首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
酶是一种高效、高选择性、催化条件温和的绿色催化剂,在生物催化、生物传感、生物分离等领域具有广泛的应用价值。然而,游离酶的操作稳定性差、回收和再利用困难等缺点限制了其进一步应用。固定化酶技术应运而生,它的出现和发展为解决酶的工业化应用提供了优良的解决方案。本文中,笔者主要从酶的固定化方法、固定化酶的载体和固定化酶的应用这三方面详细介绍近几年固定化酶的研究现状,结合笔者所在课题组和国内外同行近年来的最新研究进展,重点总结了具有结构可调、孔隙率高、结晶度良好的金属-有机框架材料(MOFs)和共价有机框架材料(COFs)作为新型载体在固定化酶方面的研究进展。  相似文献   

2.
酶是高效的生物催化剂,在生物技术领域有广泛的应用。然而,不可再生催化的高成本和酶的有效成分分离回收,是实现大规模工业化应用需要解决的关键问题。磁性纳米粒子(magnetic nanoparticles,MNPs)具有优异的磁回收性质。通过设计和制备功能化MNPs作为固定化酶的多功能载体,是解决这一问题的有效途径之一,可为酶的工业化大规模应用提供条件。近年来,功能化磁性纳米粒子在酶的固定化领域基于载体性质、固定化方法和应用有广泛研究。文中重点介绍了近年来各种功能化磁性纳米载体,特别是Fe3O4纳米粒子,在固定化酶中的应用。根据功能化试剂的差异分类,实例讨论了不同功能化修饰的磁性纳米载体对酶的固定化,包括硅烷修饰的磁性纳米载体、有机聚合物修饰的磁性纳米载体、介孔材料修饰的磁性纳米载体以及金属-有机骨架材料(metal-organic framework,MOF)修饰的磁性纳米载体。同时,结合可持续工业催化的发展要求,对磁性复合载体固定化酶的发展前景进行了展望。  相似文献   

3.
纳米酶作为一种具有类酶活性的纳米材料,与天然酶相比,具有制备过程简单、受外界环境干扰小、对酸碱和温度具有较好的耐受性等优点.金属有机框架(metal-organic frameworks,MOFs),即多孔配位聚合物,具有结构多样性、高比表面积、孔隙率可控等独特性质.因有序框架的保护以及结构可调控的性质,基于MOFs构...  相似文献   

4.
金属有机骨架(metal-organic frameworks,MOFs)是一类由金属结点和有机配体配位组装而成的晶体材料.金属有机骨架具有孔隙度大、孔径和尺寸可调、生物相容性好、成分可调、表面可修饰等优越性能,在肿瘤治疗领域具有重要的应用潜力.本文首先介绍了金属有机骨架用于小分子药物、生物大分子药物等药物递送体系的构建方法.随后,我们总结了近年来MOFs药物递送体系在肿瘤的化学治疗、光动力学治疗、放射性治疗、免疫治疗、光热治疗等方面的应用进展.最后,本文总结了MOFs在肿瘤治疗方面的进展和特点,并展望了MOFs在肿瘤治疗领域的研究挑战和应用前景.  相似文献   

5.
固定化酶作为一种绿色高效的生物催化剂,其性能远超游离酶。目前酶的固定化技术适用范围仍然较小,酶的研究范围多停留在模型酶阶段,扩大固定化酶的研究范围具有十分重要的意义。金属有机骨架材料(MOFs)作为酶固定化的载体在近些年得到了广泛的探索,但是具有生物功能的酶-MOFs复合材料的许多特性仍有待挖掘。采用仿生矿化的合成方法将5-羟甲基糠醛氧化酶(HMFO)固定到以沸石咪唑酯(ZIF-8)为代表的MOFs材料中,制备得到一种新的生物催化剂HMFO@ZIF-8,扫描电子显微镜表征其形态区别于经典的菱形十二面体。采用考马斯亮蓝法测定蛋白质浓度,计算得到酶的固定化效率达到89. 0%。HMFO@ZIF-8催化5-羟甲基糠醛的转化率达到84. 3%,收率和选择性均高于游离酶。拓展了MOFs固定化酶的研究范围,为研究其他生物大分子复合材料的生物催化剂提供一定的借鉴意义。  相似文献   

6.
生物医药领域近年来发展迅猛,多肽类药物因其生物学活性高、毒性小、生物相容性好等优势,在肿瘤治疗、细胞活性模拟、抗体检测等领域展开广泛应用,多肽的检测分析也成为研究的一大热点。传统的色谱法、溶剂沉淀法、离心超滤法和固相萃取法对多肽能够展现富集效果,但富集的效率往往不够理想。近年来,以有机框架材料为代表的纳米材料,在气体吸附、荧光、传感和催化等领域展开了广泛应用。有机框架材料凭借着独特的结构尺寸,成为了一类理想的生物吸附剂。由于其具有表面可修饰性,能够大大提高对多肽的富集效率。本文着重介绍近5年来金属-有机框架材料(metalorganic frameworks,MOFs)和共价-有机框架(covalent-organic frameworks,COFs)在多肽富集中的应用。  相似文献   

7.
生物固定化技术及其应用研究进展   总被引:1,自引:0,他引:1  
生物固定化技术具有小型高效、稳定性好、操作简便、易实现连续化、自动化控制等优点,在生物、医药、农业、食品、化工、能源开发、环境保护等方面得到了广泛应用.当前生物固定化的材料已由单一的酶发展到含酶菌体或菌体碎片.固定化方法主要包括载体结合法、交联法和包埋法,这些方法近年来都通过发展新型材料和技术得到了长足发展,生物固定化技术在有机污染物净化、土壤重金属污染修复、真菌毒素降解、生物能源开发等方面都取得了重要进展.今后应在开发固定化生物资源、提高固定化微生物活性、固定化机理和应用等方面加强研究.  相似文献   

8.
固定化生物催化剂的研究动向   总被引:4,自引:0,他引:4  
近年来,国内外对于固定化酶、固定化细胞、固定化细胞器以及生物传感器的研究很活跃,在固定化方法上取得了较大进展,一部分固定化酶、固定化微生物细胞以及生物传感器在食品发酵工业、有机合成工业、化学分析、临床诊断以及能源开发等方面得到了应用。目前,大多数固定化酶、固定化细胞以及生物传感器还处在实验室研究阶段或中试阶段,有待改进;动物细胞、植物细胞以及细胞器的固定化研究还处于探索阶段、有待深入。  相似文献   

9.
多孔纳米材料固定化酶研究进展   总被引:4,自引:0,他引:4  
酶是一种天然生物催化剂,有催化效率高、底物选择性强和绿色环保等优点,但酶结构不稳定且重复利用率低,制约了其产业化应用。随着技术的发展,酶的固定化可以提高酶的活性和稳定性,为生物酶的工程化应用带来了新的机遇。多孔纳米材料具有比表面积大、孔隙率高、机械和化学性能稳定等特点和优异的成本效益,是理想的固定化酶载体。本文综述了近些年来金属有机框架、共价有机框架和多孔微球等纳米材料固定化酶的研究进展和应用,重点介绍了载体固定酶的方式,并总结了每种载体的特点,最后讨论了多孔纳米材料固定化酶面临的挑战和发展趋势。  相似文献   

10.
固定化酶和固定化细胞业已用于工业、化学分析、环境保护等领域。近年来建立的酶与微生物细胞(或二种微生物细胞)共固定化技术,进一步扩大了固定化生物催化剂的应用范围。本文就共固定化生物催化剂的制备方法及其在食品发酵工业中的应用作一概要介绍。  相似文献   

11.
New tailor-made anionic exchange resins have been prepared, based on films of large polyethylenimine polymers (e.g., MW 25,000) completely coating, via covalent immobilization, the surface of different porous supports (agarose, silica, polymeric resins). Most proteins contained in crude extracts from different sources have been very strongly adsorbed on them. Ionic exchange properties of such composites strongly depend on the size of polyethylenimine polymers as well as on the exact conditions of the covalent coating of the solids with the polymer. On the contrary, similar coating protocols yield similar matrices by using different porous supports as starting material. For example, 77% of all proteins contained in crude extracts from Escherichia coli were adsorbed, at low ionic strength, on the best matrices, and less than 15% of the adsorbed proteins were eluted from the support in the presence of 0.3 M NaCl. Under these conditions, 100% of the adsorbed proteins were eluted from conventional DEAE supports. Such polyethylenimine-support composites were also very suitable to perform very strong and nondistorting reversible immobilization of industrial enzymes. For example, lipase from Candida rugosa (CRL), beta-galactosidase from Aspergillus oryzae and D-amino acid oxidase (DAAO) from Rhodotorula gracilis, were adsorbed on such matrices in a few minutes at pH 7.0 and 4 degrees C. Immobilized enzymes preserved 100% of catalytic activity and remained fully immobilized in 0.2 M NaCl. In addition to that, CRL and DAAO were highly stabilized upon immobilization. Stabilization of DAAO, a dimeric enzyme, seems to be due to the involvement of both enzyme subunits in the ionic adsorption.  相似文献   

12.
A successful recipe for the production of immobilized invertase/porous silicon layer with appropriate catalytic behavior for the sucrose hydrolysis reaction is presented. The procedure is based on support surface chemical oxidation, silanization, activation with glutaraldehyde and finally covalent bonding of the free enzyme to the functionalized surface. The catalytic behavior of the composite layer as a function of pH, temperature, and the current density applied in the porous silicon (PS) preparation is investigated. Interestingly, Vmax undergoes a substantial increase (ca. 30%) upon immobilization. The value of Km increases by a factor of 1.53 upon immobilization. The initial activity is still preserved up to 28 days while the free enzyme undergoes a 26% loss of activity after the same period. Based on the outcomes of this study, we believe that tailored PS layers may be used for the development of new bioreactors in which the active enzyme is immobilized on the internal walls and is not lost during the process.  相似文献   

13.
The protease trypsin was immobilized to porous glass in both the presence and absence of acetylated soybean trypsin inhibitor (STI) to determine whether immobilization could alter enzyme activity in favor of aminolysis over hydrolysis. Actiive-site titration with 4-methylumbelliferylguanidinobenzoate (MUGB) showed that only about 10% of immobilized trypsin had catalytic activity. Immobilization in the presence of STI produced a higher yield of active enzyme accessible to the inhibitor but did not increase the total yield of MUGB-active immobilized enzyme. Thus, enzyme inactivation upon immobilization could not be attributed to an inaccessible enzyme orientation, nor did STI prevent inactivation by stabilizing the active-site conformation. Kinetic parameters were determined for soluble and immobilized trypsin for two esters, N-tosyl-L-arginine methyl ester (TAME) and N-benzoyl-L-arginine ethyl ester (BAEE), and two amides, N-benzoyl-L-arginine p-nitroanilide (BAPNA) and N-t-boc-leucylglycylarginine p-nitroanilide (LGRNA). In all cases, immobilization caused a greater decrease in k(cat) for amidase activity than for esterase activity. The ratio [k(cat)/ K(m) (ester)]/[k(cat)/K(m) (amide)] increased slightly or stayed the same (for I.GRNA) or decreased sharply (for BAPNA). Including STI during immobilization had little effect on the active enzyme's intrinsic kinetics. A direct comparison of energy diagrams and free energies of activation for BAEE and BAPNA indicates that immobilization raises the free energy barriers for both amide and ester hydrolysis and lowers the energy barrier for aminolysis. In practice, these effects should lower the amidase activity and increase the aminolysis-hydrolysis ratio, rendering the immobilized enzyme a more efficient catalyst for peptide synthesis. (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
酶催化CO2还原制备高值化学品对缓解全球环境和能源危机具有重要意义,利用甲酸脱氢酶(formate dehydrogenase,FDH)或多酶级联还原CO2制备甲酸/甲醇具有选择性高、条件温和的优势,但关键酶活性低、稳定性差和重复利用率低的问题限制了其规模化应用,酶的固定化为这些问题提供了有效解决方案。本文总结了近年来利用膜、无机材料、金属有机框架和共价有机框架等载体对酶进行固定化的研究进展,阐释了不同固定材料和固定方式的特点和优势;进一步总结了固定化酶与电催化或光催化耦联反应体系对CO2还原的协同效果及应用,同时指出酶固定化技术和耦联反应体系目前存在的问题并对其发展前景进行了展望。  相似文献   

15.
Featuring unique planar structure, large surface area and biocompatibility, graphene oxide (GO) has been widely taken as an ideal scaffold for the immobilization of various enzymes. In this regard, nickel‐coordinated graphene oxide composites (GO‐Ni) were prepared as novel supporters for the immobilization of formate dehydrogenase. The catalytic activity, stability and morphology were studied. Compared with GO, the enzyme loading capacity of GO‐Ni was enhanced by 5.2‐fold, besides the immobilized enzyme GO‐Ni‐FDH exhibited better thermostability, storage stability and reuse stability than GO‐FDH. GO‐Ni‐FDH retained 40.9% of its initial activity after 3 h at 60°C, and retained 31.4% of its initial relative activity after 20 days’ storage at 4°C. After eight times usages, GO‐Ni‐FDH maintained 63.8% of its initial activity. Mechanism insights of the multiple interactions of enzyme with the GO‐Ni were studied, considering coordination bonds, hydrogen bonds, electrostatic forces, coordination bonds, and etc. A practical and simple immobilization strategy by metal ions coordination for multimeric dehydrogenase was developed.  相似文献   

16.
Immobilization of human erythrocyte membrane was carried out by adsorption on Fractosil, a porous form of silica. Acetylcholinesterase (AChE) was chosen as a representative membrane enzyme in this study. Dependency of adsorption on membrane concentration was determined. Positive cooperative interactions that occurred in the process of immobilization increased stability. Presence of hydrophobic ligands on derivatized Fractosil was found to enhance stability of immobilized preparations making them more effective for use in continuous catalytic transformations. It is suggested that adsorptive immobilization of membrane structures such as the human erythrocyte membrane fragments on Fractosil and other inexpensive supports may provide a convenient procedure for utilization of their catalytic potential. Such preparations may be used in diagnostic kits or for construction of biosensors.  相似文献   

17.
New and strong ionic exchange resins have been prepared by the simple and rapid ionic adsorption of anionic polymers (sulfate-dextran) on porous supports activated with the opposite ionic group (DEAE/MANAE). Ionic exchange properties of such composites were strongly dependent on the size of the ionic polymers as well as on the conditions of the ionic coating of the solids with the ionic polymers (optimal conditions were 400 mg of sulfate-dextran 5000 kDa per gram of support). Around 80% of the proteins contained in crude extracts from Escherichia coli and Acetobacter turbidans could be adsorbed on these porous composites even at pH 7. This interaction was stronger than that using conventional carboxymethyl cellulose (CMC) and even others such as supports coated with aspartic-dextran polymer. By means of the sequential use of the new supports and supports coated with polyethyleneimine (PEI), all proteins from crude extracts could be immobilized. In fact, a large percentage (over 50%) could be immobilized on both supports. Finally, some industrially relevant enzymes (beta-galactosidases from Aspergillus oryzae, Kluyveromyces lactis, and Thermussp. strain T2, lipases from Candida antarctica A and B, Candida rugosa, Rhizomucor miehei, and Rhyzopus oryzae and bovine pancreas trypsin and chymotrypsin) have been immobilized on these supports with very high activity recoveries and immobilization rates. After enzyme inactivation, the protein could be fully desorbed from the support, and then the support could be reused for several cycles. Moreover, in some instances the enzyme stability was significantly improved, mainly in the presence of organic solvents, perhaps as a consequence of the highly hydrophilic microenvironment of the support.  相似文献   

18.
New tailor-made cationic exchange resins have been prepared by covalently binding aspartic-dextran polymers (e.g. MW 15 000-20 000) to porous supports (aminated agarose and Sepabeads). More than 80% of the proteins contained in crude extracts from Escherichia coli and Acetobacter turbidans have been strongly adsorbed on these porous materials at pH 5. This interaction was stronger than in conventional carboxymethyl cellulose (e.g., at pH 7 and 25 degrees C, all proteins previously adsorbed at pH 5 were released from carboxymethyl cellulose, whereas no protein was released from the new supports under similar conditions). Ionic exchange properties of such composites were strongly dependent on the size of the aspartic-dextran polymers as well as on the exact conditions of the covalent coating of the solids with the polymer (optimal conditions: 100 mg aspartic-dextran 20 000/(mL of support); room temperature). Finally, some industrially relevant enzymes (Kluyveromices lactis, Aspergillus oryzae, and Thermus sp. beta-galactosidases, Candida antarctica B lipase, and bovine pancreas trypsin and chymotrypsin) have been immobilized on these supports with very high activity recovery and immobilization rates. After enzyme inactivation, the enzyme can be fully desorbed from the support and the support could be reused for several cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号