首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Three covalent attachments anchor heterotrimeric G proteins to cellular membranes: the α subunits are myristoylated and/or palmitoylated, whereas the γ chain is prenylated. Despite the essential role of these modifications in membrane attachment, it is not clear how they cooperate to specify G protein localization at the plasma membrane, where the G protein relays signals from cell surface receptors to intracellular effector molecules. To explore this question, we studied the effects of mutations that prevent myristoylation and/or palmitoylation of an epitope-labeled α subunit, αz. Wild-type αzz-WT) localizes specifically at the plasma membrane. A mutant that incorporates only myristate is mistargeted to intracellular membranes, in addition to the plasma membrane, but transduces hormonal signals as well as does αz-WT. Removal of the myristoylation site produced a mutant αz that is located in the cytosol, is not efficiently palmitoylated, and does not relay the hormonal signal. Coexpression of βγ with this myristoylation defective mutant transfers it to the plasma membrane, promotes its palmitoylation, and enables it to transmit hormonal signals. Pulse-chase experiments show that the palmitate attached to this myristoylation-defective mutant turns over much more rapidly than does palmitate on αz-WT, and that the rate of turnover is further accelerated by receptor activation. In contrast, receptor activation does not increase the slow rate of palmitate turnover on αz-WT. Together these results suggest that myristate and βγ promote stable association with membranes not only by providing hydrophobicity, but also by stabilizing attachment of palmitate. Moreover, palmitoylation confers on αz specific localization at the plasma membrane.  相似文献   

2.
The free-living amoeba Naegleria fowleri is a causative agent of primary amoebic meningoencephalitis and is highly resistant to current therapies, resulting in mortality rates >97%. As many therapeutics target G protein–centered signal transduction pathways, further understanding the functional significance of G protein signaling within N. fowleri should aid future drug discovery against this pathogen. Here, we report that the N. fowleri genome encodes numerous transcribed G protein signaling components, including G protein–coupled receptors, heterotrimeric G protein subunits, regulator of G protein signaling (RGS) proteins, and candidate Gα effector proteins. We found N. fowleri Gα subunits have diverse nucleotide cycling kinetics; Nf Gα5 and Gα7 exhibit more rapid nucleotide exchange than GTP hydrolysis (i.e., “self-activating” behavior). A crystal structure of Nf Gα7 highlights the stability of its nucleotide-free state, consistent with its rapid nucleotide exchange. Variations in the phosphate binding loop also contribute to nucleotide cycling differences among Gα subunits. Similar to plant G protein signaling pathways, N. fowleri Gα subunits selectively engage members of a large seven-transmembrane RGS protein family, resulting in acceleration of GTP hydrolysis. We show Nf Gα2 and Gα3 directly interact with a candidate Gα effector protein, RGS-RhoGEF, similar to mammalian Gα12/13 signaling pathways. We demonstrate Nf Gα2 and Gα3 each engage RGS-RhoGEF through a canonical Gα/RGS domain interface, suggesting a shared evolutionary origin with G protein signaling in the enteric pathogen Entamoeba histolytica. These findings further illuminate the evolution of G protein signaling and identify potential targets of pharmacological manipulation in N. fowleri.  相似文献   

3.
4.
Integrins regulate cellular adhesion and transmit signals important for cell survival, proliferation and motility. They are expressed by glioma cells and may contribute to their malignant phenotype. Integrin inhibition may therefore represent a promising therapeutic strategy. GL-261 and SMA-560 glioma cells grown under standard conditions uniformly detached and formed large cell clusters after integrin gene silencing or pharmacological inhibition using EMD-121974, a synthetic Arg-Gly-Asp-motif peptide, or GLPG0187, a nonpeptidic integrin inhibitor. After 120 h, the clusters induced by integrin inhibition decayed and cells died. In contrast, when cells were cultured under stem cell (sphere) conditions, no disaggregation became apparent upon integrin inhibition, and cell death was not observed. As poly-HEMA-mediated detachment had similar effects on cell viability as integrin inhibition, we postulated that cell death may result from detachment alone, which was confirmed using various permissive and nonpermissive substrates. No surrogate markers of apoptosis were detected and electron microscopy confirmed that necrosis represents the dominant morphology of detachment-induced cell death. In addition, integrin inhibition resulted in the induction of autophagy that represents a survival signal. When integrins were inhibited in nonsphere glioma cells, the TGF-β pathway was strongly impaired, whereas no such effect was observed in glioma cells cultured under sphere conditions. Cell death induced by integrin inhibition was rescued by the addition of recombinant transforming growth factor-β (TGF-β) and accelerated by exposure to the TGF-β receptor inhibitor, SD-208. In summary, cell death following integrin inhibition is detachment mediated, represents an atypical form of anoikis involving necrosis as well as autophagy, and is modulated by TGF-β pathway activity.  相似文献   

5.
G protein–coupled receptors (GPCRs) transduce their signals through trimeric G proteins, inducing guanine nucleotide exchange on their Gα-subunits; the resulting Gα-GTP transmits the signal further inside the cell. GoLoco domains present in many proteins play important roles in multiple trimeric G protein–dependent activities, physically binding Gα-subunits of the Gαi/o class. In most cases GoLoco binds exclusively to the GDP-loaded form of the Gα-subunits. Here we demonstrate that the poly-GoLoco–containing protein Pins of Drosophila can bind to both GDP- and GTP-forms of Drosophilao. We identify Pins GoLoco domain 1 as necessary and sufficient for this unusual interaction with Gαo-GTP. We further pinpoint a lysine residue located centrally in this domain as necessary for the interaction. Our studies thus identify Drosophila Pins as a target of Gαo-mediated GPCR receptor signaling, e.g., in the context of the nervous system development, where Gαo acts downstream from Frizzled and redundantly with Gαi to control the asymmetry of cell divisions.  相似文献   

6.
The heterotrimeric G proteins are known to have a variety of downstream effectors, but Gs was long thought to be specifically coupled to adenylyl cyclases. A new study indicates that activated Gs can also directly interact with a guanine nucleotide exchange factor for Rho family small GTPases, PDZ-RhoGEF. This novel interaction mediates activation of the small G protein Cdc42 by Gs-coupled GPCRs, inducing cytoskeletal rearrangements and formation of filopodia-like structures. Furthermore, overexpression of a minimal PDZ-RhoGEF fragment can down-regulate cAMP signaling, suggesting that this effector competes with canonical signaling. This first demonstration that the Gαs subfamily regulates activity of Rho GTPases extends our understanding of Gαs activity and establishes RhoGEF coupling as a universal Gα function.

The canonical G protein pathway consists of a cell surface receptor, a heterotrimeric G protein, and an effector protein that controls signaling within the cells. This fundamental paradigm, familiar to every biologist, is rooted in discoveries by the laboratories of Sutherland, Rodbell, and Gilman, which in the 1970s and 1980s dissected biochemical mechanisms of adenylyl cyclase activation by hormones. Their breakthrough came after experiments showing that the G protein Gs is essential to transfer agonist stimulation from the receptor to adenylyl cyclase (1). This G protein consists of the ∼42-kDa α subunit, which binds and hydrolyzes GTP, and the permanently associated dimer of 35-kDa β and ∼10-kDa γ subunits (Gβγ). Their findings helped establish a canonical model in which the agonist-bound receptor causes the G protein to release GDP, and the heterotrimer dissociates into Gα-GTP and free Gβγ; in this state, the G protein can activate its effector (i.e.s will activate adenylyl cyclase until GTP is hydrolyzed). Although the rod photoreceptor G protein, transducin, was discovered by that time (2), the ubiquitously expressed Gs can be considered the founding member of the G protein family.The subsequent cloning and identification of the other three families (Gi, Gq, and G12) completed the rough map of G protein–mediated transduction. These initial studies suggested that the α subunits were responsible for activation of one type of effector (e.g.s for adenylyl cyclase and cAMP; Gαq for phospholipase C, phosphoinositides, and Ca2+; and Gαi for ion channels and inhibition of adenylyl cyclase), whereas the free Gβγ complexes interact with a remarkably large number of binding partners, including some effector enzymes and ion channels (3). Later, Gα12 and Gα13 were found to regulate a distinct type of effectors, the RhoGEFs (4, 5). These multidomain proteins contain pleckstrin homology (PH) domains, which facilitate their membrane localization, and Dbl homology (DH) domains, which catalyze GDP-for-GTP exchange (guanine nucleotide exchange factor; GEF) in the Rho family of small (∼20-kDa) G proteins. At the time, the G12-RhoGEF pathway seemed odd as it contained two G proteins: the receptor-activated “large” G12 class protein and the “small” Rho G protein, which is activated by RhoGEF. However, it was then discovered that Gαq could activate a RhoGEF called Trio (6), and that Gβγ complexes activate other RhoGEFs, indicating that this pathway, if unusual, is at least popular. Gαs, however, mostly appeared to be faithful to its originally determined role—to stimulate adenylyl cyclase(s)—possibly contributing to the enduring perception that regulation of a second messenger–generating enzyme is the “real” function of a heterotrimeric G protein.In the current issue of JBC, Castillo-Kauil et al. (7) force a reexamination of the existing canon, presenting data that show Gαs can also interact with a specific RhoGEF, in this case PDZ-RhoGEF (PRG). The authors made this discovery as part of an examination of the regulation of cell shape by the Rho family. They began by expressing a series of short constructs of three RhoGEF proteins, p115RhoGEF, PRG, and LARG, all of which activated RhoA as expected, promoting cell contraction. However, they noticed that the DH/PH domain of PRG also activated Cdc42 and induced filopodia-like cell protrusions. To investigate which G protein is responsible for activation of this Cdc42-mediated pathway, they overexpressed constitutively active mutants of different Gα subunits. These mutants are stabilized in the active GTP-bound state due to substitution of the glutamine residue crucial for GTP hydrolysis. Surprisingly, the PRG-Cdc42 pathway was stimulated by GαsQ227L, the one Gα subtype not known for interaction with RhoGEFs. Furthermore, they showed that binding of PRG to Cdc42 was promoted only by Gs-coupled receptors, and not by Gq- or Gi-coupled GPCRs. The authors then investigated the PRG site responsible for the interaction with Gαs, narrowing it down to the isolated PRG DH and PH domains and their linker region. A construct encompassing these domains was able to inhibit (i) GPCR-mediated activation of Cdc42, (ii) the GαsQ227L-promoted interaction of PRG with Cdc42, and (iii) some protein phosphorylation events downstream of the canonical cAMP pathway. Taken together, their work identifies PRG as a novel effector for Gs; the Gαs-PRG interaction mediates activation of Rho family protein Cdc42, leading to cytoskeletal remodeling.The unexpected results of Castillo-Kauil et al. open up new opportunities to explore this mechanism at different levels of biology. The experiments described in the paper were performed in vitro using cultured cells, imaging, and pulldown of protein complexes containing the overexpressed Gαs Q227L mutant. Considering the multitude of Gs-coupled receptors and RhoGEFs in the body (8, 9), it will be important to understand the physiological context where the new Gs-mediated pathway plays a significant role. This will require experimentation in vivo and possibly reevaluation of the phenotypes associated with known pathogenic mutations in Gαs (GNAS) and other relevant genes. At the molecular level, it would be important to delineate the biochemical mechanisms of Gαs interaction with PRG. For example, at what stage of the GTP/GDP cycle does Gαs bind to PRG: in the GTP-bound state, which also activates adenylate cyclase, or in the transition state (i.e. just before the terminal phosphate of GTP is removed)? Indeed, there is precedent for proteins that bind preferentially with the transition state—specifically RGS proteins, which accelerate the GTPase reaction. Another possibility is that, by analogy with p115RhoGEF, which stimulates GTPase activity of Gα12 and Gα13, PRG (and other RhoGEFs with similar DH-PH sequences) can influence interaction of Gαs with nucleotides, Gβγ, and other partners.Since defining the receptor, G protein, and effector as the three essential members of the G protein pathway, researchers have discovered many additional proteins that regulate the amplitude and duration of the stimulus and/or participate in cross-talk with other signaling circuits. These “new” proteins include arrestins, receptor kinases, nonreceptor exchange factors, GTPase-activating proteins, special chaperones, etc. Thus, in a way, discovering a novel binding partner for a signaling molecule is not as surprising as it would have been 20 years ago. However, the new partner identified by Castillo-Kauil et al. makes the result of extra significance; until now, we knew that three of four G protein subfamilies could regulate Rho GTPases by activating RhoGEFs: G12 and Gq via their α subunits and Gi via the Gβγ subunits (10). The demonstration that the Gs subfamily is no exception shows that activation of RhoGEFs by heterotrimeric G proteins may be a truly universal mechanism (Fig. 1). The significance of this insight is that the multitude of biological processes regulated by Rho-GTPase networks can potentially respond to the entire repertoire of GPCR-mediated stimuli.Open in a separate windowFigure 1.Activation of the Rho family by heterotrimeric G proteins. The Rho family of small GTPases is activated by RhoGEF proteins, some of which can be stimulated by heterotrimeric G proteins. Of four families of heterotrimeric G proteins, three (G12, Gq, and Gi, shown in shades of gray) were known to activate certain RhoGEFs. The new results (highlighted in orange) (7) show that Gs, the G protein known to stimulate production of cAMP, can also stimulate a particular RhoGEF; this suggests that the Rho GTPases can potentially be stimulated by the multitude of signals from the entire class of GPCRs, including those coupled to Gs. IP3, inositol 1,4,5-trisphosphate.

Funding and additional information—This work was supported in part by National Institutes of Health Grant R56DK119262 (to V. Z. S.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.Conflict of interestThe authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations—The abbreviations used are:
PH
pleckstrin homology
DH
Dbl homology
GEF
guanine nucleotide exchange factor
PRG
PDZ-RhoGEF
GPCR
G protein–coupled receptor.
  相似文献   

7.
Stimulating naïve CD8+ T cells with specific antigens and costimulatory signals is insufficient to induce optimal clonal expansion and effector functions. In this study, we show that the activation and differentiation of CD8+ T cells require IL-2 provided by activated CD4+ T cells at the initial priming stage within 0–2.5 hours after stimulation. This critical IL-2 signal from CD4+ cells is mediated through the IL-2Rβγ of CD8+ cells, which is independent of IL-2Rα. The activation of IL-2 signaling advances the restriction point of the cell cycle, and thereby expedites the entry of antigen-stimulated CD8+ T-cell into the S phase. Besides promoting cell proliferation, IL-2 stimulation increases the amount of IFNγ and granzyme B produced by CD8+ T cells. Furthermore, IL-2 at priming enhances the ability of P14 effector cells generated by antigen activation to eradicate B16.gp33 tumors in vivo. Therefore, our studies demonstrate that a full CD8+ T-cell response is elicited by a critical temporal function of IL-2 released from CD4+ T cells, providing mechanistic insights into the regulation of CD8+ T cell activation and differentiation.  相似文献   

8.
The intrahepatic immune environment is normally biased towards tolerance. Nonetheless, effective antiviral immune responses can be induced against hepatotropic pathogens. To examine the immunological basis of this paradox we studied the ability of hepatocellularly expressed hepatitis B virus (HBV) to activate immunologically naïve HBV-specific CD8+ T cell receptor (TCR) transgenic T cells after adoptive transfer to HBV transgenic mice. Intrahepatic priming triggered vigorous in situ T cell proliferation but failed to induce interferon gamma production or cytolytic effector function. In contrast, the same T cells differentiated into cytolytic effector T cells in HBV transgenic mice if Programmed Death 1 (PD-1) expression was genetically ablated, suggesting that intrahepatic antigen presentation per se triggers negative regulatory signals that prevent the functional differentiation of naïve CD8+ T cells. Surprisingly, coadministration of an agonistic anti-CD40 antibody (αCD40) inhibited PD-1 induction and restored T cell effector function, thereby inhibiting viral gene expression and causing a necroinflammatory liver disease. Importantly, the depletion of myeloid dendritic cells (mDCs) strongly diminished the αCD40 mediated functional differentiation of HBV-specific CD8+ T cells, suggesting that activation of mDCs was responsible for the functional differentiation of HBV-specific CD8+ T cells in αCD40 treated animals. These results demonstrate that antigen-specific, PD-1-mediated CD8+ T cell exhaustion can be rescued by CD40-mediated mDC-activation.  相似文献   

9.
Heterotrimeric G proteins (αβγ) function at the cytoplasmic surface of a cell’s plasma membrane to transduce extracellular signals into cellular responses. However, numerous studies indicate that G proteins also play noncanonical roles at unique intracellular locations. Previous work has established that G protein βγ subunits (Gβγ) regulate a signaling pathway on the cytoplasmic surface of Golgi membranes that controls the exit of select protein cargo. Now, we demonstrate a novel role for Gβγ in regulating mitotic Golgi fragmentation, a key checkpoint of the cell cycle that occurs in the late G2 phase. We show that small interfering RNA–mediated depletion of Gβ1 and Gβ2 in synchronized cells causes a decrease in the number of cells with fragmented Golgi in late G2 and a delay of entry into mitosis and progression through G2/M. We also demonstrate that during G2/M Gβγ acts upstream of protein kinase D and regulates the phosphorylation of the Golgi structural protein GRASP55. Expression of Golgi-targeted GRK2ct, a Gβγ-sequestering protein used to inhibit Gβγ signaling, also causes a decrease in Golgi fragmentation and a delay in mitotic progression. These results highlight a novel role for Gβγ in regulation of Golgi structure.  相似文献   

10.
Receptor-mediated activation of heterotrimeric G proteins leading to dissociation of the Gα subunit from Gβγ is a highly conserved signaling strategy used by numerous extracellular stimuli. Although Gβγ subunits regulate a variety of effectors, including kinases, cyclases, phospholipases, and ion channels (Clapham, D.E., and E.J. Neer. 1993. Nature (Lond.). 365:403–406), few tools exist for probing instantaneous Gβγ-effector interactions, and little is known about the kinetic contributions of effectors to the signaling process. In this study, we used the atrial muscarinic K+ channel, which is activated by direct interactions with Gβγ subunits (Logothetis, D.E., Y. Kurachi, J. Galper, E.J. Neer, and D.E. Clap. 1987. Nature (Lond.). 325:321–326; Wickman, K., J.A. Iniguez-Liuhi, P.A. Davenport, R. Taussig, G.B. Krapivinsky, M.E. Linder, A.G. Gilman, and D.E. Clapham. 1994. Nature (Lond.). 366: 654–663; Huang, C.-L., P.A. Slesinger, P.J. Casey, Y.N. Jan, and L.Y. Jan. 1995. Neuron. 15:1133–1143), as a sensitive reporter of the dynamics of Gβγ-effector interactions. Muscarinic K+ channels exhibit bursting behavior upon G protein activation, shifting between three distinct functional modes, characterized by the frequency of channel openings during individual bursts. Acetylcholine concentration (and by inference, the concentration of activated Gβγ) controls the fraction of time spent in each mode without changing either the burst duration or channel gating within individual modes. The picture which emerges is of a Gβγ effector with allosteric regulation and an intrinsic “off” switch which serves to limit its own activation. These two features combine to establish exquisite channel sensitivity to changes in Gβγ concentration, and may be indicative of the factors regulating other Gβγ-modulated effectors.  相似文献   

11.
12.
Canonical heterotrimeric G proteins in eukaryotes are major components that localize at plasma membrane and transmit extracellular stimuli into the cell. Genome of a seed plant Arabidopsis thaliana encodes at least one Gα (GPA1), one Gβ (AGB1), and 3 Gγ (AGG1, AGG2 and AGG3) subunits. The loss-of-function mutations of G protein subunit(s) cause multiple defects in development as well as biotic and abiotic stress responses. However, it remains elusive how these subunits differentially express these defects. Here, we report that Arabidopsis heterotrimeric G protein subunits differentially respond to the endoplasmic reticulum (ER) stress. An isolated homozygous mutant of AGB1, agb1-3, was more sensitive to the tunicamycin-induced ER stress compared to the wild type and the other loss-of-function mutants of G protein subunits. Moreover, ER stress responsive genes were highly expressed in the agb1-3 plant. Our results indicate that AGB1 positively contributes to ER stress tolerance in Arabidopsis.  相似文献   

13.
Cell-to-cell communication is a fundamental mechanism for coordinating developmental and physiological events in multicellular organisms. Heterotrimeric G proteins are key molecules that transmit extracellular signals; similarly, CLAVATA signaling is a crucial regulator in plant development. Here, we show that Arabidopsis thaliana Gβ mutants exhibit an enlarged stem cell region, which is similar to that of clavata mutants. Our genetic and cell biological analyses suggest that the G protein beta-subunit1 AGB1 and RPK2, one of the major CLV3 peptide hormone receptors, work synergistically in stem cell homeostasis through their physical interactions. We propose that AGB1 and RPK2 compose a signaling module to facilitate meristem development.  相似文献   

14.
Heterotrimeric G protein Gα13 is known to transmit G protein–coupled receptor (GPCR) signals leading to activation of RhoA and plays a role in cell migration. The mechanism underlying the role of Gα13 in cell migration, however, remains unclear. Recently we found that Gα13 interacts with the cytoplasmic domain of integrin β3 subunits in platelets via a conserved ExE motif. Here we show that a similar direct interaction between Gα13 and the cytoplasmic domain of the integrin β1 subunit plays a critical role in β1-dependent cell migration. Point mutation of either glutamic acid in the Gα13-binding 767EKE motif in β1 or treatment with a peptide derived from the Gα13-binding sequence of β1 abolished Gα13–β1 interaction and inhibited β1 integrin–dependent cell spreading and migration. We further show that the Gα131 interaction mediates β1 integrin–dependent Src activation and transient RhoA inhibition during initial cell adhesion, which is in contrast to the role of Gα13 in mediating GPCR-dependent RhoA activation. These data indicate that Gα13 plays dynamic roles in both stimulating RhoA via a GPCR pathway and inhibiting RhoA via an integrin signaling pathway. This dynamic regulation of RhoA activity is critical for cell migration on β1 integrin ligands.  相似文献   

15.
Thymic development of αβ T lymphocytes into invariant natural killer (NK) T cells depends on their selection via agonistic lipid antigen presented by CD1d. If successful, newly selected NKT cells gain effector functions already in the thymus. Some γδ T cell subsets also acquire effector functions in the thymus. However, it is not clear whether agonistic TCR stimulation is involved in thymic γδ T cell selection and development. Here we combine two genetic models to address this question. MiR-181a/b-1–/–mice, which show impaired agonistic T cell selection of invariant αβ NKT cells, were crossed to Tcrd-H2BeGFP reporter mice to monitor selection, intra-thymic expansion and differentiation of γδ T cells. We found that miR-181a/b-1-deficiency had no effect on numbers of thymic γδ T cell or on their differentiation towards an IL-17- or IFN-γ-producing effector phenotype. Also, the composition of peripheral lymph node γδ T cells was not affected by miR-181a/b-1-deficiency. Dendritic epidermal γδ T cells were normally present in knock-out animals. However, we observed elevated frequencies and numbers of γδ NKT cells in the liver, possibly because γδ NKT cells can expand and replace missing αβ NKT cells in peripheral niches. In summary, we investigated the role of miR-181a/b-1 for selection, intrathymic development and homeostasis of γδ T cells. We conclude that miR-181a/b-1-dependent modulation of T cell selection is not critically required for innate development of γδ NKT cells or of any other γδ T cell subtypes.  相似文献   

16.
17.
18.
Interaction of a given G protein-coupled receptor to multiple different G proteins is a widespread phenomenon. For instance, β2-adrenoceptor (β2-AR) couples dually to Gs and Gi proteins. Previous studies have shown that cAMP-dependent protein kinase (PKA)-mediated phosphorylation of β2-AR causes a switch in receptor coupling from Gs to Gi. More recent studies have demonstrated that phosphorylation of β2-AR by G protein-coupled receptor kinases, particularly GRK2, markedly enhances the Gi coupling. We have previously shown that although most β2-AR agonists cause both Gs and Gi activation, (R,R′)-fenoterol preferentially activates β2-AR-Gs signaling. However, the structural basis for this functional selectivity remains elusive. Here, using docking simulation and site-directed mutagenesis, we defined Tyr-308 as the key amino acid residue on β2-AR essential for Gs-biased signaling. Following stimulation with a β2-AR-Gs-biased agonist (R,R′)-4′-aminofenoterol, the Gi disruptor pertussis toxin produced no effects on the receptor-mediated ERK phosphorylation in HEK293 cells nor on the contractile response in cardiomyocytes expressing the wild-type β2-AR. Interestingly, Y308F substitution on β2-AR enabled (R,R′)-4′-aminofenoterol to activate Gi and to produce these responses in a pertussis toxin-sensitive manner without altering β2-AR phosphorylation by PKA or G protein-coupled receptor kinases. These results indicate that, in addition to the phosphorylation status, the intrinsic structural feature of β2-AR plays a crucial role in the receptor coupling selectivity to G proteins. We conclude that specific interactions between the ligand and the Tyr-308 residue of β2-AR stabilize receptor conformations favoring the receptor-Gs protein coupling and subsequently result in Gs-biased agonism.  相似文献   

19.
Cytotoxic lymphocyte protease granzyme M (GrM) is a potent inducer of tumor cell death. The apoptotic phenotype and mechanism by which it induces cell death, however, remain poorly understood and controversial. Here, we show that GrM-induced cell death was largely caspase-dependent with various hallmarks of classical apoptosis, coinciding with caspase-independent G2/M cell cycle arrest. Using positional proteomics in human tumor cells, we identified the nuclear enzyme topoisomerase II alpha (topoIIα) as a physiological substrate of GrM. Cleavage of topoIIα by GrM at Leu1280 separated topoIIα functional domains from the nuclear localization signals, leading to nuclear exit of topoIIα catalytic activity, thereby rendering it nonfunctional. Similar to the apoptotic phenotype of GrM, topoIIα depletion in tumor cells led to cell cycle arrest in G2/M, mitochondrial perturbations, caspase activation, and apoptosis. We conclude that cytotoxic lymphocyte protease GrM targets topoIIα to trigger cell cycle arrest and caspase-dependent apoptosis.  相似文献   

20.
DNA replication of phage-plasmid P4 in its host Escherichia coli depends on its replication protein α. In the plasmid state, P4 copy number is controlled by the regulator protein Cnr (copy number regulation). Mutations in α (αcr) that prevent regulation by Cnr cause P4 over-replication and cell death. Using the two-hybrid system in Saccharomyces cerevisiae and a system based on λ immunity in E.coli for in vivo detection of protein–protein interactions, we found that: (i) α protein interacts with Cnr, whereas αcr proteins do not; (ii) both α–α and αcr–αcr interactions occur and the interaction domain is located within the C-terminal of α; (iii) Cnr–Cnr interaction also occurs. Using an in vivo competition assay, we found that Cnr interferes with both α–α and αcr–αcr dimerization. Our data suggest that Cnr and α interact in at least two ways, which may have different functional roles in P4 replication control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号