humans through the JNK signaling pathway. We have determined the requirement of CYLD for the maintenance of epidermal polarity, keratinocyte differentiation and apoptosis. We show that CYLD overexpression increases keratinocyte differentiation while CYLD loss of function impairs epidermal differentiation. In addition, we describe the important role of CYLD in the control of human non-melanoma skin cancer progression. Our results show the reversion of the malignancy of human squamous cell carcinomas that express increased levels of CYLD, while its functional inhibition enhances the aggressiveness of these tumors which progress toward spindle cell carcinomas. We have found that the mechanisms through which CYLD regulates skin cancer progression include the control of tumor differentiation, angiogenesis and cell survival. These findings of the role of CYLD in human skin cancer prognosis make our results relevant from a therapeutic point of view, and open new avenues for exploring novel cancer therapies.  相似文献   

17.
Melanoma is an aggressive skin cancer that metastasizes to other organs. While immune checkpoint blockade with anti-PD-1 has transformed the treatment of advanced melanoma, many melanoma patients fail to respond to anti-PD-1 therapy or develop acquired resistance. Thus, effective treatment of melanoma still represents an unmet clinical need. Our prior studies support the anti-cancer activity of the 17β-hydroxywithanolide class of natural products, including physachenolide C (PCC). As single agents, PCC and its semi-synthetic analog demonstrated direct cytotoxicity in a panel of murine melanoma cell lines, which share common driver mutations with human melanoma; the IC50 values ranged from 0.19–1.8 µM. PCC treatment induced apoptosis of tumor cells both in vitro and in vivo. In vivo treatment with PCC alone caused the complete regression of established melanoma tumors in all mice, with a durable response in 33% of mice after discontinuation of treatment. T cell-mediated immunity did not contribute to the therapeutic efficacy of PCC or prevent tumor recurrence in YUMM2.1 melanoma model. In addition to apoptosis, PCC treatment induced G0-G1 cell cycle arrest of melanoma cells, which upon removal of PCC, re-entered the cell cycle. PCC-induced cycle cell arrest likely contributed to the in vivo tumor recurrence in a portion of mice after discontinuation of treatment. Thus, 17β-hydroxywithanolides have the potential to improve the therapeutic outcome for patients with advanced melanoma.  相似文献   

18.
Malignant mesothelioma (MM) is a fatal disease in dire need of therapy. The role of inflammasomes in cancer is not very well studied, however, literature supports both pro-and anti-tumorigenic effects of inflammasomes on cancer depending upon the type of cancer. Asbestos is a causative agent for MM and we have shown before that it causes inflammasome priming and activation in mesothelial cells. MM tumor cells/tissues showed decreased levels of inflammasome components like NLRP3 and caspase-1 as compared to human mesothelial cells or normal tissue counterpart of tumor. Based on our preliminary findings we hypothesized that treatment of MMs with chemotherapeutic drugs may elevate the levels of NLRP3 and caspase-1 resulting in increased cell death by pyroptosis while increasing the levels of IL-1β and other pro-inflammatory molecules. Therefore, a combined strategy of chemotherapeutic drug and IL-1R antagonist may play a beneficial role in MM therapy. To test our hypothesis we used two human MM tumor cell lines (Hmeso, H2373) and two chemotherapeutic drugs (doxorubicin, cisplatin). Through a series of experiments we showed that both chemotherapeutic drugs caused increases in NLRP3 levels, caspase-1 activation, pyroptosis and pro-inflammatory molecules released from MM cells. In vivo studies using SCID mice and Hmeso cells showed that tumors were smaller in combined treatment group of cisplatin and IL-1R antagonist (Anakinra) as compared to cisplatin alone or untreated control groups. Taken together our study suggests that chemotherapeutic drugs in combination with IL-1R antagonist may have a beneficial role in MM treatment.  相似文献   

19.
Syndecan‐2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan‐2 in melanogenesis. Syndecan‐2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA‐mediated knockdown of syndecan‐2 was associated with reduced melanin synthesis, whereas overexpression of syndecan‐2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan‐2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan‐2 expression, and this up‐regulation of syndecan‐2 was required for UVB‐induced melanin synthesis. Taken together, these data suggest that syndecan‐2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin‐associated diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号