共查询到20条相似文献,搜索用时 10 毫秒
1.
Dopamine neurotransmission has been found to play a role in addictive behavior and is altered in psychiatric disorders. Dopaminergic (DA) neurons display two functionally distinct modes of electrophysiological activity: low- and high-frequency firing. A puzzling feature of the DA neuron is the following combination of its responses: N-methyl-D-aspartate receptor (NMDAR) activation evokes high-frequency firing, whereas other tonic excitatory stimuli (-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor (AMPAR) activation or applied depolarization) block firing instead. We suggest a new computational model that reproduces this combination of responses and explains recent experimental data. Namely, somatic NMDAR stimulation evokes high-frequency firing and is more effective than distal dendritic stimulation. We further reduce the model to a single compartment and analyze the mechanism of the distinct high-frequency response to NMDAR activation vs. other stimuli. Standard nullcline analysis shows that the mechanism is based on a decrease in the amplitude of calcium oscillations. The analysis confirms that the nonlinear voltage dependence provided by the magnesium block of the NMDAR determine its capacity to elevate the firing frequency. We further predict that the moderate slope of the voltage dependence plays the central role in the frequency elevation. Additionally, we suggest a repolarizing current that sustains calcium-independent firing or firing in the absence of calcium-dependent repolarizing currents. We predict that the ether–a-go-go current (ERG), which has been observed in the DA neuron, is the best fit for this critical role. We show that a calcium-dependent and a calcium-independent oscillatory mechanisms form a structure of interlocked negative feedback loops in the DA neuron. The structure connects research of DA neuron firing with circadian biology and determines common minimal models for investigation of robustness of oscillations, which is critical for normal function of both systems. 相似文献
2.
Dopaminergic neurons located in the ventral midbrain control movement, emotional behavior, and reward mechanisms1-3. The dysfunction of ventral midbrain dopaminergic neurons is implicated in Parkinson''s disease, Schizophrenia, depression, and dementia1-5. Thus, studying the regulation of midbrain dopaminergic neuron differentiation could not only provide important insight into mechanisms regulating midbrain development and neural progenitor fate specification, but also help develop new therapeutic strategies for treating a variety of human neurological disorders.Dopaminergic neurons differentiate from neural progenitors lining the ventricular zone of embryonic ventral midbrain. The development of neural progenitors is controlled by gene expression programs6,7. Here we report techniques utilizing electroporation to express genes specifically in the midbrain of Hamburger Hamilton (HH) stage 11 (thirteen somites, 42 hours) chick embryos8,9. The external development of chick embryos allows for convenient experimental manipulations at specific embryonic stages, with the effects determined at later developmental time points10-13. Chick embryonic neural tubes earlier than HH stage 13 (nineteen somites, 48 hours) consist of multipotent neural progenitors that are capable of differentiating into distinct cell types of the nervous system. The pCAG vector, which contains both a CMV promoter and a chick β-actin enhancer, allows for robust expression of Flag or other epitope-tagged constructs in embryonic chick neural tubes14. In this report, we emphasize special measures to achieve regionally restricted gene expression in embryonic midbrain dopaminergic neuron progenitors, including how to inject DNA constructs specifically into the embryonic midbrain region and how to pinpoint electroporation with small custom-made electrodes. Analyzing chick midbrain at later stages provides an excellent in vivo system for plasmid vector-mediated gain-of-function and loss-of-function studies of midbrain development. Modification of the experimental system may extend the assay to other parts of the nervous system for performing fate mapping analysis and for investigating the regulation of gene expression. 相似文献
3.
1. The ability to target specific neurons can be used to produce selective neural lesions and potentially to deliver therapeutically useful moieties for treatment of disease. In the present study, we sought to determine if a monoclonal antibody to the dopamine transporter (anti-DAT) could be used to target midbrain dopaminergic neurons.2. The monoclonal antibody recognizes the second, large extracellular loop of DAT. The antibody was conjugated to the ribosome-inactivating protein saporin, and stereotactically pressure microinjected into either the center of the striatum or the left lateral ventricle of adult, male Sprague-Dawley rats.3. Local intrastriatal injections produced destruction of dopaminergic neurons in the ipsilateral substantia nigra consistent with suicide transport of the immunotoxin. Intraventricular injections (i.c.v.) produced significant loss of dopaminergic neurons in the substantia nigra and ventral tegmental area bilaterally without evident damage to any other aminergic structures such as the locus coeruleus and raphé nuclei. To confirm the anatomic findings, binding of [3H]mazindol to DAT in the striatum and midbrain was assessed using densitometric analysis of autoradiograms. Anti-DAT-saporin injected i.c.v. at a dose of 21 g, but not 8 g, produced highly significant decreases in mazindol binding consistent with loss of the dopaminergic neurons.4. These results show that anti-DAT can be used to target midbrain dopaminergic neurons and that anti-DAT-saporin may be useful for producing a lesion very similar to the naturally occurring neural degeneration seen in Parkinson's disease. Anti-DAT-saporin joins the growing list of neural lesioning agents based on targeted cytotoxins. 相似文献
4.
Xavier Fioramonti Adam Deak Srinidhi Deshpande Lionel Carneiro Chunxue Zhou Nazish Sayed Branly Orban Joshua R. Berlin Luc Pénicaud Corinne Leloup Annie Beuve Vanessa H. Routh 《PloS one》2013,8(7)
Aims
Hypoglycemia is a severe side effect of intensive insulin therapy. Recurrent hypoglycemia (RH) impairs the counter-regulatory response (CRR) which restores euglycemia. During hypoglycemia, ventromedial hypothalamus (VMH) production of nitric oxide (NO) and activation of its receptor soluble guanylyl cyclase (sGC) are critical for the CRR. Hypoglycemia also increases brain reactive oxygen species (ROS) production. NO production in the presence of ROS causes protein S-nitrosylation. S-nitrosylation of sGC impairs its function and induces desensitization to NO. We hypothesized that during hypoglycemia, the interaction between NO and ROS increases VMH sGC S-nitrosylation levels and impairs the CRR to subsequent episodes of hypoglycemia. VMH ROS production and S-nitrosylation were quantified following three consecutive daily episodes of insulin-hypoglycemia (RH model). The CRR was evaluated in rats in response to acute insulin-induced hypoglycemia or via hypoglycemic-hyperinsulinemic clamps. Pretreatment with the anti-oxidant N-acetyl-cysteine (NAC) was used to prevent increased VMH S-nitrosylation.Results
Acute insulin-hypoglycemia increased VMH ROS levels by 49±6.3%. RH increased VMH sGC S-nitrosylation. Increasing VMH S-nitrosylation with intracerebroventricular injection of the nitrosylating agent S-nitroso-L-cysteine (CSNO) was associated with decreased glucagon secretion during hypoglycemic clamp. Finally, in RH rats pre-treated with NAC (0.5% in drinking water for 9 days) hypoglycemia-induced VMH ROS production was prevented and glucagon and epinephrine production was not blunted in response to subsequent insulin-hypoglycemia.Conclusion
These data suggest that NAC may be clinically useful in preventing impaired CRR in patients undergoing intensive-insulin therapy. 相似文献5.
During development a tightly controlled signaling cascade dictates the differentiation, maturation and survival of developing neurons. Understanding this signaling mechanism is important for developing therapies for neurodegenerative illnesses. In previous work we have sought to understand the complex signaling pathways responsible for the development of midbrain dopamine neurons using a proteomic approach. One protein we have identified as being expressed in developing midbrain tissue is the vitamin D receptor. Therefore we investigated the effect of the biologically active vitamin D3 metabolite, calcitriol, on primary fetal ventral mesencephalic cultures of dopamine neurons. We observed a dose responsive increase in numbers of rat primary dopamine neurons when calcitriol was added to culture media. Western blot data showed that calcitriol upregulated the expression of glial derived neurotrophic factor (GDNF). Blocking GDNF signaling could prevent calcitriol’s ability to increase numbers of dopamine neurons. An apoptosis assay and cell birth dating experiment revealed that calcitriol increases the number of dopamine neurons through neuroprotection and not increased differentiation. This could have implications for future neuroprotective PD therapies. 相似文献
6.
Rapid ATP Loss Caused by Methamphetamine in the Mouse Striatum: Relationship Between Energy Impairment and Dopaminergic Neurotoxicity 总被引:9,自引:2,他引:7
Piu Chan Donato A. Di Monte Jin-Jun Luo Louis E. DeLanney Ian Irwin J. William Langston 《Journal of neurochemistry》1994,62(6):2484-2487
Abstract: To study the relationship between energy impairment and the effects of α-methamphetamine (METH) on dopaminergic neurons, ATP and dopamine levels were measured in the brain of C57BL/6 mice treated with either a single or four injections of METH (10 mg/kg, i.p.) at 2-h intervals. Neither striatal ATP nor dopamine concentrations changed after a single injection of METH, but both were significantly decreased 1.5 h after the multiple-dose regimen. The effects of METH on ATP levels appear to be selective for the striatum, as ATP concentrations were not affected in the cerebellar cortex and hippocampus after either a single or multiple injections of METH. In a second set of experiments, an intraperitoneal injection of 2-deoxyglucose (2-DG; 1 g/kg), an inhibitor of glucose uptake and utilization, was given 30 min before the third and fourth injections of METH. 2-DG significantly potentiated METH-induced striatal ATP loss at 1.5 h and dopamine depletions at 1.5 h and 1 week. These results indicate that a toxic regimen of METH selectively causes striatal energy impairment and raise the possibility that perturbations of energy metabolism play a role in METH-induced dopaminergic neurotoxicity. 相似文献
7.
8.
9.
Tyrosine Hydroxylase mRNA Concentration in Midbrain Dopaminergic Neurons Is Differentially Regulated by Reserpine 总被引:1,自引:5,他引:1
Giulio M. Pasinetti David G. Morgan Steven A. Johnson Sharon L. Millar Caleb E. Finch 《Journal of neurochemistry》1990,55(5):1793-1799
Tyrosine hydroxylase (TH)-mRNA, assayed by in situ hybridization combined with TH immunocytochemistry, showed a selective increase in the ventral tegmental area (A-10) but not in the substantia nigra (A-9) midbrain dopaminergic (DAergic) neurons 3 days after reserpine treatment. TH-mRNA in locus ceruleus noradrenergic (A-4) neurons was increased by reserpine, as confirmed by RNA blot hybridization. These findings show that TH-mRNA is differentially regulated in midbrain DAergic neurons in response to reserpine. 相似文献
10.
Pengxiu Cao Yiyuan Yuan Elizabeth A. Pehek Alex R. Moise Ying Huang Krzysztof Palczewski Zhaoyang Feng 《PloS one》2010,5(2)
Disruption of dopamine homeostasis may lead to dopaminergic neuron degeneration, a proposed explanation for the specific vulnerability of dopaminergic neurons in Parkinson''s disease. While expression of human α-synuclein in C. elegans results in dopaminergic neuron degeneration, the effects of α-synuclein on dopamine homeostasis and its contribution to dopaminergic neuron degeneration in C. elegans have not been reported. Here, we examined the effects of α-synuclein overexpression on worm dopamine homeostasis. We found that α-synuclein expression results in upregulation of dopamine synthesis and content, and redistribution of dopaminergic synaptic vesicles, which significantly contribute to dopaminergic neuron degeneration. These results provide in vivo evidence supporting a critical role for dopamine homeostasis in supporting dopaminergic neuron integrity. 相似文献
11.
Neurotrophic Effects of l-DOPA in Postnatal Midbrain Dopamine Neuron/Cortical Astrocyte Cocultures 总被引:3,自引:1,他引:3
Abstract: l -DOPA is toxic to catecholamine neurons in culture, but the toxicity is reduced by exposure to astrocytes. We tested the effect of l -DOPA on dopamine neurons using postnatal ventral midbrain neuron/cortical astrocyte cocultures in serum-free, glia-conditioned medium. l -DOPA (50 µ M ) protected against dopamine neuronal cell death and increased the number and branching of dopamine processes. In contrast to embryonically derived glia-free cultures, where l -DOPA is toxic, postnatal midbrain cultures did not show toxicity at 200 µ M l -DOPA. The stereoisomer d -DOPA (50–400 µ M ) was not neurotrophic. The aromatic amino acid decarboxylase inhibitor carbidopa (25 µ M ) did not block the neurotrophic effect. These data suggest that the neurotrophic effect of l -DOPA is stereospecific but independent of the production of dopamine. However, l -DOPA increased the level of glutathione. Inhibition of glutathione peroxidase by l -buthionine sulfoximine (3 µ M for 24 h) blocked the neurotrophic action of L-DOPA. N -Acetyl- l -cysteine (250 µ M for 48 h), which promotes glutathione synthesis, had a neurotrophic effect similar to that of l -DOPA. These data suggest that the neurotrophic effect of l -DOPA may be mediated, at least in part, by elevation of glutathione content. 相似文献
12.
Ascorbic acid exists in high intracellular concentrations in fetal rat brain. In mesencephalic cultures the cellular ascorbic acid content drops sharply to undetectable levels when no ascorbic acid is added to the medium, thus creating a model of scorbutic neuronal tissue and affording the study of ascorbic acid's effects on mesencephalic cell development and function. Cultures treated with 0.2 mM ascorbic acid were compared with controls (scorbutic cultures) by using morphological and biochemical indices. Ascorbic acid cultures at 7 and 14 days in vitro showed a marked increase in glial proliferation on glial fibrillary acidic protein staining and increased neurite growth and number on tyrosine hydroxylase staining. Significantly higher dopamine uptake and levels of dopamine and 3,4-dihydroxyphenylacetic acid were also observed after 7 and 14 days of ascorbic acid treatment. The capacity to accumulate ascorbic acid and the ability to retain the intracellular ascorbic acid developed gradually as the cultures matured. Ascorbic acid reached the embryonal levels by day 14 in vitro. We conclude that although neuronal cultures can survive and grow in the absence of detectable levels of ascorbic acid, its presence exerts a broad effect on dopamine neuron morphology and biochemical functioning either directly or through increased glial proliferation, or possibly both. 相似文献
13.
Neuroscientists study the function of the brain by investigating how neurons in the brain communicate. Many investigators look at changes in the electrical activity of one or more neurons in response to an experimentally-controlled input. The electrical activity of neurons can be recorded in isolated brain slices using patch clamp techniques with glass micropipettes. Traditionally, experimenters can mimic neuronal input by direct injection of current through the pipette, electrical stimulation of the other cells or remaining axonal connections in the slice, or pharmacological manipulation by receptors located on the neuronal membrane of the recorded cell.Direct current injection has the advantages of passing a predetermined current waveform with high temporal precision at the site of the recording (usually the soma). However, it does not change the resistance of the neuronal membrane as no ion channels are physically opened. Current injection usually employs rectangular pulses and thus does not model the kinetics of ion channels. Finally, current injection cannot mimic the chemical changes in the cell that occurs with the opening of ion channels.Receptors can be physically activated by electrical or pharmacological stimulation. The experimenter has good temporal precision of receptor activation with electrical stimulation of the slice. However, there is limited spatial precision of receptor activation and the exact nature of what is activated upon stimulation is unknown. This latter problem can be partially alleviated by specific pharmacological agents. Unfortunately, the time course of activation of pharmacological agents is typically slow and the spatial precision of inputs onto the recorded cell is unknown.The dynamic clamp technique allows an experimenter to change the current passed directly into the cell based on real-time feedback of the membrane potential of the cell (Robinson and Kawai 1993, Sharp et al., 1993a,b; for review, see Prinz et al. 2004). This allows an experimenter to mimic the electrical changes that occur at the site of the recording in response to activation of a receptor. Real-time changes in applied current are determined by a mathematical equation implemented in hardware.We have recently used the dynamic clamp technique to investigate the generation of bursts of action potentials by phasic activation of NMDA receptors in dopaminergic neurons of the substantia nigra pars compacta (Deister et al., 2009; Lobb et al., 2010). In this video, we demonstrate the procedures needed to apply a NMDA receptor conductance into a dopaminergic neuron. 相似文献
14.
目的:为了检测RET在多巴胺能神经细胞损伤过程中中脑黑质部位的表达变化,并探索其在多巴胺能神经细胞损伤中的可能作用.方法:本实验将C57BL/6 d、鼠分为三组:MPTP组、NS组和空白对照组,采用MPTP腹腔注射建立小鼠中脑黑质多巴胺能神经细胞慢性损伤模型,设立第一周到第六周六个时间点(1w-6w),检测小鼠行为学变化,并采用免疫荧光染色和western blotting等方法检测中脑黑质部酪氨酸羟化酶(TH)和PET的表达情况.结果:行为学结果显示,随给药次数及时间延长,悬挂实验中,MPTP组悬挂评分逐渐下降,MPTP组第三周给药以后与NS组比较差异有统计学意义(P<0.05);跳台实验中,小鼠受电击后跳上跳台的时间逐渐延长,错误次数逐渐增多.免疫荧光双标结果显示,在检测的各时间点,在小鼠中脑黑质一直有RET阳性细胞存在,且与TH阳性细胞共表达;western blotting结果显示,TH在给予MPTP后第三周表达开始降低,RET在给予MPTP后第一周和第二周持续高表达,并且也从第三周开始,其表达量明显降低.结论:这种表达变化提示RET的表达与多巴胺能神经细胞损伤有关. 相似文献
15.
The Sbi Protein Contributes to Staphylococcus aureus Inflammatory Response during Systemic Infection
Cintia Daniela Gonzalez Camila Ledo Constanza Giai Ailin Garófalo Marisa I. Gómez 《PloS one》2015,10(6)
Staphylococcus aureus is an important human pathogen that causes infections that may present high morbidity and mortality. Among its many virulence factors protein A (SpA) and Staphylococcal binding immunoglobulin protein (Sbi) bind the Fc portion of IgG interfering with opsonophagocytosis. We have previously demonstrated that SpA interacts with the TNF-α receptor (TNFR) 1 through each of the five IgG binding domains and induces the production of pro-inflammatory cytokines and chemokines. The IgG binding domains of Sbi are homologous to those of SpA, which allow us to hypothesize that Sbi might also have a role in the inflammatory response induced by S. aureus. We demonstrate that Sbi is a novel factor that participates in the induction of the inflammatory response during staphylococcal infections via TNFR1 and EGFR mediated signaling as well as downstream MAPKs. The expression of Sbi significantly contributed to IL-6 production and modulated CXCL-1 expression as well as neutrophil recruitment to the site of infection, thus demonstrating for the first time its relevance as a pro-inflammatory staphylococcal antigen in an in vivo model. 相似文献
16.
17.
18.
Enzyme replacement therapy has been shown to be particularly effective for patients with type 1 (non-neuronopathic) Gaucher disease. However, intravenously administered glucocerebrosidase does not reverse or halt the progression of brain damage in patients with type 2 (acute neuronopathic) Gaucher disease. A previous investigation revealed that intracerebral infusion of mannose-terminal glucocerebrosidase was safe in experimental animals. The enzyme had a comparatively long half-life in the brain. It was transported by convection from the site of infusion along white matter fiber tracts to the cerebral cortex where it was endocytosed by neurons. In anticipation of intracerebral administration of mannose-terminal glucocerebrosidase to patients with type 2 Gaucher disease, it was important to learn the mechanism involved in its cellular uptake. We therefore compared the endocytosis of this enzyme by J774 macrophage cells with that in two human neuronal cell lines and a human astrocyte cell line. Mannose-terminal glucocerebrosidase was taken up by cholinergic LA-N-2 cells, but to a much lower extent than by macrophages. Considerably less of the enzyme was endocytosed by dopaminergic SH-SY5Y cells. It was not taken up by NHA astrocytes. The findings provide encouragement for an exploration of intracerebral administration of glucocerebrosidase in patients with type 2 Gaucher disease. 相似文献
19.
目的:检测NCAM.140在多巴胺能神经细胞损伤过程中中脑黑质部位的表达变化,探索其在多巴胺能神经细胞损伤中的可能作用.方法:采用MPTP腹腔注射建立小鼠中脑黑质多巴胺能神经细胞慢性损伤模型,采用免疫荧光染色和westernblotting检测中脑黑质部酪氨酸羟化酶(TH)和NCAM-140的表达情况.结果:在小鼠中脑黑质一直有NCAM-140阳性细胞存在,且与TH阳性细胞共表达;TH在给予MPTP后第三周表达开始降低,NCAM-140在给予MPTP后第一周至第三周持续高表达,并且从第四周开始,其表达量明显降低.结论:NCAM-140的表达与多巴胺能神经细胞损伤有关. 相似文献
20.