首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluates two hypotheses that address how Late/Final Jomon period people responded to early‐life stress using linear enamel hypoplasia (LEH) and incremental microstructures of enamel. The first hypothesis predicts that Jomon people who experienced early‐life stressors had greater physiological competence in responding to future stress events (predictive adaptive response). The second hypothesis predicts that Jomon people traded‐off in future growth and maintenance when early investment in growth and survival was required (plasticity/constraint). High resolution tooth impressions were collected from intact, anterior teeth and studied under an engineer's measuring microscope. LEH were identified based on accentuated perikymata and depressions in the enamel surface profile. Age of formation for each LEH was estimated by summing counts of perikymata and constants associated with crown initiation and cuspal enamel formation times. The relationship between age‐at‐first‐defect formation, number of LEH, periodicity between LEH, and mortality was evaluated using multiple regression and hazards analysis. A significant, positive relationship was found between age‐at‐death relative to age‐at‐first‐defect formation and a significant, negative relationship was found between number of LEH relative to age‐at‐first‐defect formation. Individuals with earlier forming defects were at a significantly greater risk of forming defects at later stages of development and dying at younger ages. These results suggest that Late/Final Jomon period foragers responded to early‐life stressors in a manner consistent with the plasticity/constraint hypothesis of human life history. Late/Final Jomon period individuals were able to survive early‐life stressors, but this investment weakened responses to future stress events and exacerbated mortality schedules. Am J Phys Anthropol 155:537–545, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
The larval patterns of marine invertebrates pose intriguing questions for both evolutionary and developmental biologists. However, combined investigations have been rare. Quantitative models analyze the selective factors that drive evolutionary change in larval nutrition and timing of metamorphosis. Developmental studies describe the morphogenesis characterizing ancestral and derived larval patterns. Rigorous evolutionary analysis of the transition to derived modes of development is lacking and detailed developmental and ecological data are needed to test and refine theoretical models. A major challenge facing studies of life cycle evolution is the elucidation of the genetic structure and covariance of important developmental and larval traits.  相似文献   

3.
Bongers  Tom 《Plant and Soil》1999,212(1):13-22
Nematodes are increasingly being used in environmental studies. One of the potential parameters to measure the impact of disturbances and to monitor changes in structure and functioning of the below-ground ecosystem is the nematode Maturity Index; an index based on the proportion of colonizers (r-strategists s.l.) and persisters (K-strategists s.l.) in samples. In this paper the original allocation of nematode taxa on the colonizer-persister scale, and the tolerance and sensitivity of colonizers and persisters are discussed from an evolutionary viewpoint. The phenomenon that neither relative egg size nor body length is an unequivocal character to scale nematodes suggests that the main selection for life history traits occurred independently in the major evolutionary branches. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Adverse ecological and social conditions during early life are known to influence development, with rippling effects that may explain variation in adult health and fitness. The adaptive function of such developmental plasticity, however, remains relatively untested in long‐lived animals, resulting in much debate over which evolutionary models are most applicable. Furthermore, despite the promise of clinical interventions that might alleviate the health consequences of early‐life adversity, research on the proximate mechanisms governing phenotypic responses to adversity have been largely limited to studies on glucocorticoids. Here, we synthesize the current state of research on developmental plasticity, discussing both ultimate and proximate mechanisms. First, we evaluate the utility of adaptive models proposed to explain developmental responses to early‐life adversity, particularly for long‐lived mammals such as humans. In doing so, we highlight how parent‐offspring conflict complicates our understanding of whether mothers or offspring benefit from these responses. Second, we discuss the role of glucocorticoids and a second physiological system—the gut microbiome—that has emerged as an additional, clinically relevant mechanism by which early‐life adversity can influence development. Finally, we suggest ways in which nonhuman primates can serve as models to study the effects of early‐life adversity, both from evolutionary and clinical perspectives.  相似文献   

5.
Developmental plasticity describes situations where a specific input during an individual''s development produces a lasting alteration in phenotype. Some instances of developmental plasticity may be adaptive, meaning that the tendency to produce the phenotype conditional on having experienced the developmental input has been under positive selection. We discuss the necessary assumptions and predictions of hypotheses concerning adaptive developmental plasticity (ADP) and develop guidelines for how to test empirically whether a particular example is adaptive. Central to our analysis is the distinction between two kinds of ADP: informational, where the developmental input provides information about the future environment, and somatic state-based, where the developmental input enduringly alters some aspect of the individual''s somatic state. Both types are likely to exist in nature, but evolve under different conditions. In all cases of ADP, the expected fitness of individuals who experience the input and develop the phenotype should be higher than that of those who experience the input and do not develop the phenotype, while the expected fitness of those who do not experience the input and do not develop the phenotype should be higher than those who do not experience the input and do develop the phenotype. We describe ancillary predictions that are specific to just one of the two types of ADP and thus distinguish between them.  相似文献   

6.
动物生活史进化理论研究进展   总被引:1,自引:0,他引:1  
综述了生活史性状、生活史对策、权衡、适合度及进化种群统计学等动物生活史进化领域的进展。权衡是生活史性状之间相互联系的纽带,分为生理权衡与进化权衡。适合度是相对的,与个体所处的特定环境条件有关,性状进化与适合度之间关系紧密。适合度是生活史进化理论研究的焦点。探讨动物生活史对策的理论很多,影响最大的是MacArthur和Wilson提出的r对策及K对策理论。随年龄的增长,动物存活率及繁殖率逐步下降的过程,称为衰老;解释衰老的进化理论主要有突变-选择平衡假设和多效对抗假设。进化种群统计学将种群统计学应用于生活史进化研究,为探讨表型适合度的进化提供了有效的手段。将进化种群统计学、数量遗传学及特定种系效应理论进行整合,建立完整的动物生活史进化综合理论体系,是当代此领域的最大挑战。  相似文献   

7.
8.
We investigated four predictions about how temperature, photoperiod and sex affect the life history plasticity and foraging activity of a damselfly. (i) As predicted, increased temperatures increased foraging activity and growth rates, but in contrast with the prediction, late photoperiod (high time stress) did not affect foraging activity and growth rate. (ii) Unexpectedly, the increase in growth rate at increasing temperatures was not larger under high time stress. (iii) As predicted, age and size at emergence decreased at higher temperatures and at the late photoperiod. Temperature-induced life history shifts were direct or the result of behavioural growth mediation depending on the temperature range. Photoperiod-induced life history shifts were direct. (iv) As predicted, males emerged before females but at a smaller size. The degree of sexual size dimorphism was influenced by the joint effects of temperature and photoperiod. We could only detect genetic variation in size plasticity to photoperiod. The match between the sex-specific life history responses to temperature and photoperiod and predictions by relevant optimality models suggests adaptive life history plasticity to these variables.  相似文献   

9.
Both developmental nutrition and adult nutrition affect life‐history traits; however, little is known about whether the effect of developmental nutrition depends on the adult environment experienced. We used the fruit fly to determine whether life‐history traits, particularly life span and fecundity, are affected by developmental nutrition, and whether this depends on the extent to which the adult environment allows females to realize their full reproductive potential. We raised flies on three different developmental food levels containing increasing amounts of yeast and sugar: poor, control, and rich. We found that development on poor or rich larval food resulted in several life‐history phenotypes indicative of suboptimal conditions, including increased developmental time, and, for poor food, decreased adult weight. However, development on poor larval food actually increased adult virgin life span. In addition, we manipulated the reproductive potential of the adult environment by adding yeast or yeast and a male. This manipulation interacted with larval food to determine adult fecundity. Specifically, under two adult conditions, flies raised on poor larval food had higher reproduction at certain ages – when singly mated this occurred early in life and when continuously mated with yeast this occurred during midlife. We show that poor larval food is not necessarily detrimental to key adult life‐history traits, but does exert an adult environment‐dependent effect, especially by affecting virgin life span and altering adult patterns of reproductive investment. Our findings are relevant because (1) they may explain differences between published studies on nutritional effects on life‐history traits; (2) they indicate that optimal nutritional conditions are likely to be different for larvae and adults, potentially reflecting evolutionary history; and (3) they urge for the incorporation of developmental nutritional conditions into the central life‐history concept of resource acquisition and allocation.  相似文献   

10.
11.
Despite strong selective pressure to optimize larval life history in marine environments, there is a wide diversity with regard to developmental mode, size, and time larvae spend in the plankton. In the present study, we assessed if adaptive hypotheses explain the distribution of the larval life history of thoracican barnacles within a strict phylogenetic framework. We collected environmental and larval trait data for 170 species from the literature, and utilized a complete thoracican synthesis tree to account for phylogenetic nonindependence. In accordance with Thorson's rule, the fraction of species with planktonic‐feeding larvae declined with water depth and increased with water temperature, while the fraction of brooding species exhibited the reverse pattern. Species with planktonic‐nonfeeding larvae were overall rare, following no apparent trend. In agreement with the “size advantage” hypothesis proposed by Strathmann in 1977, egg and larval size were closely correlated. Settlement‐competent cypris larvae were larger in cold water, indicative of advantages for large juveniles when growth is slowed. Planktonic larval duration, on the other hand, was uncorrelated to environmental variables. We conclude that different selective pressures appear to shape the evolution of larval life history in barnacles.  相似文献   

12.
Rates of climatic niche evolution vary widely across the tree of life and are strongly associated with rates of diversification among clades. However, why the climatic niche evolves more rapidly in some clades than others remains unclear. Variation in life history traits often plays a key role in determining the environmental conditions under which species can survive, and therefore, could impact the rate at which lineages can expand in available climatic niche space. Here, we explore the relationships among life-history variation, climatic niche breadth, and rates of climatic niche evolution. We reconstruct a phylogeny for the genus Desmognathus, an adaptive radiation of salamanders distributed across eastern North America, based on nuclear and mitochondrial genes. Using this phylogeny, we estimate rates of climatic niche evolution for species with long, short, and no aquatic larval stage. Rates of climatic niche evolution are unrelated to the mean climatic niche breadth of species with different life histories. Instead, we find that the evolution of a short larval period promotes greater exploration of climatic space, leading to increased rates of climatic niche evolution across species having this trait. We propose that morphological and physiological differences associated with variation in larval stage length underlie the heterogeneous ability of lineages to explore climatic niche space. Rapid rates of climatic niche evolution among species with short larval periods were an important dimension of the clade's adaptive radiation and likely contributed to the rapid rate of lineage accumulation following the evolution of an aquatic life history in this clade. Our results show how variation in a key life-history trait can constrain or promote divergence of the climatic niche, leading to variation in rates of climatic niche evolution among species.  相似文献   

13.
Xenodexia ctenolepis (Hubbs, 1950) is a uniquely asymmetrical species in the fish family Poeciliidae that is endemic to a remote region of Guatemala. In the present study, we describe its life history based on the dissection of 65 adult females from three different collections. We show that it is a livebearer, has superfetation, or the ability to carry multiple litters of young in different stages of development, and has matrotrophy, or placentation, which results in the dry mass of young at birth being three- to four-fold greater than the egg at fertilization. The size distribution of males is non-normal in a fashion that suggests a genetic polymorphism for age and size at maturity. Most phylogenies place Tomeurus gracilis as the sister taxon to the remaining members of the family Poeciliidae. Because Tomeurus is the sole egg-layer in the family, egg-laying is thought to represent the life history of the common ancestor. Because Xenodexia possesses three supposed derived traits (livebearing, superfetation and matrotrophy), this phylogenetic hypothesis suggests that Xenodexia has a highly derived life history with respect to other members of the family. By contrast, the most recent DNA-based phylogeny suggests Xenodexia is the sister taxon to the remainder of the family. If this proves to be true, it suggests that some or all of these life history traits may have been characteristic of the common ancestor to the family, then lost and re-evolved multiple times within the family.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 77–85.  相似文献   

14.

Objectives

Several theories have been proposed to explain the impact of ecological conditions on differences in life history variables within and between species. Here we compare female life history parameters of one western lowland gorilla population (Gorilla gorilla gorilla) and two mountain gorilla populations (Gorilla beringei beringei).

Materials and Methods

We compared the age of natal dispersal, age of first birth, interbirth interval, and birth rates using long-term demographic datasets from Mbeli Bai (western gorillas), Bwindi Impenetrable National Park and the Virunga Massif (mountain gorillas).

Results

The Mbeli western gorillas had the latest age at first birth, longest interbirth interval, and slowest surviving birth rate compared to the Virunga mountain gorillas. Bwindi mountain gorillas were intermediate in their life history patterns.

Discussion

These patterns are consistent with differences in feeding ecology across sites. However, it is not possible to determine the evolutionary mechanisms responsible for these differences, whether a consequence of genetic adaptation to fluctuating food supplies (“ecological risk aversion hypothesis”) or phenotypic plasticity in response to the abundance of food (“energy balance hypothesis”). Our results do not seem consistent with the extrinsic mortality risks at each site, but current conditions for mountain gorillas are unlikely to match their evolutionary history. Not all traits fell along the expected fast-slow continuum, which illustrates that they can vary independently from each other (“modularity model”). Thus, the life history traits of each gorilla population may reflect a complex interplay of multiple ecological influences that are operating through both genetic adaptations and phenotypic plasticity.
  相似文献   

15.
Longevity and life history in hominid evolution   总被引:1,自引:0,他引:1  
Under the assumption that life history in general and longevity in particular play an important part in the study of evolutionary patterns and processes, this paper focuses on predicting longevity changes across hominid evolution and attempts to throw light on the significance of such changes. We also consider some statistical arguments in the analysis of hominid life history patterns. Multiple regression techniques incorporating primate body weight and brain size data are used to predict hominied longevity and the results are compared to those in the literature. Our findings suggest that changes in hominid longevity are more likely to follow brain size than body weight, and that multiple regression techniques may be an appropriate avenue for future studies on life history variation in human evolution.  相似文献   

16.
In temperate climates, the recurring seasonal exigencies of winter represent a fundamental physiological challenge for a wide range of organisms. In response, many temperate insects enter diapause, an alternative developmental program, including developmental arrest, that allows organisms to synchronize their life cycle with seasonal environmental variation. Geographic variation in diapause phenology contributing to local climatic adaptation is well documented. However, few studies have examined how the rapid evolution of a suite of traits expressed across the diapause program may contribute to climatic adaptation on a contemporary timescale. Here, we investigate the evolution of the diapause program over the past 35 years by leveraging a “natural experiment” presented by the recent invasion of the Asian tiger mosquito, Aedes albopictus, across the eastern United States. We sampled populations from two distinct climatic regions separated by 6° of latitude (∼700 km). Using common-garden experiments, we identified regional genetic divergence in diapause-associated cold tolerance, diapause duration, and postdiapause starvation tolerance. We also found regional divergence in nondiapause thermal performance. In contrast, we observed minimal regional divergence in nondiapause larval growth traits and at neutral molecular marker loci. Our results demonstrate rapid evolution of the diapause program and imply strong selection caused by differences in winter conditions.  相似文献   

17.
It is well established that circulating maternal stress hormones (glucocorticoids, GCs) can alter offspring phenotype. There is also a growing body of empirical work, within ecology and evolution, indicating that maternal GCs link the environment experienced by the mother during gestation with changes in offspring phenotype. These changes are considered to be adaptive if the maternal environment matches the offspring's environment and maladaptive if it does not. While these ideas are conceptually sound, we lack a testable framework that can be used to investigate the fitness costs and benefits of altered offspring phenotypes across relevant future environments. We present error management theory as the foundation for a framework that can be used to assess the adaptive potential of maternal stress hormones on offspring phenotype across relevant postnatal scenarios. To encourage rigorous testing of our framework, we provide field‐testable hypotheses regarding the potential adaptive role of maternal stress across a diverse array of taxa and life histories, as well as suggestions regarding how our framework might provide insight into past, present, and future research. This perspective provides an informed lens through which to design and interpret experiments on the effects of maternal stress, provides a framework for predicting and testing variation in maternal stress across and within taxa, and also highlights how rapid environmental change that induces maternal stress may lead to evolutionary traps.  相似文献   

18.
We tested whether the early‐life environment can influence the extent of individual plasticity in a life‐history trait. We asked: can the early‐life environment explain why, in response to the same adult environmental cue, some individuals invest more than others in current reproduction? Moreover, can it additionally explain why investment in current reproduction trades off against survival in some individuals, but is positively correlated with survival in others? We addressed these questions using the burying beetle, which breeds on small carcasses and sometimes carries phoretic mites. These mites breed alongside the beetle, on the same resource, and are a key component of the beetle's early‐life environment. We exposed female beetles to mites twice during their lives: during their development as larvae and again as adults during their first reproductive event. We measured investment in current reproduction by quantifying average larval mass and recorded the female's life span after breeding to quantify survival. We found no effect of either developing or breeding alongside mites on female reproductive investment, nor on her life span, nor did developing alongside mites influence her size. In post hoc analyses, where we considered the effect of mite number (rather than their mere presence/absence) during the female's adult breeding event, we found that females invested more in current reproduction when exposed to greater mite densities during reproduction, but only if they had been exposed to mites during development as well. Otherwise, they invested less in larvae at greater mite densities. Furthermore, females that had developed with mites exhibited a trade‐off between investment in current reproduction and future survival, whereas these traits were positively correlated in females that had developed without mites. The early‐life environment thus generates individual variation in life‐history plasticity. We discuss whether this is because mites influence the resources available to developing young or serve as important environmental cues.  相似文献   

19.
From an ultimate perspective, the age of onset of female reproduction should be sensitive to variation in mortality rates, and variation in the productivity of non-reproductive activities. In accordance with this prediction, most of the cross-national variation in women's age at first birth can be explained by differences in female life expectancies and incomes. The within-country variation in England shows a similar pattern: women have children younger in neighbourhoods where the expectation of healthy life is shorter and incomes are lower. I consider the proximate mechanisms likely to be involved in producing locally appropriate reproductive decisions. There is evidence suggesting that developmental induction, social learning and contextual evocation may all play a role.  相似文献   

20.
Crickets can autotomize their limbs when attacked by predators. This enables them to escape death, but imposes a short-term cost on their escape speed and a long-term cost on their future mating ability. Therefore, adaptive response compensated for the cost of autotomy might be advantageous for autotomized individuals. In the present study, we examined whether autotomy induced life history plasticities compensating for the future cost in the band-legged ground cricket Dianemobius nigrofasciatus . Life history traits of D. nigrofasciatus were compared between autotomized and intact individuals. The developmental time and head width of the individuals that were autotomized as fourth instar nymphs were significantly shorter and smaller, respectively, than those of intact individuals. However, the adult longevity, number of eggs laid and oviposition schedule did not vary between autotomized and intact individuals. In addition, there was no difference between individuals autotomized at the fourth instar and adult stages in these three traits. Early maturation in the autotomized individuals might be advantageous through reducing the risk of predation owing to the shorter period in nymphal stages. The cost of small body size in the autotomized females might not be so great because of no significant difference in fecundity between autotomized and intact individuals. However, the cost of small body size was unclear in the autotomized males because in general larger males were preferred by females. These results indicated autotomy-induced life history that might reduce the cost of autotomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号