首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Greenhouse gas (GHG) emissions from livestock contribute significantly to global warming, and a reduction of this source of emissions is crucial in achieving the goal of mitigating global warming. 2. CO2 and CH4 emissions from dung pats were analysed by means of a mesocosm experiment in a Mediterranean ecosystem. The experiment consisted of a total of 30 mesocosms distributed across three treatments: a well-preserved, undisturbed dung beetle assemblage associated with organic livestock; a dung beetle assemblage that was impoverished as a result of the long-term use of veterinary medical products; and a control treatment without dung beetles. 3. Corrections related to insect respiration allow researchers to provide more precise measurements of CO2 emissions from dung, especially in the initial and final phases of dung exposure, when the percentage of CO2 emitted by dung beetles can become greater than the emissions from the dung pats themselves. 4. The effects of dung beetles on CO2 and CH4 emissions are much more accentuated in warm-temperate conditions than in northern temperate areas previously studied. Mediterranean assemblages remove and spread dung faster and more effectively than do northern dung beetle assemblages characterised by a lower functional richness and beetle abundance and biomass. 5. From a livestock management viewpoint, mesocosms representing areas with impoverished dung beetle assemblages, due to the long-term use of veterinary medical products, such as ivermectin, emitted 1.6- and 2.8-fold higher total CO2 and CH4, respectively, than mesocosms mimicking sites with untreated livestock.  相似文献   

2.
Climate models predict increased frequency and intensity of storm events, but it is unclear how extreme precipitation events influence the dynamics of soil fluxes for multiple greenhouse gases (GHGs). Intact soil mesocosms (0–10 cm depth) from a temperate forested watershed in the piedmont region of Maryland [two upland forest soils, and two hydric soils (i.e., wetland, creek bank)] were exposed to experimental water pulses with periods of drying, forcing soils towards extreme wet conditions under controlled temperature. Automated measurements (hourly resolution) of soil CO2, CH4, and N2O fluxes were coupled with porewater chemistry analyses (i.e., pH, Eh, Fe, S, NO3 ?), and polymerase chain reaction–denaturing gradient gel electrophoresis to characterize changes in microbial community structure. Automated measurements quantified unexpected increases in emissions up to 245% for CO2 (Wetland), >23,000% for CH4 (Creek), and >110,000% for N2O (Forest Soils) following pulse events. The Creek soil produced the highest soil CO2 emissions, the Wetland soil produced the highest CH4 emissions, and the Forest soils produced the highest N2O emissions during the experiment. Using carbon dioxide equivalencies of the three GHGs, we determined the Creek soil contributed the most to a 20-year global warming potential (GWP; 30.3%). Forest soils contributed the most to the 100-year GWP (up to 53.7%) as a result of large N2O emissions. These results provide insights on the influence of extreme wet conditions on porewater chemistry and factors controlling soil GHGs fluxes. Finally, this study addresses the need to test biogeochemical thresholds and responses of ecosystem functions to climate extremes.  相似文献   

3.
The net balance of greenhouse gas (GHG) exchanges between terrestrial ecosystems and the atmosphere under elevated atmospheric carbon dioxide (CO2) remains poorly understood. Here, we synthesise 1655 measurements from 169 published studies to assess GHGs budget of terrestrial ecosystems under elevated CO2. We show that elevated CO2 significantly stimulates plant C pool (NPP) by 20%, soil CO2 fluxes by 24%, and methane (CH4) fluxes by 34% from rice paddies and by 12% from natural wetlands, while it slightly decreases CH4 uptake of upland soils by 3.8%. Elevated CO2 causes insignificant increases in soil nitrous oxide (N2O) fluxes (4.6%), soil organic C (4.3%) and N (3.6%) pools. The elevated CO2‐induced increase in GHG emissions may decline with CO2 enrichment levels. An elevated CO2‐induced rise in soil CH4 and N2O emissions (2.76 Pg CO2‐equivalent year?1) could negate soil C enrichment (2.42 Pg CO2 year?1) or reduce mitigation potential of terrestrial net ecosystem production by as much as 69% (NEP, 3.99 Pg CO2 year?1) under elevated CO2. Our analysis highlights that the capacity of terrestrial ecosystems to act as a sink to slow climate warming under elevated CO2 might have been largely offset by its induced increases in soil GHGs source strength.  相似文献   

4.
杨平  仝川 《生态学报》2015,35(20):6868-6880
淡水水生生态系统是全球陆域生态系统的重要组成部分,近年来,关于淡水水生生态系统温室气体排放的研究日益增多。基于国内外目前对湖泊、河流、水库及浅水池塘等淡水生态系统开展的最新研究成果,总结分析了淡水水生生态系统温室气体排放的3个主要途径及相应观测方法。气泡排放的观测方法有倒置漏斗法、开放式动态箱法和超声探测技术;植物传输的观测方法有密闭箱法和植株切割法;扩散途径的观测方法有静态浮箱法、模型估算法/梯度法、微气象学法、TDLAS吸收光谱法等。从物理因素、化学因素、生物因素、水动力因素和人类活动等角度,深入探讨了淡水水生生态系统温室气体排放通量的影响因素。最后根据当前研究中存在的不足,对今后的研究方向提出了建议,以期为我国进一步深入开展相关研究提供借鉴。  相似文献   

5.
Indirect emission of nitrous oxide (N2O), associated with nitrogen (N) leaching and runoff from agricultural lands is a major source of atmospheric N2O. Recent studies have shown that carbon dioxide (CO2) and methane (CH4) are also emitted via these pathways. We measured the concentrations of three dissolved greenhouse gases (GHGs) in the subsurface drainage from field lysimeter that had a shallow groundwater table. Aboveground fluxes of CH4 and N2O were monitored using an automated closed‐chamber system. The annual total emissions of dissolved and aboveground GHGs were compared among three cropping systems; paddy rice, soybean and wheat, and upland rice. The annual drainage in the paddy rice, the soybean and wheat, and the upland rice plots was 1435, 782, and 1010 mm yr?1, respectively. Dissolved CO2 emissions were highest in the paddy rice plots, and were equivalent to 1.05–1.16% of the carbon storage in the topsoil. Dissolved CH4 emissions were also higher in the paddy rice plots, but were only 0.03–0.05% of the aboveground emissions. Dissolved N2O emissions were highest in the upland rice plots, where leached N was greatest due to small crop biomass. In the soybean and wheat plots, large crop biomass, due to double cropping, decreased the drainage volume, and thus decreased dissolved GHG emissions. Dissolved N2O emissions from both the soybean and wheat plots and the upland rice plots were equivalent to 50.3–67.3% of the aboveground emissions. The results indicate that crop type and rotation are important factors in determining dissolved GHG emissions in the drainage from a crop field.  相似文献   

6.
《农业工程》2014,34(4):204-212
The green credentials of hydroelectricity in terms of greenhouse-gas (GHG) emissions have been tarnished with the finding of the researches on GHG emissions from hydroelectric reservoirs in the last two decades. Substantial amounts of GHGs release from the tropical reservoirs, especially methane (CH4) from Brazil’s Amazonian areas. CH4 contributes strongly to climate change because it has a global warming potential (GWP) 24 times higher than carbon dioxide (CO2) on a per molecule basis over a 100-year time horizon. GHGs may emit from reservoirs through four different pathways to the atmosphere: (1) diffusive flux at the reservoir surface, (2) gas bubble flux in the shallow zones of a reservoir, (3) water degassing flux at the outlet of the powerhouse downstream of turbines and spillways, and (4) flux across the air–water interface in the rivers downstream of the dams. This paper reviewed the productions and emissions of CH4, CO2, and N2O in reservoirs, and the environmental variables influencing CH4 and CO2 emissions were also summarized. Moreover, the paper combined with the progress of GHG emissions from Three Gorges Reservoir and proposed three crucial problems to be resolved on GHG emissions from reservoirs at present, which would be benefit to estimate the total GHG emissions from Three Gorges Reservoir accurately.  相似文献   

7.
The need for renewable energy sources will lead to a considerable expansion in the planting of dedicated fast‐growing biomass crops across Europe. These are commonly cultivated as short‐rotation coppice (SRC), and currently poplar (Populus spp.) is the most widely planted. In this study, we report the greenhouse gas (GHG) fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) measured using eddy covariance technique in an SRC plantation for bioenergy production. Measurements were made during the period 2010–2013, that is, during the first two rotations of the SRC. The overall GHG balance of the 4 years of the study was an emission of 1.90 (±1.37) Mg CO2eq ha?1; this indicated that soil trace gas emissions offset the CO2 uptake by the plantation. CH4 and N2O contributed almost equally to offset the CO2 uptake of ?5.28 (±0.67) Mg CO2eq ha?1 with an overall emission of 3.56 (±0.35) Mg CO2eq ha?1 of N2O and of 3.53 (±0.85) Mg CO2eq ha?1 of CH4. N2O emissions mostly occurred during one single peak a few months after the site was converted to SRC; this peak comprised 44% of the total N2O loss during the two rotations. Accurately capturing emission events proved to be critical for deriving correct estimates of the GHG balance. The nitrogen (N) content of the soil and the water table depth were the two drivers that best explained the variability in N2O and CH4, respectively. This study underlines the importance of the ‘non‐CO2 GHGs’ on the overall balance. Further long‐term investigations of soil trace gas emissions should monitor the N content and the mineralization rate of the soil, as well as the microbial community, as drivers of the trace gas emissions.  相似文献   

8.
The spatial variation of soil greenhouse gas fluxes (GHG; carbon dioxide—CO2, methane—CH4 and nitrous oxide—N2O) remains poorly understood in highly complex ecosystems such as tropical forests. We used 240 individual flux measurements of these three GHGs from different soil types, at three topographical positions and in two extreme hydric conditions in the tropical forests of the Guiana Shield (French Guiana, South America) to (1) test the effect of topographical positions on GHG fluxes and (2) identify the soil characteristics driving flux variation in these nutrient-poor tropical soils. Surprisingly, none of the three GHG flux rates differed with topographical position. CO2 effluxes covaried with soil pH, soil water content (SWC), available nitrogen and total phosphorus. The CH4 fluxes were best explained by variation in SWC, with soils acting as a sink under drier conditions and as a source under wetter conditions. Unexpectedly, our study areas were generally sinks for N2O and N2O fluxes were partly explained by total phosphorus and available nitrogen concentrations. This first study describing the spatial variation of soil fluxes of the three main GHGs measured simultaneously in forests of the Guiana Shield lays the foundation for specific studies of the processes underlying the observed patterns.  相似文献   

9.
Greenhouse gases (GHG) can be affected by grazing intensity, soil, and climate variables. This study aimed at assessing GHG emissions from a tropical pasture of Brazil to evaluate (i) how the grazing intensity affects the magnitude of GHG emissions; (ii) how season influences GHG production and consumption; and (iii) what are the key driving variables associated with GHG emissions. We measured under field conditions, during two years in a palisade-grass pasture managed with 3 grazing intensities: heavy (15 cm height), moderate (25 cm height), and light (35 cm height) N2O, CH4 and CO2 fluxes using static closed chambers and chromatographic quantification. The greater emissions occurred in the summer and the lower in the winter. N2O, CH4, and CO2 fluxes varied according to the season and were correlated with pasture grazing intensity, temperature, precipitation, % WFPS (water-filled pores space), and soil inorganic N. The explanatory variables differ according to the gas and season. Grazing intensity had a negative linear effect on annual cumulative N2O emissions and a positive linear effect on annual cumulative CO2 emissions. Grazing intensity, season, and year affected N2O, CH4, and CO2 emissions. Tropical grassland can be a large sink of N2O and CH4. GHG emissions were explained for different key driving variables according to the season.  相似文献   

10.
To investigate the effects of multiple environmental conditions on greenhouse gas (CO2, N2O, CH4) fluxes, we transferred three soil monoliths from Masson pine forest (PF) or coniferous and broadleaved mixed forest (MF) at Jigongshan to corresponding forest type at Dinghushan. Greenhouse gas fluxes at the in situ (Jigongshan), transported and ambient (Dinghushan) soil monoliths were measured using static chambers. When the transported soil monoliths experienced the external environmental factors (temperature, precipitation and nitrogen deposition) at Dinghushan, its annual soil CO2 emissions were 54% in PF and 60% in MF higher than those from the respective in situ treatment. Annual soil N2O emissions were 45% in PF and 44% in MF higher than those from the respective in situ treatment. There were no significant differences in annual soil CO2 or N2O emissions between the transported and ambient treatments. However, annual CH4 uptake by the transported soil monoliths in PF or MF was not significantly different from that at the respective in situ treatment, and was significantly lower than that at the respective ambient treatment. Therefore, external environmental factors were the major drivers of soil CO2 and N2O emissions, while soil was the dominant controller of soil CH4 uptake. We further tested the results by developing simple empirical models using the observed fluxes of CO2 and N2O from the in situ treatment and found that the empirical models can explain about 90% for CO2 and 40% for N2O of the observed variations at the transported treatment. Results from this study suggest that the different responses of soil CO2, N2O, CH4 fluxes to changes in multiple environmental conditions need to be considered in global change study.  相似文献   

11.
Northern peatlands accumulate atmospheric CO2 thus counteracting climate warming. However, CH4 which is more efficient as a greenhouse gas than CO2, is produced in the anaerobic decomposition processes in peat. When peatlands are taken for forestry their water table is lowered by ditching. We studied long-term effects of lowered water table on the development of vegetation and the annual emissions of CO2, CH4 and N2O in an ombrotrophic bog and in a minerotrophic fen in Finland. Reclamation of the peat sites for forestry had changed the composition and coverage of the field and ground layer species, and increased highly the growth of tree stand at the drained fen. In general, drainage increased the annual CO2 emissions but the emissions were also affected by the natural fluctuations of water table. In contrast to CO2, drainage had decreased the emissions of CH4, the drained fen even consumed atmospheric CH4. CO2 and CH4 emissions were higher in the virgin fen than in the virgin bog. There were no N2O emissions from neither type of virgin sites. Drainage had, however, highly increased the N2O emissions from the fen. The results suggest that post-drainage changes in gas fluxes depend on the trophy of the original mires.  相似文献   

12.
Canopy soils can significantly contribute to aboveground labile biomass, especially in tropical montane forests. Whether they also contribute to the exchange of greenhouse gases is unknown. To examine the importance of canopy soils to tropical forest‐soil greenhouse gas exchange, we quantified gas fluxes from canopy soil cores along an elevation gradient with 4 yr of nutrient addition to the forest floor. Canopy soil contributed 5–12 percent of combined (canopy + forest floor) soil CO2 emissions but CH4 and N2O fluxes were low. At 2000 m, phosphorus decreased CO2 emissions (>40%) and nitrogen slightly increased CH4 uptake and N2O emissions. Our results show that canopy soils may contribute significantly to combined soil greenhouse gas fluxes in montane regions with high accumulations of canopy soil. We also show that changes in fluxes could occur with chronic nutrient deposition.  相似文献   

13.
The two non-CO2 greenhouse gases (GHGs) nitrous oxide (N2O) and methane (CH4) comprise 54.8% of total New Zealand emissions. Nitrous oxide is mainly generated from mineral N originating from animal dung and urine, applied fertiliser N, biologically fixed N2, and mineralisation of soil organic N. Even though about 96% of the anthropogenic CH4 emitted in New Zealand is from ruminant animals (methanogenesis), methane uptake by aerobic soils (methanotrophy) can significantly contribute to the removal of CH4 from the atmpsphere, as the global estimates confirm. Both the net uptake of CH4 by soils and N2O emissions from soils are strongly influenced by changes in land use and land management. Quantitative information on the fluxes of these two non-CO2 GHGs is required for a range of land-use and land-management ecosystems to determine their contribution to the national emissions inventory, and for assessing the potential of mitigation options. Here we report soil N2O fluxes and CH4 uptake for a range of land-use and land-management systems collated from published and unpublished New Zealand studies. Nitrous oxide emissions are highest in dairy-grazed pastures (10–12 kg N2O–N ha?1 year? 1), intermediate in sheep-grazed pastures, (4–6 kg N2O–N ha?1 year?1), and lowest in forest, shrubland and ungrazed pasture soils (1–2 kg N2O–N ha?1 year?1). N deposited in the form of animal urine and dung, and N applied as fertiliser, are the principal sources of N2O production. Generally, N2O emissions from grazed pasture soils are high when the soil water-filled pore-space is above field capacity, and net CH4 uptake is low or absent. Although nitrification inhibitors have shown some promise in reducing N2O emissions from grazed pasture systems, their efficacy as an integral part of farm management has yet to be tested. Methane uptake was highest for a New Zealand Beech forest soil (10–11 kg CH4 ha?1 year?1), intermediate in some pine forest soils (4–6 kg CH4 ha?1 year?1), and lowest in most pasture (<1 kg CH4 ha?1 year?1) and cropped soils (1.5 kg CH4 ha?1 year?1). Afforestation /reforestation of pastures results in increases in soil CH4 uptake, largely as a result of increases in soil aeration status and changes in the population and activities of methanotrophs. Soil CH4 uptake is also seasonally dependent, being about two to three times higher in a dry summer and autumn than in a wet winter. There are no practical ways yet available to reduce CH4 emissions from agricultural systems. The mitigation options to reduce gaseous emissions are discussed and future research needs identified.  相似文献   

14.
The first full greenhouse gas (GHG) flux budget of an intensively managed grassland in Switzerland (Chamau) is presented. The three major trace gases, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were measured with the eddy covariance (EC) technique. For CO2 concentrations, an open‐path infrared gas analyzer was used, while N2O and CH4 concentrations were measured with a recently developed continuous‐wave quantum cascade laser absorption spectrometer (QCLAS). We investigated the magnitude of these trace gas emissions after grassland restoration, including ploughing, harrowing, sowing, and fertilization with inorganic and organic fertilizers in 2012. Large peaks of N2O fluxes (20–50 nmol m?2 s?1 compared with a <5 nmol m?2 s?1 background) were observed during thawing of the soil after the winter period and after mineral fertilizer application followed by re‐sowing in the beginning of the summer season. Nitrous oxide (N2O) fluxes were controlled by nitrogen input, plant productivity, soil water content and temperature. Management activities led to increased variations of N2O fluxes up to 14 days after the management event as compared with background fluxes measured during periods without management (<5 nmol m?2 s?1). Fluxes of CO2 remained small until full plant development in early summer 2012. In contrast, methane emissions showed only minor variations over time. The annual GHG flux budget was dominated by N2O (48% contribution) and CO2 emissions (44%). CH4 flux contribution to the annual budget was only minor (8%). We conclude that recently developed multi‐species QCLAS in an EC system open new opportunities to determine the temporal variation of N2O and CH4 fluxes, which further allow to quantify annual emissions. With respect to grassland restoration, our study emphasizes the key role of N2O and CO2 losses after ploughing, changing a permanent grassland from a carbon sink to a significant carbon source.  相似文献   

15.
A full accounting of net greenhouse gas balance (NGHGB) and greenhouse gas intensity (GHGI) was examined in an annual coastal reclaimed saline Jerusalem artichoke-fallow cropping system under various soil practices including soil tillage, soil ameliorant, and crop residue amendments. Seasonal fluxes of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were measured using static chamber method, and the net ecosystem exchange of CO2 (NEE) was determined by the difference between soil heterotrophic respiration (RH) and net primary production (NPP). Relative to no-tillage, rotary tillage significantly decreased the NPP of Jerusalem artichoke while it had no significant effects on the annual RH. Rotary tillage increased CH4 emissions, while seasonal or annual soil N2O emissions did not statistically differ between the two tillage treatments. Compared with the control plots, soil ameliorant or straw amendment enhanced RH, soil CH4, and N2O emissions under the both tillage regimes. Annual NGHGB was negative for all the field treatments, as a consequence of net ecosystem CO2 sequestration exceeding the CO2-equivalents released as CH4 and N2O emissions, which indicates that Jerusalem artichoke-fallow cropping system served as a net sink of GHGs. The annual net NGHGB and GHGI were estimated to be 11–21% and 4–8% lower in the NT than in RT cropping systems, respectively. Soil ameliorant and straw amendments greatly increased NPP and thus significantly decreased the negative annual net NGHGB. Overall, higher NPP but lower climatic impacts of coastal saline bioenergy production would be simultaneously achieved by Jerusalem artichoke cultivation under no-tillage with improved saline soil conditions in southeast China.  相似文献   

16.
Peatland streams have repeatedly been shown to be highly supersaturated in both CO2 and CH4 with respect to the atmosphere, and in combination with dissolved (DOC) and particulate organic carbon (POC) represent a potentially important pathway for catchment greenhouse gas (GHG) and carbon (C) losses. The aim of this study was to create a complete C and GHG (CO2, CH4, N2O) budget for Auchencorth Moss, an ombrotrophic peatland in southern Scotland, by combining flux tower, static chamber and aquatic flux measurements from 2 consecutive years. The sink/source strength of the catchment in terms of both C and GHGs was compared to assess the relative importance of the aquatic pathway. During the study period (2007–2008) the catchment functioned as a net sink for GHGs (352 g CO2‐Eq m?2 yr?1) and C (69.5 g C m?2 yr?1). The greatest flux in both the GHG and C budget was net ecosystem exchange (NEE). Terrestrial emissions of CH4 and N2O combined returned only 4% of CO2 equivalents captured by NEE to the atmosphere, whereas evasion of GHGs from the stream surface returned 12%. DOC represented a loss of 24% of NEE C uptake, which if processed and evaded downstream, outside of the catchment, may lead to a significant underestimation of the actual catchment‐derived GHG losses. The budgets clearly show the importance of aquatic fluxes at Auchencorth Moss and highlight the need to consider both the C and GHG budgets simultaneously.  相似文献   

17.
Large Greenhouse Gas Emissions from a Temperate Peatland Pasture   总被引:2,自引:0,他引:2  
Agricultural drainage is thought to alter greenhouse gas emissions from temperate peatlands, with CH4 emissions reduced in favor of greater CO2 losses. Attention has largely focussed on C trace gases, and less is known about the impacts of agricultural conversion on N2O or global warming potential. We report greenhouse gas fluxes (CH4, CO2, N2O) from a drained peatland in the Sacramento-San Joaquin River Delta, California, USA currently managed as a rangeland (that is, pasture). This ecosystem was a net source of CH4 (25.8 ± 1.4 mg CH4-C m−2 d−1) and N2O (6.4 ± 0.4 mg N2O-N m−2 d−1). Methane fluxes were comparable to those of other managed temperate peatlands, whereas N2O fluxes were very high; equivalent to fluxes from heavily fertilized agroecosystems and tropical forests. Ecosystem scale CH4 fluxes were driven by “hotspots” (drainage ditches) that accounted for less than 5% of the land area but more than 84% of emissions. Methane fluxes were unresponsive to seasonal fluctuations in climate and showed minimal temporal variability. Nitrous oxide fluxes were more homogeneously distributed throughout the landscape and responded to fluctuations in environmental variables, especially soil moisture. Elevated CH4 and N2O fluxes contributed to a high overall ecosystem global warming potential (531 g CO2-C equivalents m−2 y−1), with non-CO2 trace gas fluxes offsetting the atmospheric “cooling” effects of photoassimilation. These data suggest that managed Delta peatlands are potentially large regional sources of greenhouse gases, with spatial heterogeneity in soil moisture modulating the relative importance of each gas for ecosystem global warming potential.  相似文献   

18.
Over the past two decades, the interest to decrease the emission levels of greenhouse gases (GHGs) has increased. The livestock sector has been put under continuous supervision and regulation because it is an important source of GHG emissions. In 2012, it was estimated that 3.46 Gton CO2-eq was released from this sector, methane (CH4) being the gas with the highest contribution (43 %), followed by nitrous oxide (21 %). In order to determine real emissions, it is necessary to use precise and reproducible measuring methods which can be complex and expensive. The challenges in these methods are focused on achieving an accurate assessment and monitoring of gas emissions, developing monitoring systems for the continuous measurement and implementation of methodologies for their validation in field in order to understand the complex nature of environmental variables affecting gas production. Different techniques for the measurement of CH4 and nitrous oxide (N2O) emissions are reviewed and discussed in this research. The passive flux sampling to measure emissions of these GHGs has been identified as an interesting alternative technique because it is practical, low cost and robust. This kind of sampler is highly adequate to measure emissions of N2O and CH4 originating from some sources of the livestock sector, but at this moment, no prototypes are commercially available and thus more research is necessary in this field.  相似文献   

19.
马英  匡晓奎  刘杰  杨云锋 《微生物学通报》2021,48(10):3835-3846
高寒草地生态系统具有独特的地理环境和气候特征,对放牧干扰十分敏感,在全球温室气体通量中贡献突出,研究高寒草地放牧对土壤温室气体排放的影响机制具有重要意义。本文总结高寒草地温室气体源/汇特征、不同放牧方式对土壤微环境和微生物群落结构的影响,发现高寒草地主要是CO2源、CH4汇、N2O源。放牧通过家畜选择性采食、践踏和排泄物返还等多重机制作用于地上植物、土壤结构、温度、湿度和养分,进而影响地下微生物及温室气体通量。本文旨在为高寒草地生态系统健康发展和管理及缓解全球气候变化提供科学依据,并对未来研究方向进行展望。  相似文献   

20.
贾朋  高常军  李吉跃  周平  王丹  许小林 《生态学报》2018,38(19):6903-6911
为探索华南地区尾巨桉人工林和马占相思人工林地表温室气体的季节排放规律、排放通量和主控因子,采用静态箱-气相色谱法,对两种林型地表3种温室气体(CO_2、CH_4、N_2O)通量进行为期1年的逐月测定。结果表明:(1)尾巨桉人工林和马占相思人工林均为CO_2和N_2O的排放源,CH_4的吸收汇。马占相思林地表N_2O通量显著(P0.01)高于尾巨桉林,CO_2通量和CH_4通量无明显差异。(2)两种林型3种温室气体通量有着相似季节变化规律,地表CO_2通量均呈现雨季高旱季低的单峰规律;地表CH_4吸收通量表现为旱季高雨季低的单峰趋势;地表N_2O通量呈现雨季高旱季低且雨季内有两个峰值的排放规律。(3)地表CO_2、N_2O通量和土壤5 cm温度呈极显著(P0.01)正相关,3种温室气体地表通量同土壤含水量呈极显著(P0.01)或显著相关(P0.05)。(4)尾巨桉林和马占相思林温室气体年温室气体排放总量为31.014 t/hm~2和28.782 t/hm~2,均以CO_2排放占绝对优势(98.46%—99.15%),CH_4和N_2O处于次要地位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号