首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soluble guanylyl cyclase (sGC) is a heterodimeric nitric oxide (NO) receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI) interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT) and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the α or the β catalytic domain is proposed.  相似文献   

2.
3.

Background

Second messengers have a key role in linking environmental stimuli to physiological responses. One such messenger, guanosine 3′,5′-cyclic monophosphate (cGMP), has long been known to be an essential signaling molecule in many different physiological processes in higher plants, including biotic stress responses. To date, however, the guanylyl cyclase (GC) enzymes that catalyze the formation of cGMP from GTP have largely remained elusive in higher plants.

Principal Findings

We have identified an Arabidopsis receptor type wall associated kinase–like molecule (AtWAKL10) as a candidate GC and provide experimental evidence to show that the intracellular domain of AtWAKL10431–700 can generate cGMP in vitro. Further, we also demonstrate that the molecule has kinase activity indicating that AtWAKL10 is a twin-domain catalytic protein. A co-expression and stimulus-specific expression analysis revealed that AtWAKL10 is consistently co-expressed with well characterized pathogen defense related genes and along with these genes is induced early and sharply in response to a range of pathogens and their elicitors.

Conclusions

We demonstrate that AtWAKL10 is a twin-domain, kinase-GC signaling molecule that may function in biotic stress responses that are critically dependent on the second messenger cGMP.  相似文献   

4.
Second messengers have a key role in linking environmental stimuli to physiological responses. One such messenger, cGMP, has long been known to be critical to many different processes in higher plants while guanylyl cyclases (GCs), enzymes that catalyse the formation of cGMP from GTP have largely remained elusive. This is somewhat surprising considering that the unicellular green alga Chlamydomonas reinhardtii contains >90 annotated GCs. We have recently shown (PLoS ONE 2(5): e449) that a recombinant cytoplasmic domain of the Arabidopsis brassinosteroid receptor AtBRI has GC activity in vitro. This finding may suggest that other leucine-rich receptor kinases such as the phystosulfokine receptor may also confer GC activity as it has a high degree of similarity in the domain that has been delineated as essential for catalysis. In addition, the discovery of increasing complexities in the molecular architecture of higher plant nucleotide cyclases (NCs) is entirely compatible with findings in Chlamydomonas where such domains appear in >20 different combinations suggesting a role in highly diverse and complex signaling events.Key Words: nucleotide cyclase, guanylyl cyclase, cGMP, signal transduction, Arabidopsis thaliana, Chlamydomonas reinhardtii  相似文献   

5.

Background and Aims

Nitric oxide-independent soluble guanylyl cyclase (sGC) activators reactivate the haem-oxidized enzyme in vascular diseases. This study was undertaken to investigate the anti-platelet mechanisms of the haem-independent sGC activator BAY 60-2770 in human washed platelets. The hypothesis that sGC oxidation potentiates the anti-platelet activities of BAY 60-2770 has been tested.

Methods

Human washed platelet aggregation and adhesion assays, as well as flow cytometry for αIIbβ3 integrin activation and Western blot for α1 and β1 sGC subunits were performed. Intracellular calcium levels were monitored in platelets loaded with a fluorogenic calcium-binding dye (FluoForte).

Results

BAY 60-2770 (0.001–10 µM) produced significant inhibition of collagen (2 µg/ml)- and thrombin (0.1 U/ml)-induced platelet aggregation that was markedly potentiated by the sGC inhibitor ODQ (10 µM). In fibrinogen-coated plates, BAY 60-2770 significantly inhibited platelet adhesion, an effect potentiated by ODQ. BAY 60-2770 increased the cGMP levels and reduced the intracellular Ca2+ levels, both of which were potentiated by ODQ. The cell-permeable cGMP analogue 8-Br-cGMP (100 µM) inhibited platelet aggregation and Ca2+ levels in an ODQ-insensitive manner. The cAMP levels remained unchanged by BAY 60-2770. Collagen- and thrombin-induced αIIbβ3 activation was markedly inhibited by BAY 60-2770 that was further inhibited by ODQ. The effects of sodium nitroprusside (3 µM) were all prevented by ODQ. Incubation with ODQ (10 µM) significantly reduced the protein levels of α1 and β1 sGC subunits, which were prevented by BAY 60-2770.

Conclusion

The inhibitory effects of BAY 60-2770 on aggregation, adhesion, intracellular Ca2+ levels and αIIbβ3 activation are all potentiated in haem-oxidizing conditions. BAY 60-2770 prevents ODQ-induced decrease in sGC protein levels. BAY 60-2770 could be of therapeutic interest in cardiovascular diseases associated with thrombotic complications.  相似文献   

6.

Background

Although evidence now suggests cGMP is a negative regulator of cardiac hypertrophy, the direct consequences of the soluble guanylyl cyclase (sGC) activator BAY 58-2667 on cardiac remodeling, independent of changes in hemodynamic load, has not been investigated. In the present study, we tested the hypothesis that the NO-independent sGC activator BAY 58-2667 inhibits cardiomyocyte hypertrophy in vitro. Concomitant impact of BAY 58-2667 on cardiac fibroblast proliferation, and insights into potential mechanisms of action, were also sought. Results were compared to the sGC stimulator BAY 41-2272.

Methods

Neonatal rat cardiomyocytes were incubated with endothelin-1 (ET1, 60nmol/L) in the presence and absence of BAY 41-2272 and BAY 58-2667 (0.01–0.3 µmol/L). Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. The impact of both sGC ligands on basal and stimulated cardiac fibroblast proliferation in vitro was also determined.

Results

We now demonstrate that BAY 58-2667 (0.01–0.3 µmol/L) elicited concentration-dependent antihypertrophic actions, inhibiting ET1-mediated increases in cardiomyocyte 2D area and de novo protein synthesis, as well as suppressing ET1-induced cardiomyocyte superoxide generation. This was accompanied by potent increases in cardiomyocyte cGMP accumulation and activity of its downstream signal, vasodilator-stimulated phosphoprotein (VASP), without elevating cardiomyocyte cAMP. In contrast, submicromolar concentrations of BAY 58-2667 had no effect on basal or stimulated cardiac fibroblast proliferation. Indeed, only at concentrations ≥10 µmol/L was inhibition of cardiac fibrosis seen in vitro. The effects of BAY 58-2667 in both cell types were mimicked by BAY 41-2272.

Conclusions

Our results demonstrate that BAY 58-2667 elicits protective, cardiomyocyte-selective effects in vitro. These actions are associated with sGC activation and are evident in the absence of confounding hemodynamic factors, at low (submicromolar) concentrations. Thus this distinctive sGC ligand may potentially represent an alternative therapeutic approach for limiting myocardial hypertrophy.  相似文献   

7.

Background

To examine the structural organisation of heterodimeric soluble guanylyl cyclase (sGC) Förster resonance energy transfer (FRET) was measured between fluorescent proteins fused to the amino- and carboxy-terminal ends of the sGC β1 and α subunits.

Methodology/Principal Findings

Cyan fluorescent protein (CFP) was used as FRET donor and yellow fluorescent protein (YFP) as FRET acceptor. After generation of recombinant baculovirus, fluorescent-tagged sGC subunits were co-expressed in Sf9 cells. Fluorescent variants of sGC were analyzed in vitro in cytosolic fractions by sensitized emission FRET. Co-expression of the amino-terminally tagged α subunits with the carboxy-terminally tagged β1 subunit resulted in an enzyme complex that showed a FRET efficiency of 10% similar to fluorescent proteins separated by a helix of only 48 amino acids. Because these findings indicated that the amino-terminus of the α subunits is close to the carboxy-terminus of the β1 subunit we constructed fusion proteins where both subunits are connected by a fluorescent protein. The resulting constructs were not only fluorescent, they also showed preserved enzyme activity and regulation by NO.

Conclusions/Significance

Based on the ability of an amino-terminal fragment of the β1 subunit to inhibit activity of an heterodimer consisting only of the catalytic domains (αcatβcat), Winger and Marletta (Biochemistry 2005, 44:4083–90) have proposed a direct interaction of the amino-terminal region of β1 with the catalytic domains. In support of such a concept of “trans” regulation of sGC activity by the H-NOX domains our results indicate that the domains within sGC are organized in a way that allows for direct interaction of the amino-terminal regulatory domains with the carboxy-terminal catalytic region. In addition, we constructed “fluorescent-conjoined” sGC''s by fusion of the α amino-terminus to the β1 carboxy-terminus leading to a monomeric, fluorescent and functional enzyme complex. To our knowledge this represents the first example where a fluorescent protein links two different subunits of a higher ordered complex to yield a stoichometrically fixed functionally active monomer.  相似文献   

8.
Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and generates the second messenger cyclic GMP (cGMP). Recently, purified sGC α1β1 has been shown to additionally generate the cyclic pyrimidine nucleotides cCMP and cUMP. However, since cyclic pyrimidine nucleotide formation occurred only the presence of Mn2+ but not Mg2+, the physiological relevance of these in vitro findings remained unclear. Therefore, we studied cyclic nucleotide formation in intact cells. We observed NO-dependent cCMP- and cUMP formation in intact HEK293 cells overexpressing sGC α1β1 and in RFL-6 rat fibroblasts endogenously expressing sGC, using HPLC–tandem mass spectrometry. The identity of cCMP and cUMP was unambiguously confirmed by HPLC–time-of-flight mass spectrometry. Our data indicate that cCMP and cUMP play second messenger roles and that Mn2+ is a physiological sGC cofactor.  相似文献   

9.
10.
11.
12.
Nitric oxide (NO) signaling regulates key processes in cardiovascular physiology, specifically vasodilation, platelet aggregation, and leukocyte rolling. Soluble guanylate cyclase (sGC), the mammalian NO sensor, transduces an NO signal into the classical second messenger cyclic GMP (cGMP). NO binds to the ferrous (Fe2+) oxidation state of the sGC heme cofactor and stimulates formation of cGMP several hundred-fold. Oxidation of the sGC heme to the ferric (Fe3+) state desensitizes the enzyme to NO. The heme-oxidized state of sGC has emerged as a potential therapeutic target in the treatment of cardiovascular disease. Here, we investigate the molecular mechanism of NO desensitization and find that sGC undergoes a reductive nitrosylation reaction that is coupled to the S-nitrosation of sGC cysteines. We further characterize the kinetics of NO desensitization and find that heme-assisted nitrosothiol formation of β1Cys-78 and β1Cys-122 causes the NO desensitization of ferric sGC. Finally, we provide evidence that the mechanism of reductive nitrosylation is gated by a conformational change of the protein. These results yield insights into the function and dysfunction of sGC in cardiovascular disease.  相似文献   

13.
Mutational, crystallographic and phylogenetic analysis of nucleotidyl cyclases have been used to understand how these enzymes discriminate between substrates. Ma1120, a class III adenylyl cyclase (AC) from Mycobacterium avium, was used as a model to study the amino acid residues that determine substrate preference, by systematically replacing ATP specifying residues with those known to specify GTP. This enzyme was found to possess residual guanylyl cyclase (GC) activity at alkaline pH. Replacement of key residues lysine (101) and aspartate (157) with residues conserved across GCs by site directed mutagenesis, led to a marked improvement in GC activity and a decrease in AC activity. This could be correlated to the presence and strength of the hydrogen bond between the second substrate binding residue (157) and the base of the nucleotide triphosphate. This is substantiated by the fact that the pH optimum is highly dependent on the amino acid residues present at positions 101 and 157.  相似文献   

14.
15.
Guanylyl cyclases (GCs) catalyze the formation of the second messenger guanosine 3',5'-cyclic monophosphate (cGMP) from guanosine 5'-triphosphate (GTP). While many cGMP-mediated processes in plants have been reported, no plant molecule with GC activity has been identified. When the Arabidopsis thaliana genome is queried with GC sequences from cyanobacteria, lower and higher eukaryotes no unassigned proteins with significant similarity are found. However, a motif search of the A. thaliana genome based on conserved and functionally assigned amino acids in the catalytic center of annotated GCs returns one candidate that also contains the adjacent glycine-rich domain typical for GCs. In this molecule, termed AtGC1, the catalytic domain is in the N-terminal part. AtGC1 contains the arginine or lysine that participates in hydrogen bonding with guanine and the cysteine that confers substrate specificity for GTP. When AtGC1 is expressed in Escherichia coli, cell extracts yield >2.5 times more cGMP than control extracts and this increase is not nitric oxide dependent. Furthermore, purified recombinant AtGC1 has Mg(2+)-dependent GC activity in vitro and >3 times less adenylyl cyclase activity when assayed with ATP as substrate in the absence of GTP. Catalytic activity in vitro proves that AtGC1 can function either as a monomer or homo-oligomer. AtGC1 is thus not only the first functional plant GC but also, due to its unusual domain organization, a member of a new class of GCs.  相似文献   

16.
Soluble guanylyl cyclase (sGC) regulates several important physiological processes by converting GTP into the second-messenger cGMP. sGC has several structural and functional properties in common with adenylyl cyclases (ACs). Recently, we reported that membranous ACs and sGC are potently inhibited by 2',3'-O-(2,4,6-trinitrophenyl)-substituted purine and pyrimidine nucleoside 5'-triphosphates. Using a highly sensitive high-performance liquid chromatography-tandem mass spectrometry method, we report that highly purified recombinant sGC of rat possesses nucleotidyl cyclase activity. As opposed to GTP, ITP, XTP and ATP, the pyrimidine nucleotides UTP and CTP were found to be sGC substrates in the presence of Mn(2+). When Mg(2+) is used, sGC generates cGMP, cAMP, cIMP, and cXMP. In conclusion, soluble "guanylyl" cyclase possesses much broader substrate specificity than previously assumed. Our data have important implications for cyclic nucleotide-mediated signal transduction.  相似文献   

17.
The aim of this work was to study the effect of glucagon-like peptide-2 (GLP-2) on the cyclic guanosine monophosphate (cGMP) signalling pathway and whether insulin or epidermal growth factor (EGF) might modulate the effects of GLP-2. GLP-2 produced a dose-dependent decrease in intracellular sodium nitroprusside-induced cGMP production. However, insulin induced an increase in the levels of cGMP that was dose-dependently decreased by the addition of GLP-2. By contrast, EGF induced a decrease in cGMP production, which was further reduced by the addition of GLP-2. To assess whether variations in cGMP production might be related with changes in some component of soluble guanylyl cyclase (sGC), the expression of the ??1, ??2, and ??1 subunits were determined by Western blot analysis. At 1?h, GLP-2 produced a decrease in the expression of both ??1 and ??1 in the cytosolic fraction, but at 24?h only ??1was reduced. As expected, insulin induced an increase in the expression of both subunits after 1?h of incubation; this was decreased by the addition of GLP-2. Likewise, incubation with EGF for 24?h produced a decrease in the expression of both subunits that was maximal when GLP-2 was added. In addition, incubation with insulin for 1?h produced an increase in the expression of the ??2 subunit, which was reduced by the addition of GLP-2. These results suggest that GLP-2 inhibits cGMP production by decreasing the cellular content of at least one subunit of the heterodimeric active form of the sGC, independently of the presence of insulin or EFG. This may open new insights into the actions of this neuropeptide.  相似文献   

18.
Shpakov AO 《Tsitologiia》2007,49(8):617-630
Guanylyl cyclases (GCs), catalyzing the synthesis of the second messenger cGMP, are key elements of the signaling systems of animals of different phylogenetic levels including unicellular eukaryotes. In the review the literature data concerning unusual GCs observed in unicellular eukaryotes and having the structural-functional organization and topology similar to those of mammalian membrane-bound adenylyl cyclases, are analyzed. Among these GCs there are bifunctional membrane-bound GCs of ciliates and Plasmodium, which have both C-terminal cyclase domain related to mammalian adenylyl cyclases and N-terminal domain with ten membrane-spanning regions homologous to P-type ATPases. The developed by the author comparative analysis of primary structures of GC ATPase domains showed that the domains are high conservative and the motifs, which are closely linked to functional activity of ATPase transporters, are preserved in the domains. It is suggested that ATPase domains carry out either receptor or regulatory functions in GC molecules. Dual substrate specificity of cyclases of unicellular organisms and its possible role in revealing of GC activity in fungi and trypanosomes, lacking GC encoded genes, are discussed. The molecular mechanisms of the functioning of GCs, the regulation of GC activity by different agents, and the participation of these enzymes in control of the processes, such as chemotaxis, aggregation, movement, gametogenesis and photophobis response, are analyzed.  相似文献   

19.
The mitochondrial ATP binding cassette transporter ABCB6 has been associated with a broad range of physiological functions, including growth and development, therapy-related drug resistance, and the new blood group system Langereis. ABCB6 has been proposed to regulate heme synthesis by shuttling coproporphyrinogen III from the cytoplasm into the mitochondria. However, direct functional information of the transport complex is not known. To understand the role of ABCB6 in mitochondrial transport, we developed an in vitro system with pure and active protein. ABCB6 overexpressed in HEK293 cells was solubilized from mitochondrial membranes and purified to homogeneity. Purified ABCB6 showed a high binding affinity for MgATP (Kd = 0.18 μm) and an ATPase activity with a Km of 0.99 mm. Reconstitution of ABCB6 into liposomes allowed biochemical characterization of the ATPase including (i) substrate-stimulated ATPase activity, (ii) transport kinetics of its proposed endogenous substrate coproporphyrinogen III, and (iii) transport kinetics of substrates identified using a high throughput screening assay. Mutagenesis of the conserved lysine to alanine (K629A) in the Walker A motif abolished ATP hydrolysis and substrate transport. These results suggest a direct interaction between mitochondrial ABCB6 and its transport substrates that is critical for the activity of the transporter. Furthermore, the simple immunoaffinity purification of ABCB6 to near homogeneity and efficient reconstitution of ABCB6 into liposomes might provide the basis for future studies on the structure/function of ABCB6.  相似文献   

20.
Nitric oxide (NO) is an essential signaling molecule in biological systems. Soluble guanylate cyclase (sGC), composing of α1 and β1 subunit, is the receptor for NO. Using radioimmunoassay, we discovered that activation of sGC by treatment with bradykinin or sodium nitroprusside (SNP) is impaired in MCF-7 and MDA-MB-231 breast cancer cells as compared to normal breast epithelial 184A1 cells. The 184A1 cells expressed both sGC α1 and sGCβ1 mRNAs. However, levels of sGCβ1 mRNAs were relatively lower in MCF-7 cells while both mRNA of sGC subunits were absent in MDA-MB-231 cells. Treatment with DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) increased mRNA levels of both sGCα1 and sGCβ1 in MDA-MB-231 cells but only sGCβ1 mRNAs in MCF-7 cells. The 5-aza-dC treatment increased the SNP-induced cGMP production in MCF-7 and MDA-MB-231, but not in 184A1 cells. Bisulfite sequencing revealed that the promoter of sGCα1 in MDA-MB-231 cells and promoter of sGCβ1 in MCF-7 cells were methylated. Promoter hypermethylation of sGCα1 and sGCβ1 was found in 1 out of 10 breast cancer patients. Over-expression of both sGC subunits in MDA-MB-231 cells induced apoptosis and growth inhibition in vitro as well as reduced tumor incidence and tumor growth rate of MDA-MB-231 xenografts in nude mice. Elevation of sGC reduced protein abundance of Bcl-2, Bcl-xL, Cdc2, Cdc25A, Cyclin B1, Cyclin D1, Cdk6, c-Myc, and Skp2 while increased protein expression of p53. Our study demonstrated that down-regulation of sGC, partially due to promoter methylation, provides growth and survival advantage in human breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号