首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Breeding new interspecific banana hybrid varieties relies on the use of Musa acuminata and M. balbisiana parents. Unfortunately, infectious alleles of endogenous Banana streak virus (eBSV) sequences are present in the genome of Musa balbisiana genitors. Upon activation by biotic and abiotic stresses, these infectious eBSVs lead to spontaneous infections by several species of Banana streak virus in interspecific hybrids harboring both Musa acuminata and M. balbisiana genomes. Here we provide evidence that seedy M. balbisiana diploids display diverse eBSV allelic combinations and that some eBSVs differ structurally from those previously reported. We also show that segregation of infectious and non-infectious eBSV alleles can be achieved in seedy M. balbisiana diploids through self-pollination or chromosome doubling of haploid lines. We report on the successful breeding of M. balbisiana diploid genitors devoid of all infectious eBSV alleles following self-pollination and on the potential of breeding additional M. balbisiana diploid genitors free of infectious eBSVs by crossing parents displaying complementary eBSV patterns. Our work paves the way to the safe use of M. balbisiana genitors for breeding banana interspecific hybrid varieties with no risk of activation of infectious eBSVs.  相似文献   

2.
Background and Aims Banana genomes harbour numerous copies of viral sequences derived from banana streak viruses (BSVs) – dsDNA viruses belonging to the family Caulimoviridae. These viral integrants (eBSVs) are mostly defective, probably as a result of ‘pseudogenization’ driven by host genome evolution. However, some can give rise to infection by releasing a functional viral genome following abiotic stresses. These distinct infective eBSVs correspond to the three main widespread BSV species (BSOLV, BSGFV and BSIMV), fully described within the Musa balbisiana B genomes of the seedy diploid ‘Pisang Klutuk Wulung’ (PKW).Methods We characterize eBSV distribution among a Musa sampling including seedy BB diploids and interspecific hybrids with Musa acuminata exhibiting different levels of ploidy for the B genome (ABB, AAB, AB). We used representative samples of the two areas of sympatry between M. acuminata and M. balbisiana species representing the native area of the most widely cultivated AAB cultivars (in India and in East Asia, ranging from the Philippines to New Guinea). Seventy-seven accessions were characterized using eBSV-related PCR markers and Southern hybridization approaches. We coded both sets of results to create a common dissimilarity matrix with which to interpret eBSV distribution.Key Results We propose a Musa phylogeny driven by the M. balbisiana genome based on a dendrogram resulting from a joint neighbour-joining analysis of the three BSV species, showing for the first time lineages between BB and ABB/AAB hybrids. eBSVs appear to be relevant phylogenetic markers that can illustrate the M. balbisiana phylogeography story.Conclusion The theoretical implications of this study for further elucidation of the historical and geographical process of Musa domestication are numerous. Discovery of banana plants with B genome non-infective for eBSV opens the way to the introduction of new genitors in programmes of genetic banana improvement.  相似文献   

3.
4.
The genome of Musa balbisiana spp. contains several infectious endogenous sequences of Banana streak virus (eBSV). We have shown previously that in vitro micropropagation triggers the activation of infectious eBSOLV (endogenous sequences of Banana streak Obino l'Ewai virus ) in the synthetic tetraploid interspecific hybrid FHIA21 (AAAB). In this work, we show that another synthetic tetraploid (AAAB) hybrid and two natural triploid (AAB) plantains are equally prone to the activation of infectious eBSOLV during tissue culture. These results are a strong indication that such activation is a general phenomenon in interspecific Musa cultivars, whether synthetic or natural. We also report the first in-depth study of the correlation between the duration of tissue culture and the level of activation of infectious eBSOLV, and show that specific and common activation patterns exist in these banana plants. We hypothesize that these patterns result from the concomitant activation of infectious eBSOLV and a decrease in the virus titre in neoformed plantlets, resulting from cell multiplication outcompeting virus replication. We provide experimental data supporting this hypothesis. No activation of infectious eBSGFV (endogenous sequences of Banana streak Goldfinger virus) by tissue culture was observed in the two natural AAB plantain cultivars studied here, whereas such activation occurred in the AAAB synthetic hybrid studied. We demonstrate that this differential activation does not result from differences in the structure of eBSGFV, as all banana genomes harbour eaBSGFV-7.  相似文献   

5.
Many banana cultivars (including the Plantain type) are triploid interspecific hybrids between Musa acuminata (A genome) and Musa balbisiana (B genome). M. balbisiana contains endogeneous Banana streak virus sequences (eBSVs) that can, in interspecific genome context, spontaneously release infectious viral genomes. We analyzed, a triploid progeny of 184 individuals from a cross between a tetraploid AAAB breeding accession (CRBP39) and the diploid AA accession (Pahang) with 38 SSR and eBSV-specific PCR markers. The results showed that (1) most of the alleles are found/transmitted in the expected frequency to the progeny with only 10 % biased; (2) 70 % of the loci displayed a tetrasomic allele segregation and (3) interspecific intrachromosomal recombinations occurred for all the chromosome segments surveyed. However, half of the offspring obtained resulted from maternal unbalanced gametes transmission. Analysis of gamete composition and marker association suggested the presence of a large translocation between A and B genome involving chromosome 1 and 3. The two infectious eBSVs present in the maternal parent CRBP39 are located on chromosome 1B and appeared in a higher proportion than expected in the progeny. Interestingly, we showed that both eBSVs were absent from 24 offspring that represent promising material for breeding.  相似文献   

6.
Sequencing of plant nuclear genomes reveals the widespread presence of integrated viral sequences known as endogenous pararetroviruses (EPRVs). Banana is one of the three plant species known to harbor infectious EPRVs. Musa balbisiana carries integrated copies of Banana streak virus (BSV), which are infectious by releasing virions in interspecific hybrids. Here, we analyze the organization of the EPRV of BSV Goldfinger (BSGfV) present in the wild diploid M. balbisiana cv. Pisang Klutuk Wulung (PKW) revealed by the study of Musa bacterial artificial chromosome resources and interspecific genetic cross. cv. PKW contains two similar EPRVs of BSGfV. Genotyping of these integrants and studies of their segregation pattern show an allelic insertion. Despite the fact that integrated BSGfV has undergone extensive rearrangement, both EPRVs contain the full-length viral genome. The high degree of sequence conservation between the integrated and episomal form of the virus indicates a recent integration event; however, only one allele is infectious. Analysis of BSGfV EPRV segregation among an F1 population from an interspecific genetic cross revealed that these EPRV sequences correspond to two alleles originating from a single integration event. We describe here for the first time the full genomic and genetic organization of the two EPRVs of BSGfV present in cv. PKW in response to the challenge facing both scientists and breeders to identify and generate genetic resources free from BSV. We discuss the consequences of this unique host-pathogen interaction in terms of genetic and genomic plant defenses versus strategies of infectious BSGfV EPRVs.  相似文献   

7.

Background  

Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW).  相似文献   

8.
The first bacterial artificial chromosome (BAC) library of the banana species Musa balbisiana 'Pisang Klutuk Wulung' (PKW BAC library) was constructed and characterized. One improved and one novel protocol for nuclei isolation were employed to overcome problems caused by high levels of polyphenols and polysaccharides present in leaf tissues. The use of flow cytometry to purify cell nuclei eliminated contamination with secondary metabolites and plastid DNA. Furthermore, the usefulness of the inducible pCC1BAC vector to obtain a higher amount of BAC DNA was demonstrated. The PKW BAC library represents nine haploid genome equivalents of M. balbisiana and its mean insert size is 135 kb. It consists of two sublibraries, of which the first one (SN sublibrary with 24,960 clones) was prepared according to an improved standard nuclei isolation protocol, whereas the second (FN sublibrary with 11,904 clones) was obtained from flow-sorted nuclei. Screening with 12 RFLP probes, which were genetically anchored to 8 genetic linkage groups of the banana species Musa acuminata, revealed an average of 11 BAC clones per probe, thus confirming the genome coverage estimated based on the insert size, as well as a high level of conservation between the two species of Musa. Localization of selected BAC clones to mitotic chromosomes using FISH indicated that the BAC library represented a useful resource for cytogenetic mapping. As the first step in map-based cloning of a genetic factor that is involved in the activation of integrated pararetroviral sequences of Banana streak virus (BSV), the BSV expressed locus (BEL) was physically delimited. The PKW BAC library represents a publicly available tool, and is currently used to reveal the integration and activation mechanisms of BSV sequences and to study banana genome structure and evolution.  相似文献   

9.
Banana streak virus (BSV) is a plant dsDNA pararetrovirus (family Caulimoviridae, genus badnavirus). Although integration is not an essential step in the BSV replication cycle, the nuclear genome of banana (Musa sp.) contains BSV endogenous pararetrovirus sequences (BSV EPRVs). Some BSV EPRVs are infectious by reconstituting a functional viral genome. Recent studies revealed a large molecular diversity of episomal BSV viruses (i.e., nonintegrated) while others focused on BSV EPRV sequences only. In this study, the evolutionary history of badnavirus integration in banana was inferred from phylogenetic relationships between BSV and BSV EPRVs. The relative evolution rates and selective pressures (dN/dS ratio) were also compared between endogenous and episomal viral sequences. At least 27 recent independent integration events occurred after the divergence of three banana species, indicating that viral integration is a recent and frequent phenomenon. Relaxation of selective pressure on badnaviral sequences that experienced neutral evolution after integration in the plant genome was recorded. Additionally, a significant decrease (35%) in the EPRV evolution rate was observed compared to BSV, reflecting the difference in the evolution rate between episomal dsDNA viruses and plant genome. The comparison of our results with the evolution rate of the Musa genome and other reverse-transcribing viruses suggests that EPRVs play an active role in episomal BSV diversity and evolution.  相似文献   

10.
 The nuclear genome of wild-type banana accessions was investigated for repetitive elements. We report here the occurrence, in the banana genome, of a sequence family of species-specific repetitive elements: Brep 1. This sequence family is distributed throughout the Musaceae with various copy numbers. The two species Musa acuminata and M. schizocarpa carry the highest copy numbers in contrast to M. balbisiana and tested representatives of different other sections. PCR primers were defined in the core consensus sequence for specific amplifications, which allow representatives of this sequence family to be easily detected in wild and cultivated banana clones. Sequence data were analysed and hypotheses on the evolution of banana cultivars from the wild-type banana clones are discussed. Received: 17 January 1997 / Accepted : 7 March 1997  相似文献   

11.

Background and Aims

Most cooking banana and several desert bananas are interspecific triploid hybrids between Musa acuminata (A genome) and Musa balbisiana (B genome). In addition, M. balbisiana has agronomical characteristics such as resistance to biotic and abiotic stresses that could be useful to improve monospecific acuminata cultivars. To develop efficient breeding strategies for improving Musa cultivars, it is therefore important to understand the possibility of chromosome exchange between these two species.

Methods

A protocol was developed to prepare chromosome at meiosis metaphase I suitable for genomic in situ hybridization. A series of technical challenges were encountered, the main ones being the hardness of the cell wall and the density of the microsporocyte''s cytoplasm, which hampers accessibility of the probes to the chromosomes. Key parameters in solving these problems were addition of macerozyme in the enzyme mix, the duration of digestion and temperature during the spreading phase.

Results and Conclusions

This method was applied to analyse chromosome pairing in metaphase from triploid interspecific cultivars, and it was clearly demonstrated that interspecific recombinations between M. acuminata and M. balbisiana chromosomes do occur and may be frequent in triploid hybrids. These results provide new insight into Musa cultivar evolution and have important implications for breeding.  相似文献   

12.
A large amount of banana genetic resource has been found in Thailand which is believed to be one of the centers of its origins. To assess genetic diversity and determine genetic relationships of edible bananas in Thailand, 110 accessions of banana species and cultivars collected from villages and natural locations were investigated. UPGMA clustering of numerical data from Amplified Fragment Length Polymorphism (AFLP) patterns showed two large groups which corresponded to genome designations of Musa acuminata (AA) and Musa balbisiana (BB), the known ancestors of most edible cultivars. The AFLP data suggested that among Thai bananas, AA and AAA cultivars were closely related to M. acuminata subsp. malaccensis, while some of ‘B’ genome contained ones closely related to wild M. balbisiana in Thailand and some may have been imported. Eight species-specific PCR-based primer pairs, generated from the AFLP results clearly identify ‘A’ and ‘B’ genomes within cultivars and hybrids. The analyses were useful to readily and easily infer progenitors of these cultivars and pronounce wide genetic diversity of the bananas in Thailand.  相似文献   

13.
This is the first report of targeted development of B genome microsatellite markers in Musa. A total of 44 sequences with microsatellites were isolated from an enriched library of Musa balbisiana cv. ‘Tani’ (BB genome). Of these, 25 were polymorphic when screened on 14 diverse diploid and triploid Musa accessions. The number of alleles detected by each marker ranged between one and seven. All 25 microsatellite markers generated amplification products in all species and genome complements. These new microsatellite markers fill an important gap for diversity assessment and linkage mapping studies in plantain (AAB) and cooking banana (ABB).  相似文献   

14.
Recently-introduced inter-specific Musa hybrids, bred for improved yield and resistance to diseases, have been found to be widely infected with banana streak virus (BSV), the causal agent of banana streak disease (BSD). One hypothesis suggests: (1) that BSD occurrence in these inter-specific hybrids results from activation of BSV-Ol endogenous pararetrovirus sequences (EPRV) integrated into the Musa genome rather than from external sources of infection, and (2) that the process of genetic hybridisation may be one factor involved in triggering episomal expression of the BSV integrants. In order to test this hypothesis we carried out a genetic analysis of BSD incidence in a F1 triploid ( Musa AAB) population produced by inter-specific hybridisation between virus and disease-free diploid Musa balbisiana (BB) and tetraploid Musa acuminata (AAAA) parents. Half of the F1 progeny of this cross expressed BSV particles. Using PCR amplification to determine the presence or absence of BSV-Ol EPRVs, it was determined that this endogenous sequence was specific to the M. babisiana genome and occurred in a homozygous state. Using bulk segregant analysis, ten AFLP markers co-segregating with the absence and/or presence of BSV infection were identified in the M. balbisiana genome, but were absent from the M. acuminata genome. Seven of these markers segregated with the presence of a BSV particle and three with the absence of BSV particles. Analysis of the segregation of these markers using a test-cross configuration allowed the construction of a genetic map of the linkage group containing the locus associated with BSV infection in the F1 hybrid population. These data indicate that a genetic mechanism is involved in BSV appearance, and suggest that a monogenic allelic system confers the role of carrier to the M. balbisiana parent.  相似文献   

15.
16.
Banana streak virus (BSV), a member of genus Badnavirus, is a causal agent of banana streak disease throughout the world. The genetic diversity of BSVs from different regions of banana plantations has previously been investigated, but there are relatively few reports of the genetic characteristic of episomal (non-integrated) BSV genomes isolated from China. Here, the complete genome, a total of 7722bp (GenBank accession number DQ092436), of an isolate of Banana streak virus (BSV) on cultivar Cavendish (BSAcYNV) in Yunnan, China was determined. The genome organises in the typical manner of badnaviruses. The intergenic region of genomic DNA contains a large stem-loop, which may contribute to the ribosome shift into the following open reading frames (ORFs). The coding region of BSAcYNV consists of three overlapping ORFs, ORF1 with a non-AUG start codon and ORF2 encoding two small proteins are individually involved in viral movement and ORF3 encodes a polyprotein. Besides the complete genome, a defective genome lacking the whole RNA leader region and a majority of ORF1 and which encompasses 6525bp was also isolated and sequenced from this BSV DNA reservoir in infected banana plants. Sequence analyses showed that BSAcYNV has closest similarity in terms of genome organization and the coding assignments with an BSV isolate from Vietnam (BSAcVNV). The corresponding coding regions shared identities of 88% and ∼95% at nucleotide and amino acid levels, respectively. Phylogenetic analysis also indicated BSAcYNV shared the closest geographical evolutionary relationship to BSAcVNV among sequenced banana streak badnaviruses.  相似文献   

17.

Background

Bananas and plantains (Musa spp.) provide a staple food for many millions of people living in the humid tropics. The cultivated varieties (cultivars) are seedless parthenocarpic clones of which the origin remains unclear. Many are believed to be diploid and polyploid hybrids involving the A genome diploid M. acuminata and the B genome M. balbisiana, with the hybrid genomes consisting of a simple combination of the parental ones. Thus the genomic constitution of the diploids has been classified as AB, and that of the triploids as AAB or ABB. However, the morphology of many accessions is biased towards either the A or B phenotype and does not conform to predictions based on these genomic formulae.

Scope

On the basis of published cytotypes (mitochondrial and chloroplast genomes), we speculate here that the hybrid banana genomes are unbalanced with respect to the parental ones, and/or that inter-genome translocation chromosomes are relatively common. We hypothesize that the evolution under domestication of cultivated banana hybrids is more likely to have passed through an intermediate hybrid, which was then involved in a variety of backcrossing events. We present experimental data supporting our hypothesis and we propose a set of experimental approaches to test it, thereby indicating other possibilities for explaining some of the unbalanced genome expressions. Progress in this area would not only throw more light on the origin of one of the most important crops, but provide data of general relevance for the evolution under domestication of many other important clonal crops. At the same time, a complex origin of the cultivated banana hybrids would imply a reconsideration of current breeding strategies.  相似文献   

18.
 Nuclear genome size variation was studied in Musa acuminata (A genome), Musa balbisiana (B genome) and a range of triploid clones differing in genomic constitution (i.e. the relative number of A and B genomes). Nuclear DNA content was estimated by flow cytometry of nuclei stained by propidium iodide. The A and B genomes of Musa differ in size, the B genome being smaller by 12% on average. No variation in genome size was found among the accessions of M. balbisiana (average genome size 537 Mbp). Small, but statistically significant, variation was found among the subspecies and clones of M. acuminata (ranging from 591 to 615 Mbp). This difference may relate to the geographical origin of the individual accessions. Larger variation in genome size (8.8%) was found among the triploid Musa accessions (ranging from 559 to 613 Mbp). This variation may be due to different genomic constitutions as well as to differences in the size of their A genomes. It is proposed that a comparative analysis of genome size in diploids and triploids may be helpful in identifying putative diploid progenitors of cultivated triploid Musa clones. Statistical analysis of data on genome size resulted in a grouping which agreed fairly well with the generally accepted taxonomic classification of Musa. Received: 11 May 1998 / Accepted: 29 September 1998  相似文献   

19.
SAMPL primers designed for genomic profiling in chickpea (Cicer arietinum L.) were tested for their applicability to fingerprinting of DNA of banana cultivars and soma-clonal variants. Most of the chickpea primers allowed amplification of genomic DNA of banana and detection of sequence polymorphisms within theMusa acuminata genome (A). Our results demonstrate that the highly resolving SAMPL technique is useful in banana genomics, especially for the distinction and characterization of commercially important cultivars and promising somaclonal variants containing the A genome.  相似文献   

20.
Population genetics seeks to illuminate the forces shaping genetic variation, often based on a single snapshot of genomic variation. However, utilizing multiple sampling times to study changes in allele frequencies can help clarify the relative roles of neutral and non-neutral forces on short time scales. This study compares whole-genome sequence variation of recently collected natural population samples of Drosophila melanogaster against a collection made approximately 35 years prior from the same locality—encompassing roughly 500 generations of evolution. The allele frequency changes between these time points would suggest a relatively small local effective population size on the order of 10,000, significantly smaller than the global effective population size of the species. Some loci display stronger allele frequency changes than would be expected anywhere in the genome under neutrality—most notably the tandem paralogs Cyp6a17 and Cyp6a23, which are impacted by structural variation associated with resistance to pyrethroid insecticides. We find a genome-wide excess of outliers for high genetic differentiation between old and new samples, but a larger number of adaptation targets may have affected SNP-level differentiation versus window differentiation. We also find evidence for strengthening latitudinal allele frequency clines: northern-associated alleles have increased in frequency by an average of nearly 2.5% at SNPs previously identified as clinal outliers, but no such pattern is observed at random SNPs. This project underscores the scientific potential of using multiple sampling time points to investigate how evolution operates in natural populations, by quantifying how genetic variation has changed over ecologically relevant timescales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号