首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Skin invasion is the initial step in infection of the human host by schistosome blood flukes. Schistosome larvae have the remarkable ability to overcome the physical and biochemical barriers present in skin in the absence of any mechanical trauma. While a serine peptidase with activity against insoluble elastin appears to be essential for this process in one species of schistosomes, Schistosoma mansoni, it is unknown whether other schistosome species use the same peptidase to facilitate entry into their hosts.

Methods

Recent genome sequencing projects, together with a number of biochemical studies, identified alternative peptidases that Schistosoma japonicum or Trichobilharzia regenti could use to facilitate migration through skin. In this study, we used comparative proteomic analysis of human skin treated with purified cercarial elastase, the known invasive peptidase of S. mansoni, or S. mansoni cathespin B2, a close homolog of the putative invasive peptidase of S. japonicum, to identify substrates of either peptidase. Select skin proteins were then confirmed as substrates by in vitro digestion assays.

Conclusions

This study demonstrates that an S. mansoni ortholog of the candidate invasive peptidase of S. japonicum and T. regenti, cathepsin B2, is capable of efficiently cleaving many of the same host skin substrates as the invasive serine peptidase of S. mansoni, cercarial elastase. At the same time, identification of unique substrates and the broader species specificity of cathepsin B2 suggest that the cercarial elastase gene family amplified as an adaptation of schistosomes to human hosts.  相似文献   

2.
3.
Liu J  Zhu C  Shi Y  Li H  Wang L  Qin S  Kang S  Huang Y  Jin Y  Lin J 《PloS one》2012,7(2):e31876

Background

Schistosomiasis japonica is prevalent in Asian countries and it remains a major public health problem in China. The major endemic foci are the marsh and lake regions of southern China, particularly the Dongting Lake region bordering Hunan and Hubei provinces, and the Poyang Lake region in Jiangxi province. Domestic ruminants, especially bovines, have long been considered to play a major role in the transmission of Schistosoma japonicum to humans.

Methods and Findings

A miracidial hatching technique was used to investigate the prevalence of S. japonicum infections in domestic ruminants and field feces collected from two towns located to the south and east of Dongting Lake, Hunan province, between 2005 and 2010. The overall prevalence of infection was not significantly reduced from 4.93% in 2005 to 3.64% in 2008, after which it was maintained at this level. Bovines comprised 23.5–58.2% of the total infected ruminants, while goats comprised 41.8–76.5%. Infection rates in cattle and goats were significantly higher than those found in buffalo in most study years. The prevalence in buffalo younger than three years was significantly higher than that in those aged over three years. All the positive field samples of feces were derived from bovines in Nandashan. In Matang Town, 61.22% of the positive field feces were from bovines, while the rest were from goats. The positive rates for field feces were approximately the same in April and November/October.

Conclusions

The present study found that bovines and goats are major sources of S. japonicum infection in the Dongting lake region and there was age-related resistance in buffalo. Both bovines and goats should be treated equally when controlling S. japonicum infections in the Dongting lake region. It is essential to conduct an additional mass treatment in late March or early April, in addition to the original treatment scheme.  相似文献   

4.

Background

The presence of animal reservoirs in Schistosoma japonicum infection has been a major obstacle in the control of schistosomiasis. Previous studies have proven that the inclusion of control measures on animal reservoir hosts for schistosomiasis contributed to the decrease of human cases. Animal surveillance should therefore be included to strengthen and improve the capabilities of current serological tests.

Methodology/Principal Findings

Thioredoxin peroxidase-1 (SjTPx-1) and four tandem repeat proteins (Sj1TR, Sj2TR, Sj4TR, Sj7TR) were initially evaluated against human sera. The previous test showed high sensitivity and specificity for antibody detection against SjTPx-1 and Sj7TR. In this study, the immunodiagnostic potential of these recombinant proteins was evaluated using enzyme-linked immunoassay on 50 water buffalo serum samples collected in Cagayan, the Philippines as compared with the soluble egg antigen (SEA). For specificity, 3 goat serum samples positive with Fasciola hepatica were used and among the antigens used, only SEA showed cross-reaction. Stool PCR targeting the S. japonicum 82 bp mitochondrial NAD 1 gene was done to confirm the true positives and served as the standard test. Twenty three samples were positive for stool PCR. SjTPx-1 and Sj1TR gave the highest sensitivity among the recombinant proteins tested for water buffalo samples with 82.61% and 78.26% respectively which were higher than that of SEA (69.57%).

Conclusions/Significance

These results prove that SjTPx-1 works both for humans and water buffaloes making it a good candidate antigen for zoonotic diagnosis. Sj1TR showed good results for water buffaloes and therefore can also be used as a possible candidate for detecting animal schistosome infection.  相似文献   

5.
6.
7.
8.

Background

Schistosoma japonicum, which remains a major public health problem in the Philippines and mainland China, is the only schistosome species for which zoonotic transmission is considered important. While bovines are suspected as the main zoonotic reservoir in parts of China, the relative contributions of various non-human mammals to S. japonicum transmission in the Philippines remain to be determined. We examined the population genetics of S. japonicum in the Philippines in order to elucidate transmission patterns across host species and geographic areas.

Methodology/Principal Findings

S. japonicum miracidia (hatched from eggs within fecal samples) from humans, dogs, pigs and rats, and cercariae shed from snail-intermediate hosts, were collected across two geographic areas of Samar Province. Individual isolates were then genotyped using seven multiplexed microsatellite loci. Wright''s FST values and phylogenetic trees calculated for parasite populations suggest a high frequency of parasite gene-flow across definitive host species, particularly between dogs and humans. Parasite genetic differentiation between areas was not evident at the definitive host level, possibly suggesting frequent import and export of infections between villages, although there was some evidence of geographic structuring at the snail–intermediate host level.

Conclusions/Significance

These results suggest very high levels of transmission across host species, and indicate that the role of dogs should be considered when planning control programs. Furthermore, a regional approach to treatment programs is recommended where human migration is extensive.  相似文献   

9.
Song L  Li J  Xie S  Qian C  Wang J  Zhang W  Yin X  Hua Z  Yu C 《PloS one》2012,7(2):e31456

Background

Schistosomiasis remains a major public health concern affecting billions of people around the world. Currently, praziquantel is the only drug of choice for treatment of human schistosomiasis. The emergence of drug resistance to praziquantel in schistosomes makes the development of novel drugs an urgent task. Thioredoxin glutathione reductase (TGR) enzymes in Schistosoma mansoni and some other platyhelminths have been identified as alternative targets. The present study was designed to confirm the existense and the potential value of TGR as a target for development of novel antischistosomal agents in Schistosoma japonicum, a platyhelminth endemic in Asia.

Methods and Findings

After cloning the S. japonicum TGR (SjTGR) gene, the recombinant SjTGR selenoprotein was purified and characterized in enzymatic assays as a multifunctional enzyme with thioredoxin reductase (TrxR), glutathione reductase (GR) and glutaredoxin (Grx) activities. Immunological and bioinformatic analyses confirmed that instead of having separate TrxR and GR proteins in mammalian, S. japonicum only encodes TGR, which performs the functions of both enzymes and plays a critical role in maintaining the redox balance in this parasite. These results were in good agreement with previous findings in Schistosoma mansoni and some other platyhelminths. Auranofin, a known inhibitor against TGR, caused fatal toxicity in S. japonicum adult worms in vitro and reduced worm and egg burdens in S. japonicum infected mice.

Conclusions

Collectively, our study confirms that a multifunctional enzyme SjTGR selenoprotein, instead of separate TrxR and GR enzymes, exists in S. japonicum. Furthermore, TGR may be a potential target for development of novel agents against schistosomes. This assumption is strengthened by our demonstration that the SjTGR is an essential enzyme for maintaining the thiol-disulfide redox homeostasis of S. japonicum.  相似文献   

10.
11.

Background

Schistosomiasis japonica remains a major public health problem in China. Its pathogen, Schistosoma japonicum has a complex life cycle and a unique repertoire of genes expressed at different life cycle stages. Exploring schistosome gene regulation will yield the best prospects for new drug targets and vaccine candidates. MicroRNAs (miRNAs) are a highly conserved class of noncoding RNA that control many biological processes by sequence-specific inhibition of gene expression. Although a large number of miRNAs have been identified from plants to mammals, it remains no experimental proof whether schistosome exist miRNAs.

Methodology and Results

We have identified novel miRNAs from Schistosoma japonicum by cloning and sequencing a small (18–26 nt) RNA cDNA library from the adult worms. Five novel miRNAs were identified from 227 cloned RNA sequences and verified by Northern blot. Alignments of the miRNAs with corresponding family members indicated that four of them belong to a metazoan miRNA family: let-7, miR-71, bantam and miR-125. The fifth potentially new (non conserved) miRNA appears to belong to a previously undescribed family in the genus Schistosome. The novel miRNAs were designated as sja-let-7, sja-miR-71, sja-bantam, sja-miR-125 and sja-miR-new1, respectively. Expression of sja-let-7, sja-miR-71 and sja-bantam were analyzed in six stages of the life cycle, i.e. egg, miracidium, sporocyst, cercaria, schistosomulum, and adult worm, by a modified stem-loop reverse transcribed polymerase chain reaction (RT-PCR) method developed in our laboratory. The expression patterns of these miRNAs were highly stage-specific. In particular, sja-miR-71 and sja-bantam expression reach their peaks in the cercaria stage and then drop quickly to the nadirs in the schistosomulum stage, following penetration of cercaria into a mammalian host.

Conclusions

Authentic miRNAs were identified for the first time in S. japonicum, including a new schistosome family member. The different expression patterns of the novel miRNAs over the life stages of S. japonicum suggest that they may mediate important roles in Schistosome growth and development.  相似文献   

12.

Background

The current knowledge of immunological responses to schistosomiasis, a major tropical helminthic disease, is insufficient, and a better understanding of these responses would support vaccine development or therapies to control granuloma-associated immunopathology. CD4+ T cells play critical roles in both host immune responses against parasitic infection and immunopathology in schistosomiasis. The induction of T helper (Th)1, Th2 and T regulatory (Treg) cells and their roles in schistosome infections are well-illustrated. However, little in vivo data are available on the dynamics of Th17 cells, another important CD4+ T cell subset, after Schistosoma japonicum infection or whether these cells and their defining IL-17 cytokine mediate host protective responses early in infection.

Methodology

Levels of Th17 and the other three CD4+ T cell subpopulations and the cytokines related to induction or repression of Th17 cell generation in different stages of S. japonicum infection were observed. Contrary to reported in vitro studies, our results showed that the Th17 cells were induced along with the Th1, Th2, Treg cells and the IFN-γ and IL-4 cytokines in S. japonicum infected mice. The results also suggested that S. japonicum egg antigens but not adult worm antigens preferentially induced Th17 cell generation. Furthermore, decreasing IL-17 with a neutralizing anti-IL-17 monoclonal antibody (mAb) increased schistosome-specific antibody levels and partial protection against S. japonicum infection in mice.

Conclusions

Our study is the first to report the dynamics of Th17 cells during S. japonicum infection and indicate that Th17 cell differentiation results from the integrated impact of inducing and suppressive factors promoted by the parasite. Importantly, our findings suggest that lower IL-17 levels may result in favorable host protective responses. This study significantly contributes to the understanding of immunity to schistosomiasis and may aid in developing interventions to protect hosts from infection or restrain immunopathology.  相似文献   

13.

Background

Schistosomiasis is one of the world’s most prevalent zoonotic diseases and a serious worldwide public health problem. Since the tegument (TG) of Schistosoma japonicum is in direct contact with the host and induces a host immune response against infection, the identification of immune response target molecules in the schistosome TG is crucial for screening diagnostic antigens for this disease.

Methodology/Principal Findings

In this study, an immunoproteomics approach used TG proteins as screening antigens to identify potential diagnostic molecules of S. japonicum. Ten spots corresponding to six proteins were identified that immunoreacted with sera from S. japonicum-infected rabbits but not sera from uninfected rabbits and their specific IgG antibody levels declined quickly after praziquantel treatment. Recombinant phosphoglycerate mutase (PGM) and UV excision repair protein RAD23 homolog B (RAD23) proteins were expressed and their diagnostic potential for schistosomiasis was evaluated and compared with schistosome soluble egg antigen (SEA) using ELISA. The results showed high sensitivity and specificity and low crossreactivity when rSjPGM-ELISA and rSjRAD23-ELISA were used to detect water buffalo schistosomiasis. Moreover, antibodies to rSjPGM and rSjRAD23 might be short-lived since they declined quickly after chemotherapy.

Conclusion/Significance

Therefore, the two schistosome TG proteins SjPGM and SjRAD23 were identified as potential diagnostic markers for the disease. The two recombinant proteins might have the potential to evaluate the effectiveness of drug treatments and for distinguishing between current and past infection.  相似文献   

14.
Ishida JK  Yoshida S  Ito M  Namba S  Shirasu K 《PloS one》2011,6(10):e25802

Background

Plants within the Orobanchaceae are an agriculturally important group of parasites that attack economically important crops to obtain water and nutrients from their hosts. Despite their agricultural importance, molecular mechanisms of the parasitism are poorly understood.

Methodology/Principal Findings

We developed transient and stable transformation systems for Phtheirospermum japonicum, a facultative parasitic plant in the Orobanchaceae. The transformation protocol was established by a combination of sonication and acetosyringone treatments using the hairy-root-inducing bacterium, Agrobacterium rhizogenes and young seedlings. Transgenic hairy roots of P. japonicum were obtained from cotyledons 2 to 3 weeks after A. rhizogenes inoculation. The presence and the expression of transgenes in P. japonicum were verified by genomic PCR, Southern blot and RT-PCR methods. Transgenic roots derived from A. rhizogenes-mediated transformation were able to develop haustoria on rice and maize roots. Transgenic roots also formed apparently competent haustoria in response to 2,6-dimethoxy-1,4-benzoquinone (DMBQ), a haustorium-inducing chemical. Using this system, we introduced a reporter gene with a Cyclin B1 promoter into P. japonicum, and visualized cell division during haustorium formation.

Conclusions

We provide an easy and efficient method for hairy-root transformation of P. japonicum. Transgenic marker analysis revealed that cell divisions during haustorium development occur 24 h after DMBQ treatment. The protocols described here will allow functional analysis of genes involved in plant parasitism.  相似文献   

15.
16.
Song X  Shen J  Wen H  Zhong Z  Luo Q  Chu D  Qi Y  Xu Y  Wei W 《PloS one》2011,6(8):e23453

Background

The hygiene hypothesis suggests that helminth infections prevent a range of autoimmune diseases.

Methodology/Principal Findings

To investigate the effects of S. japonicum infection on collagen-induced arthritis (CIA), male DBA/1 mice were challenged with unisexual or bisexual S. japonicum cercariae two weeks prior to bovine type II collagen (CII) immunization or at the onset of CIA. S. japonicum infection prior to CII immunization significantly reduced the severity of CIA. ELISA (enzyme linked immunosorbent assay) showed that the levels of anti-CII IgG and IgG2a were reduced in prior schistosome-infected mice, while anti-CII IgG1 was elevated. Splenocyte proliferation against both polyclonal and antigen-specific stimuli was reduced by prior schistosome infection as measured by tritiated thymidine incorporation (3H-TdR). Cytokine profiles and CD4+ T cells subpopulation analysis by ELISA and flow cytometry (FCM) demonstrated that prior schistosome infection resulted in a significant down-regulation of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β and IL-6) and Th1 cells, together with up-regulation of the anti-inflammatory cytokine IL-10 and Th2 cells. Interestingly, the expansion of Treg cells and the reduction of Th17 cells were only observed in bisexually infected mice. In addition, prior schistosome infection notably reduced the expression of pro-inflammatory cytokines and receptor activator of NF-κB ligand (RANKL) in the inflamed joint. However, the disease was exacerbated at one week after infection when established CIA mice were challenged with bisexual cercariae.

Conclusion/Significance

Our data provide direct evidence that the Th2 response evoked by prior S. japonicum infection can suppress the Th1 response and pro-inflammatory mediator and that bisexual infection with egg-laying up-regulates the Treg response and down-regulates the Th17 response, resulting in an amelioration of autoimmune arthritis. The beneficial effects might depend on the establishment of a Th2-dominant response rather than the presence of the eggs. Our results suggest that anti-inflammatory molecules from the parasite could treat autoimmune diseases.  相似文献   

17.
18.

Background

Schistosome eggs must traverse tissues of the intestine or bladder to escape the human host and further the life cycle. Escape from host tissues is facilitated by secretion of immuno-reactive molecules by eggs and the formation of an intense strong granulomatous response by the host which acts to exclude the egg into gut or bladder lumens. Schistosome eggs hatch on contact with freshwater, but the mechanisms of activation and hatching are poorly understood. In view of the lack of knowledge of the behaviour of egg hatching in schistosomes, we undertook a detailed dynamic and correlative study of the hatching biology of Schistosoma japonicum.

Methodology/Principal Findings

Hatching eggs of S. japonicum were studied using correlative light and electron microscopy (EM). The hatching behaviour was recorded by video microscopy. EM preparative methods incorporating high pressure freezing and cryo-substitution were used to investigate ultrastructural features of the miracidium and extra-embryonic envelopes in pre-activated and activated eggs, and immediately after eggshell rupture. Lectin cytochemistry was performed on egg tissues to investigate subcellular location of specific carbohydrate groups.

Conclusions/Significance

The hatching of S. japonicum eggs is a striking phenomenon, whereby the larva is liberated explosively while still encapsulated within its sub-shell envelopes. The major alterations that occur in the egg during activation are scission of the outer envelope-eggshell boundary, autolysis of the cellular inner envelope, and likely hydration of abundant complex and simple polysaccharides in the lacunal space between the miracidial larva and surrounding envelopes. These observations on hatching provide insight into the dynamic activity of the eggs and the biology of schistosomes within the host.  相似文献   

19.

Background

Schistosomiasis is still a major public health burden in the tropics and subtropics. Although there is an effective chemotherapy (Praziquantel) for this disease, reinfection occurs rapidly after mass drug administration (MDA). Because the entire population do not get reinfected at the same rate, it is possible that host factors may play a dominant role in determining resistance or susceptibility to reinfection with schistosomes. Here, we systematically reviewed and meta-analyzed studies that reported associations between reinfection with the principal human-infecting species (S. mansoni, S. japonicum and S. haematobium) and host socio-demographic, epidemiological, immunological and genetic factors.

Methodology/Principal Findings

PubMed, Scopus, Google Scholar, Cochrane Review Library and African Journals Online public databases were searched in October 2013 to retrieve studies assessing association of host factors with reinfection with schistosomes. Meta-analysis was performed to generate pooled odds ratios and standardized mean differences as overall effect estimates for dichotomous and continuous variables, respectively. Quality assessment of included studies, heterogeneity between studies and publication bias were also assessed. Out of the initial 2739 records, 109 studies were included in the analyses, of which only 32 studies with 37 data sets were eligible for quantitative data synthesis. Among several host factors identified, strong positive association was found with age and pre-treatment intensity, and only slightly for gender. These factors are major determinants of exposure and disease transmission. Significant positive association was found with anti-SWA IgG4 level, and a negative overall effect for association with IgE levels. This reconfirmed the concept that IgE/IgG4 balance is a major determinant of protective immunity against schistosomiasis. Other identified determinants were reported by a small number of studies to enable interpretation.

Conclusions

Our data contribute to the understanding of host-parasite interaction as it affects reinfection, and is a potential tool to guide planning and tailoring of community interventions to target high-risk groups.  相似文献   

20.

Background

To determine whether treatment of intestinal parasitic infections improves cognitive function in school-aged children, we examined changes in cognitive testscores over 18 months in relation to: (i) treatment-related Schistosoma japonicum intensity decline, (ii) spontaneous reduction of single soil-transmitted helminth (STH) species, and (iii) ≥2 STH infections among 253 S. japonicum-infected children.

Methodology

Helminth infections were assessed at baseline and quarterly by the Kato-Katz method. S. japonicum infection was treated at baseline using praziquantel. An intensity-based indicator of lower vs. no change/higher infection was defined separately for each helminth species and joint intensity declines of ≥2 STH species. In addition, S. japonicum infection-free duration was defined in four categories based on time of schistosome re-infection: >18 (i.e. cured), >12 to ≤18, 6 to ≤12 and ≤6 (persistently infected) months. There was no baseline treatment for STHs but their intensity varied possibly due to spontaneous infection clearance/acquisition. Four cognitive tests were administered at baseline, 6, 12, and 18 months following S. japonicum treatment: learning and memory domains of Wide Range Assessment of Memory and Learning (WRAML), verbal fluency (VF), and Philippine nonverbal intelligence test (PNIT). Linear regression models were used to relate changes in respective infections to test performance with adjustment for sociodemographic confounders and coincident helminth infections.

Principal Findings

Children cured (β = 5.8; P = 0.02) and those schistosome-free for >12 months (β = 1.5; P = 0.03) scored higher in WRAML memory and VF tests compared to persistently infected children independent of STH infections. A decline vs. no change/increase of any individual STH species (β:11.5–14.5; all P<0.01) and the joint decline of ≥2 STH (β = 13.1; P = 0.01) species were associated with higher scores in WRAML learning test independent of schistosome infection. Hookworm and Trichuris trichiura declines were independently associated with improvements in WRAML memory scores as was the joint decline in ≥2 STH species. Baseline coinfection by ≥2 STH species was associated with low PNIT scores (β = −1.9; P = 0.04).

Conclusion/Significance

Children cured/S. japonicum-free for >12 months post-treatment and those who experienced declines of ≥2 STH species scored higher in three of four cognitive tests. Our result suggests that sustained deworming and simultaneous control for schistosome and STH infections could improve children''s ability to take advantage of educational opportunities in helminth-endemic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号