首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycine N-methyltransferase (GNMT) is a major hepatic enzyme that converts S-adenosylmethionine to S-adenosylhomocysteine while generating sarcosine from glycine, hence it can regulate mediating methyl group availability in mammalian cells. GNMT is also a major hepatic folate binding protein that binds to, and, subsequently, may be inhibited by 5-methyltetrafolate. GNMT is commonly diminished in human hepatoma; yet its role in cellular folate metabolism, in tumorigenesis and antifolate therapies, is not understood completely. In the present study, we investigated the impacts of GNMT expression on cell growth, folate status, methylfolate-dependent reactions and antifolate cytotoxicity. GNMT-diminished hepatoma cell lines transfected with GNMT were cultured under folate abundance or restriction. Folate-dependent homocysteine remethylation fluxes were investigated using stable isotopic tracers and gas chromatography/mass spectrometry. Folate status was compared between wild-type (WT), GNMT transgenic (GNMT(tg)) and GNMT knockout (GNMT(ko)) mice. In the cell model, GNMT expression increased folate concentration, induced folate-dependent homocysteine remethylation, and reduced antifolate methotrexate cytotoxicity. In the mouse models, GNMT(tg) had increased hepatic folate significantly, whereas GNMT(ko) had reduced folate. Liver folate levels correlated well with GNMT expressions (r = 0.53, P = 0.002); and methionine synthase expression was reduced significantly in GNMT(ko), demonstrating impaired methylfolate-dependent metabolism by GNMT deletion. In conclusion, we demonstrated novel findings that restoring GNMT assists methylfolate-dependent reactions and ameliorates the consequences of folate depletion. GNMT expression in vivo improves folate retention and bioavailability in the liver. Studies on how GNMT expression impacts the distribution of different folate cofactors and the regulation of specific folate dependent reactions are underway.  相似文献   

2.
NORPEG (RAI14), a developmentally regulated gene induced by retinoic acid, encodes a 980 amino acid (aa) residue protein containing six ankyrin repeats and a long coiled-coil domain [Kutty et al., J. Biol. Chem. 276 (2001), pp. 2831-2840]. We have expressed aa residues 1-287 of NORPEG and used the recombinant protein to produce an anti-NORPEG polyclonal antibody. Confocal immunofluorescence analysis showed that the subcellular localization of NORPEG in retinal pigment epithelial (ARPE-19) cells varies with cell density, with predominantly nuclear localization in nonconfluent cells, but a cytoplasmic localization, reminiscent of cytoskeleton, in confluent cultures. Interestingly, an evolutionarily conserved putative monopartite nuclear localization signal (P(270)KKRKAP(276)) was identified by analyzing the sequences of NORPEG and its orthologs. GFP-NORPEG (2-287 aa), a fusion protein containing this signal, was indeed localized to nuclei when expressed in ARPE-19 or COS-7 cells. Deletion and mutation analysis indicated that the identified nuclear localization sequence is indispensable for nuclear targeting.  相似文献   

3.
Methyltransfer reactions are some of the most important reactions in biological systems. Glycine N-methyltransferase (GNMT) catalyzes the S-adenosyl-l-methionine- (SAM-) dependent methylation of glycine to form sarcosine. Unlike most SAM-dependent methyltransferases, GNMT has a relatively high value and is weakly inhibited by the product S-adenosyl-l-homocysteine (SAH). The major role of GNMT is believed to be the regulation of the cellular SAM/SAH ratio, which is thought to play a key role in SAM-dependent methyltransfer reactions. Crystal structures of GNMT complexed with SAM and acetate (a potent competitive inhibitor of Gly) and the R175K mutated enzyme complexed with SAM were determined at 2.8 and 3.0 A resolutions, respectively. With these crystal structures and the previously determined structures of substrate-free enzyme, a catalytic mechanism has been proposed. Structural changes occur in the transitions from the substrate-free to the binary complex and from the binary to the ternary complex. In the ternary complex stage, an alpha-helix in the N-terminus undergoes a major conformational change. As a result, the bound SAM is firmly connected to protein and a "Gly pocket" is created near the bound SAM. The second substrate Gly binds to Arg175 and is brought into the Gly pocket. Five hydrogen bonds connect the Gly in the proximity of the bound SAM and orient the lone pair orbital on the amino nitrogen (N) of Gly toward the donor methyl group (C(E)) of SAM. Thermal motion of the enzyme leads to a collision of the N and C(E) so that a S(N)2 methyltransfer reaction occurs. The proposed mechanism is supported by mutagenesis studies.  相似文献   

4.
Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. In mammalian liver it reduces S-adenosylmethionine levels by using it to methylate glycine, producing N-methylglycine (sarcosine) and S-adenosylhomocysteine. GNMT is inhibited by binding two molecules of 5-methyltetrahydrofolate (mono- or polyglutamate forms) per tetramer of the active enzyme. Inhibition is sensitive to the status of the N-terminal valine of GNMT and to polyglutamation of the folate inhibitor. It is inhibited by pentaglutamate form more efficiently compared to monoglutamate form. The native rat liver GNMT contains an acetylated N-terminal valine and is inhibited much more efficiently compared to the recombinant protein expressed in E. coli where the N-terminus is not acetylated. In this work we used a protein crystallography approach to evaluate the structural basis for these differences. We show that in the folate-GNMT complexes with the native enzyme, two folate molecules establish three and four hydrogen bonds with the protein. In the folate-recombinant GNMT complex only one hydrogen bond is established. This difference results in more effective inhibition by folate of the native liver GNMT activity compared to the recombinant enzyme.  相似文献   

5.
Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. In mammalian liver it reduces S-adenosylmethionine levels by using it to methylate glycine, producing N-methylglycine (sarcosine) and S-adenosylhomocysteine. GNMT is inhibited by binding two molecules of 5-methyltetrahydrofolate (mono- or polyglutamate forms) per tetramer of the active enzyme. Inhibition is sensitive to the status of the N-terminal valine of GNMT and to polyglutamation of the folate inhibitor. It is inhibited by pentaglutamate form more efficiently compared to monoglutamate form. The native rat liver GNMT contains an acetylated N-terminal valine and is inhibited much more efficiently compared to the recombinant protein expressed in E. coli where the N-terminus is not acetylated. In this work we used a protein crystallography approach to evaluate the structural basis for these differences. We show that in the folate-GNMT complexes with the native enzyme, two folate molecules establish three and four hydrogen bonds with the protein. In the folate-recombinant GNMT complex only one hydrogen bond is established. This difference results in more effective inhibition by folate of the native liver GNMT activity compared to the recombinant enzyme.  相似文献   

6.
ICK1 is the first member of a family of plant cyclin-dependent kinase (CDK) inhibitors. It has been shown that ICK1 is localized in the nuclei of transgenic Arabidopsis plants. Since cellular localization is important for the functions of cell cycle regulators, a comprehensive analysis was undertaken to identify specific sequences regulating the cellular localization of ICK1. Deletion and site-specific mutants fused to the green fluorescent protein (GFP) were used in transgenic Arabidopsis plants and transfected tobacco cells. Surprisingly, three separate sequences in the N-terminal, central and C-terminal regions of ICK1 could independently confer nuclear localization of the GFP fusion proteins. The central nuclear localization signal NLSICK1 could transport the much larger GUS (β-glucuronidase)-GFP fusion protein into nuclei, while the other two sequences were unable to. These results suggest that NLSICK1 is a strong NLS that actively transports the fusion protein into nuclei, while the other two sequences are either a weaker NLS or confer the nuclear localization of GFP indirectly. It was further observed that the N-terminal sequence specifies a punctate pattern of subnuclear localization, while the C-terminal sequence suppresses it. Furthermore, co-expression of ICK1 and Arabidopsis CDKA, tagged with different GFP variants, showed that ICK1 could mediate the transport of CDKA into nuclei while a mutant ICK11–162 that does not interact with CDKA lost this ability. These results illustrate how the nuclear localization of ICK1 is regulated and also suggest a possible role of ICK1 in regulating the cellular distribution of CDKA.  相似文献   

7.
We demonstrated previously that 69- and 82-kDa human choline acetyltransferase are localized predominantly to the cytoplasm and the nucleus, respectively. We have now identified a nuclear localization signal common to both forms of enzyme using confocal microscopy to study the subcellular compartmentalization of choline acetyltransferase tagged with green fluorescent protein in living HEK 293 cells. To identify functional nuclear localization and export signals, portions of full-length 69-kDa choline acetyltransferase were cloned into the vector peGFP-N1 and the cellular distribution patterns of the fusion proteins observed. Of the nine constructs studied, one yielded a protein with nuclear localization and another produced a protein with cytoplasmic localization. Mutation of the critical amino acids in this novel putative nuclear localization signal in the 69- and 82-kDa enzymes demonstrated that it is functional in both proteins. Moreover, 69-kDa choline acetyltransferase but not the 82-kDa enzyme is transported out of the nucleus by the leptomycin B-sensitive Crm-1 export pathway. By using bikaryon cells expressing both 82-kDa choline acetyltransferase and the nuclear protein heterogeneous nuclear ribonucleoprotein with green and red fluorescent tags, respectively, we found that the 82-kDa enzyme does not shuttle out of the nucleus in measurable amounts. These data suggest that 69-kDa choline acetyltransferase is a nucleocytoplasmic shuttling protein with a predominantly cytoplasmic localization determined by a functional nuclear localization signal and unidentified putative nuclear export signal. For 82-kDa choline acetyltransferase, the presence of the unique amino-terminal nuclear localization signal plus the newly identified nuclear localization signal may be involved in a process leading to predominantly nuclear accumulation of this enzyme, or alternatively, the two nuclear localization signals may be sufficient to overcome the force(s) driving nuclear export.  相似文献   

8.
Cryptochrome 2 is a flavin-type blue light receptor mediating floral induction in response to photoperiod and a blue light-induced hypocotyl growth inhibition. cry2 is required for the elevated expression of the flowering-time gene CO in response to long-day photoperiods, but the molecular mechanism underlying the function of cry2 is not clear. The carboxyl domain of cry2 bears a basic bipartite nuclear localization signal, and the cry2 protein was co-fractionated with the nucleus. Analysis of transgenic plants expressing a fusion protein of CRY2 and the reporter enzyme GUS (GUS-CRY2) indicated that the GUS-CRY2 fusion protein accumulated in the nucleus of transgenic plants grown in dark or light. The C-terminal domain of cry2 that contains the basic bipartite nuclear localization signal was sufficient to confer nuclear localization of the fusion protein. Phenotypic analysis of transgenic plants expressing the fusion protein GUS-CRY2 demonstrated that GUS-CRY2 acts as a functional photoreceptor in vivo, mediating the blue light-induced inhibition of hypocotyl elongation. These results strongly suggest that cry2 is a nuclear protein. Although no obvious light regulation was found for the nuclear compartmentation of GUS-CRY2 fusion protein, the abundance of GUS-CRY2 was regulated by blue light in a way similar to that of cry2.  相似文献   

9.
10.
DNA replication in mammalian cells occurs in discrete nuclear foci called 'replication factories'. Here we show that DNA ligase I, the main DNA ligase activity in proliferating cells, associates with the factories during S phase but displays a diffuse nucleoplasmic distribution in non-S phase nuclei. Immunolocalization analysis of both chloramphenicol acetyltransferase (CAT)-DNA ligase I fusion proteins and epitope tagged DNA ligase I mutants allowed the identification of a 13 amino acid functional nuclear localization signal (NLS) located in the N-terminal regulatory domain of the protein. Furthermore, the NLS is immediately preceded by a 115 amino acid region required for the association of the enzyme with the replication factories. We propose that in vivo the activity of DNA ligase I could be modulated through the control of its sub-nuclear compartmentalization.  相似文献   

11.
W Liao  J H Ou 《Journal of virology》1995,69(2):1025-1029
Hepatitis B virus core protein (antigen) is an important serologic marker of hepatitis B virus infection. This protein is found in the cytoplasm or the nuclei, or both, of infected hepatocytes. A nuclear localization signal has previously been identified in the core protein sequence. This signal overlaps three repeated SPRRR motifs. In this report, we demonstrate that substitution of all of the serine residues in these three SPRRR motifs with alanine can prevent almost entirely the phosphorylation of the core protein in Huh-7 hepatoma cells, enhance nuclear localization of the core protein in both Huh-7 and nonhepatic cells, and abolish cell cycle regulation of nuclear localization of the core protein. Since the three core protein mutants which retained only one serine residue of each of the three SPRRR motifs could be phosphorylated to similar degrees, these three serine residues likely could serve as the acceptor sites for phosphorylation with equal efficiency. These results, together with the observation that the three SPRRR motifs overlap the nuclear localization signal of the core protein, raise the possibility that nuclear localization of the core protein is negatively regulated by phosphorylation of the serine residues in the SPRRR motifs.  相似文献   

12.
Thymosin β15 (Tβ15) is a pleiotropic factor which exerts multiple roles in the development of nervous system and brain diseases. In this study, we found that the expressions of Tβ15 mRNA and protein were substantially increased in several brain regions including hippocampal formation and cerebral cortex, following kainic acid (KA)-evoked seizures in rat. Interestingly, a subset of cortex neurons exhibited nuclear Tβ15 immunoreactivity upon KA treatment. Furthermore, translocation of Tβ15 from cytosol to nuclei was observed in cultured neurons or HeLa cells during staurosporine (STS)-induced apoptosis, which was also verified by time-lapse imaging of YFP-tagged Tβ15. It appeared that localization of Tβ15 is restricted to the cytosol in normal condition by its G-actin-interacting domain, because site-directed mutagenesis of this region resulted in the nuclear localization of Tβ15 in the absence of STS treatment. To explore the role of nuclear Tβ15, we enforced Tβ15 to localize in the nuclei by fusion of Tβ15 with nuclear localization signal (NLS-Tβ15). However, overexpression of NLS-Tβ15 did not alter the viability of cells in response to STS treatment. Collectively, these results suggest that nuclear localization of Tβ15 is a controlled process during KA or STS stimulation, although its functional significance is yet to be clarified.  相似文献   

13.
14.
Flap endonuclease-1 (FEN-1), a 43-kDa protein, is a structure-specific and multifunctional nuclease. It plays important roles in RNA primer removal of Okazaki fragments during DNA replication, DNA base excision repair, and maintenance of genome stability. Three functional motifs of the enzyme were proposed to be responsible for its nuclease activities, interaction with proliferating cell nuclear antigen, and nuclear localization. In this study, we demonstrate in HeLa cells that a signal located at the C terminus (the nuclear localization signal (NLS) motif) facilitates nuclear localization of the enzyme during S phase of the cell cycle and in response to DNA damage. Truncation of the NLS motif prevents migration of the protein from the cytoplasm to the nucleus, while having no effect on the nuclease activities and its proliferating cell nuclear antigen interaction capability. Site-directed mutagenesis further revealed that a mutation of the KRK cluster to three alanine residues completely blocked the localization of FEN-1 into the nucleus, whereas mutagenesis of the KKK cluster led to a partial defect of nuclear localization in HeLa cells without observable phenotype in yeast. Therefore, the KRKXXXXXXXXKKK motif may be a bipartite NLS driving the protein into nuclei. Yeast RAD27Delta cells transformed with human mutant M(krk) survived poorly upon methyl methanesulfonate treatment or when they were incubated at an elevated temperature.  相似文献   

15.
Nuclear localization activity of phytochrome B   总被引:31,自引:8,他引:23  
Phytochromes are soluble red/far-red-light photoreceptor proteins which mediate various photomorphogenic responses of plants. Despite much effort, the signal transduction mechanism of phytochrome has remained obscure. Phytochromes are encoded by a small multigene family in Arabidopsis . Among the members of the family, phytochrome A (phyA) and B (phyB) are the best characterized. PhyB contains putative nuclear localization signals within its C-terminal region. Transgenic Arabidopsis plants were produced which expressed a fusion protein consisting of GUS and C-terminal fragments of phyB. GUS staining from the fusion protein in these transgenic plants was observed in the nucleus, which suggests that the nuclear localization signal of the fragment is functional. Next, it was examined whether the endogenous phyB was detected in the nucleus. Nuclei were isolated from the light-grown wild-type Arabidopsis leaves and subjected to the immunoblot analysis. The result indicated that a substantial fraction of total phyB was recovered in the isolated nuclei. This result was further confirmed by the immunocytochemical analysis of the protoplasts. Finally, the effects of light treatments on the levels of phyB in the isolated nuclei were examined. Dark adaptation of the plants before the nuclear isolation reduced the levels of phyB. The reduction was accelerated by irradiation of plants with far-red light before the transfer to darkness. Thus, nuclear localization of phyB was suggested to be light-dependent.  相似文献   

16.
Cui P  Qin B  Liu N  Pan G  Pei D 《Experimental cell research》2004,293(1):154-163
The interaction between phosphatidylserine and its receptor on phagocytic cells plays a critical role in the clearance of apoptotic bodies under normal physiological condition. A specific receptor for phosphatidylserine (PSR) has recently been identified by phage display and shown to mediate phosphatidylserine dependent phagocytosis. Here we show that the protein encoded by the PSR cDNA is localized in the nuclei through multiple nuclear localization signals. First, a fusion between PSR and GFP is localized in the nuclei of transfected cells, suggesting that PSR have intrinsic nuclear localization capability. Indeed, affinity-purified anti-PSR antibodies identified a 47 kDa protein species in cells transfected with untagged PSR and localized this protein in the nuclei by immunofluorescent confocal microscopy. In NIH3T3 cells, which express endogenous PSR mRNA, a similar 47 kDa species was detected and localized in the nuclei. Finally, multiple nuclear localization signals were identified in PSR sequence, each capable of targeting GFP to the nuclei. Together, these results suggest that PSR may serve a dual role both on the cell surface and in the nuclei.  相似文献   

17.
Kim DW  Kim SY  Lee SH  Lee YP  Lee MJ  Jeong MS  Jang SH  Park J  Lee KS  Kang TC  Won MH  Cho SW  Kwon OS  Eum WS  Choi SY 《BMB reports》2008,41(2):170-175
In protein therapy, it is important for exogenous protein to be delivered into the target subcellular localization. To transduce a therapeutic protein into its specific subcellular localization, we synthesized nuclear localization signal (NLS) and membrane translocation sequence signal (MTS) peptides and produced a genetic in-frame SOD fusion protein. The purified SOD fusion proteins were efficiently transduced into mammalian cells with enzymatic activities. Immunofluorescence and Western blot analysis revealed that the SOD fusion proteins successfully transduced into the nucleus and the cytosol in the cells. The viability of cells treated with paraquat was markedly increased by the transduced fusion proteins. Thus, our results suggest that these peptides should be useful for targeting the specific localization of therapeutic proteins in various human diseases.  相似文献   

18.
In Saccharomyces cerevisiae, the developmentally regulated Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein Spo20p mediates the fusion of vesicles with the prospore membrane, which is required for the formation of spores. Spo20p is subject to both positive and negative regulation by separate sequences in its aminoterminal domain. We report that the positive activity is conferred by a short, amphipathic helix that is sufficient to confer plasma membrane or prospore membrane localization to green fluorescent protein. In vitro, this helix binds to acidic phospholipids, and mutations that reduce or eliminate phospholipid binding in vitro inactivate Spo20p in vivo. Genetic manipulation of phospholipid pools indicates that the likely in vivo ligand of this domain is phosphatidic acid. The inhibitory activity is a nuclear targeting signal, which confers nuclear localization in vegetative cells and in cells entering meiosis. However, as cells initiate spore formation, fusions containing the inhibitory domain exit the nucleus and localize to the nascent prospore membrane. Thus, the SNARE Spo20p is both positively and negatively regulated by control of its intracellular localization.  相似文献   

19.
LLA23, an abscisic acid-, stress- and ripening-induced (ASR) protein, was isolated previously from lily ( Lilium longiflorum ) pollen. Close examination of the C-terminus of this ASR protein revealed the presence of basic regions reminiscent of a nuclear localization signal (NLS). Fluorescence microscopy studies using green fluorescent protein (GFP) fusion proteins indicated that the bipartite NLS in LLA23 exhibited nuclear localization properties. Accordingly, mutations in the NLS motifs of LLA23 defined two regions, either of which was necessary for partial nuclear targeting and both of which were required for complete nuclear localization. In addition, oligonucleotide-directed mutagenesis identified lysine residues within the NLS necessary for nuclear localization. Immunogold localization confirmed that the protein was located to both the cytoplasm and nucleus of generative and vegetative cells of pollen grains; the generative nuclei showed the highest number of LLA23 labelling. The possible function of ASR proteins in both the cytoplasm and nuclei of pollen grains is discussed.  相似文献   

20.
Mitogen-activated protein kinases/extracellular signal regulated kinases (MAPKs/ERKs) are typically thought to be soluble cytoplasmic enzymes that translocate to the nucleus subsequent to their phosphorylation by their activating kinases or mitogen-activated protein/extracellular signal regulated kinase kinase. We report here the first example of nuclear translocation of a MAPK that occurs via temporally regulated exit from a membranous organelle. Confocal microscopy examining the subcellular localization of ERK3 in several cell lines indicated that this enzyme was targeted to the Golgi/endoplasmic reticulum Golgi intermediate compartment. Deletion analysis of green fluorescent protein (GFP)-ERK3 uncovered a nuclear form that was carboxy-terminally truncated and established a Golgi targeting motif at the carboxy terminus. Immunoblot analysis of cells treated with the proteasome inhibitor MG132 further revealed two cleavage products, suggesting that in vivo, carboxy-terminal cleavage of the full-length protein controls its subcellular localization. In support of this hypothesis, we found that deletion of a small region rich in acidic residues within the carboxy terminus eliminated both the cleavage and nuclear translocation of GFP-ERK3. Finally, cell cycle synchronization studies revealed that the subcellular localization of ERK3 is temporally regulated. These data suggest a novel mechanism for the localization of an MAPK family member, ERK3, in which cell cycle-regulated, site-specific proteolysis generates the nuclear form of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号