首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Li R  Sun Q  Jia Y  Cong R  Ni Y  Yang X  Jiang Z  Zhao R 《PloS one》2012,7(6):e38716
MicroRNAs (miRNAs) are involved in the regulation of various metabolic processes in the liver, yet little is known on the breed-specific expression profiles of miRNAs in coordination with those of mRNAs. Here we used two breeds of male newborn piglets with distinct metabolic characteristics, Large White (LW) and Erhualian (EHL), to delineate the hepatic expression profiles of mRNA with microarray and miRNAs with both deep sequencing and microarray, and to analyze the functional relevance of integrated miRNA and mRNA expression in relation to the physiological and biochemical parameters. EHL had significantly lower body weight and liver weight at birth, but showed elevated serum levels of total cholesterol (TCH), high-density lipoprotein cholesterol (HDLC) and low-density lipoprotein cholesterol (LDLC), as well as higher liver content of cholesterol. Higher serum cortisol and lower serum insulin and leptin were also observed in EHL piglets. Compared to LW, 30 up-regulated and 18 down-regulated miRNAs were identified in the liver of EHL, together with 298 up-regulated and 510 down-regulated mRNAs (FDR<10%). RT-PCR validation of some differentially expressed miRNAs (DEMs) further confirmed the high-throughput data analysis. Using a target prediction algorithm, we found significant correlation between the up-regulated miRNAs and down-regulated mRNAs. Moreover, differentially expressed genes (DEGs), which are involved in proteolysis, were predicted to be mediated by DEMs. These findings provide new information on the miRNA and mRNA profiles in porcine liver, which would shed light on the molecular mechanisms underlying the breed-specific traits in the pig, and may serve as a basis for further investigation into the biological functions of miRNAs in porcine liver.  相似文献   

3.
4.
5.
Hypoxia encountered at high altitude, blood loss and erythroleukemia instigate stress erythropoiesis, which involves glucocorticoid-induced proliferation of erythroid progenitors (ebls). The tumour suppressor p53 stimulates hematopoietic cell maturation and antagonizes glucocorticoid receptor (GR) activity in hypoxia, suggesting that it may inhibit stress erythropoiesis. We report that mouse fetal liver ebls that lack p53 proliferate better than wild-type cells in the presence of the GR agonist dexamethasone. An important mediator of GR-induced ebl self-renewal, the c-myb gene, is induced to higher levels in p53–/– ebls by dexamethasone. The stress response to anemia is faster in the spleens of p53–/– mice, as shown by the higher levels of colony forming units erythroids and the increase in the CD34/c-kit double positive population. Our results show that p53 antagonizes GR-mediated ebl expansion and demonstrate for the first time that p53–GR cross-talk is important in a physiological process in vivo: stress erythropoiesis.  相似文献   

6.
7.
8.
9.
Immunoglobulin A deficiency (IgAD) is the most common primary immune deficiency disorder in both humans and dogs, characterized by recurrent mucosal tract infections and a predisposition for allergic and other immune mediated diseases. In several dog breeds, low IgA levels have been observed at a high frequency and with a clinical resemblance to human IgAD. In this study, we used genome-wide association studies (GWAS) to identify genomic regions associated with low IgA levels in dogs as a comparative model for human IgAD. We used a novel percentile groups-approach to establish breed-specific cut-offs and to perform analyses in a close to continuous manner. GWAS performed in four breeds prone to low IgA levels (German shepherd, Golden retriever, Labrador retriever and Shar-Pei) identified 35 genomic loci suggestively associated (p <0.0005) to IgA levels. In German shepherd, three genomic regions (candidate genes include KIRREL3 and SERPINA9) were genome-wide significantly associated (p <0.0002) with IgA levels. A ~20kb long haplotype on CFA28, significantly associated (p = 0.0005) to IgA levels in Shar-Pei, was positioned within the first intron of the gene SLIT1. Both KIRREL3 and SLIT1 are highly expressed in the central nervous system and in bone marrow and are potentially important during B-cell development. SERPINA9 expression is restricted to B-cells and peaks at the time-point when B-cells proliferate into antibody-producing plasma cells. The suggestively associated regions were enriched for genes in Gene Ontology gene sets involving inflammation and early immune cell development.  相似文献   

10.
11.
12.
PKCδ suppresses keratinocyte proliferation via a mechanism that involves increased expression of p21Cip1. However, the signaling mechanism that mediates this regulation is not well understood. Our present studies suggest that PKCδ activates p38δ leading to increased p21Cip1 promoter activity and p21Cip1 mRNA/protein expression. We further show that exogenously expressed p38δ increases p21Cip1 mRNA and protein and that p38δ knockdown or expression of dominant-negative p38 attenuates this increase. Moreover, p53 is an intermediary in this regulation, as p38δ expression increases p53 mRNA, protein, and promoter activity, and p53 knockdown attenuates the activation. We demonstrate a direct interaction of p38δ with PKCδ and MEK3 and show that exogenous agents that suppress keratinocyte proliferation activate this pathway. We confirm the importance of this regulation using a stratified epidermal equivalent model, which mimics in vivo-like keratinocyte differentiation. In this model, PKCδ or p38δ knockdown results in reduced p53 and p21Cip1 levels and enhanced cell proliferation. We propose that PKCδ activates a MEKK1/MEK3/p38δ MAPK cascade to increase p53 levels and p53 drives p21Cip1 gene expression.  相似文献   

13.
14.
15.
16.

Introduction

There are few data regarding ZAC1 expression in clinically non-functioning pituitary adenomas (NFPA). Because somatotropinomas and NFPA behave differently with respect to tumor shrinkage during somatostatin analogs (SA) therapy, we sought to compare the ZAC1 and somatostatin receptor (sstr) types 1, 2, 3 and 5 mRNA expression in these two pituitary adenoma subtypes and in normal human pituitaries.

Methods

ZAC1 and SSTR mRNA expression levels were evaluated using real-time RT-PCR (TaqMan) in 20 NFPA and compared with the expression levels in 23 somatotropinomas and five normal pituitaries. The NFPA invasiveness was evaluated using magnetic resonance imaging with Hardy’s modified criteria. Ki-67 and p53 were evaluated using immunohistochemistry.

Results

A total of 20 patients with NFPA [6 males, median age 56 years (range: 30-78)], 23 with acromegaly [12 males, median age 43 years (range: 24–57)] and five normal pituitaries [4 males, median age 48 years (range: 36–54)] were included. Four of the patients (20%) had Hardy’s grade 2 tumors; all of the others had Hardy’s grade 3 tumors. The Ki-67 median expression was 2.35 (range: 0.2–9.23), and only four of the tumors (20%) were positive for p53. The ZAC1 mRNA expression was significantly lower in NFPA than in somatotropinomas and in normal pituitaries (p<0.001 for both), as well as the SSTR2 (p=0.001 and 0.01, respectively). The SSTR3 expression was higher in the NFPA than in the somatotropinomas and in the normal pituitaries (p=0.03 and 0.02, respectively). No correlation was found between the ZAC1 mRNA expression and the tumor invasiveness, Ki-67 and p53.

Conclusion

ZAC1 and SSTR2 are underexpressed and SSTR3 is overexpressed in NFPA compared to those in somatotropinomas and in normal pituitaries, which might explain the lack of tumor shrinkage that is observed in response to commercially available SA therapy in patients with NFPA.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号