共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The motion after-effect (MAE) persists in crowding conditions, i.e., when the adaptation direction cannot be reliably perceived. The MAE originating from complex moving patterns spreads into non-adapted sectors of a multi-sector adapting display (i.e., phantom MAE). In the present study we used global rotating patterns to measure the strength of the conventional and phantom MAEs in crowded and non-crowded conditions, and when attention was directed to the adapting stimulus and when it was diverted away from the adapting stimulus. The results show that: (i) the phantom MAE is weaker than the conventional MAE, for both non-crowded and crowded conditions, and when attention was focused on the adapting stimulus and when it was diverted from it, (ii) conventional and phantom MAEs in the crowded condition are weaker than in the non-crowded condition. Analysis conducted to assess the effect of crowding on high-level of motion adaptation suggests that crowding is likely to affect the awareness of the adapting stimulus rather than degrading its sensory representation, (iii) for high-level of motion processing the attentional manipulation does not affect the strength of either conventional or phantom MAEs, neither in the non-crowded nor in the crowded conditions. These results suggest that high-level MAEs do not depend on attention and that at high-level of motion adaptation the effects of crowding are not modulated by attention. 相似文献
7.
I. G. Andreeva V. A. Orlov V. L. Ushakov 《Journal of Evolutionary Biochemistry and Physiology》2018,54(5):363-373
Functional magnetic resonance imaging (fMRI) was used to investigate activation of the multimodal areas in the cerebral cortex–supramarginal and angular gyri, precuneus, and middle temporal visual cortex (MT/V5)–in response to motion of biologically significant sounds (human footsteps). The subjects listened to approaching or receding footstep sounds during 45 s, and such stimulation was supposed to evoke auditory adaptation to biological motion. Listening conditions alternated with stimulation-free control. To reveal activity in the regions of interest, the periods before and during stimulation were compared. Most stable and voluminous activation was detected in the supramarginal and angular gyri, being registered for all footstep sound types–approaching, receding and steps in place. Listening to human approaching steps activated the precuneus area, with the volume of activation clusters varying considerably between subjects. In the MT/V5 area, activation was revealed in 5 of 21 subjects. The involvement of the tested multimodal cortical areas in analyzing biological motion is discussed. 相似文献
8.
Pamela Reinagel 《PloS one》2013,8(6)
Animals must continuously evaluate sensory information to select the preferable among possible actions in a given context, including the option to wait for more information before committing to another course of action. In experimental sensory decision tasks that replicate these features, reaction time distributions can be informative about the implicit rules by which animals determine when to commit and what to do. We measured reaction times of Long-Evans rats discriminating the direction of motion in a coherent random dot motion stimulus, using a self-paced two-alternative forced-choice (2-AFC) reaction time task. Our main findings are: (1) When motion strength was constant across trials, the error trials had shorter reaction times than correct trials; in other words, accuracy increased with response latency. (2) When motion strength was varied in randomly interleaved trials, accuracy increased with motion strength, whereas reaction time decreased. (3) Accuracy increased with reaction time for each motion strength considered separately, and in the interleaved motion strength experiment overall. (4) When stimulus duration was limited, accuracy improved with stimulus duration, whereas reaction time decreased. (5) Accuracy decreased with response latency after stimulus offset. This was the case for each stimulus duration considered separately, and in the interleaved duration experiment overall. We conclude that rats integrate visual evidence over time, but in this task the time of their response is governed more by elapsed time than by a criterion for sufficient evidence. 相似文献
9.
10.
A steady increase in reading speed is the hallmark of normal reading acquisition. However, little is known of the influence of visual attention capacity on children''s reading speed. The number of distinct visual elements that can be simultaneously processed at a glance (dubbed the visual attention span), predicts single-word reading speed in both normal reading and dyslexic children. However, the exact processes that account for the relationship between the visual attention span and reading speed remain to be specified. We used the Theory of Visual Attention to estimate visual processing speed and visual short-term memory capacity from a multiple letter report task in eight and nine year old children. The visual attention span and text reading speed were also assessed. Results showed that visual processing speed and visual short term memory capacity predicted the visual attention span. Furthermore, visual processing speed predicted reading speed, but visual short term memory capacity did not. Finally, the visual attention span mediated the effect of visual processing speed on reading speed. These results suggest that visual attention capacity could constrain reading speed in elementary school children. 相似文献
11.
The aim of this study was to examine whether age-related changes in the speed of information processing are the best predictors of the increase in sensitivity to time throughout childhood. Children aged 5 and 8 years old, as well adults, were given two temporal bisection tasks, one with short (0.5/1-s) and the other with longer (4/8-s) anchor durations. In addition, the participants'' scores on different neuropsychological tests assessing both information processing speed and other dimensions of cognitive control (short-term memory, working memory, selective attention) were calculated. The results showed that the best predictor of individual variances in sensitivity to time was information processing speed, although working memory also accounted for some of the individual differences in time sensitivity, albeit to a lesser extent. In sum, the faster the information processing speed of the participants, the higher their sensitivity to time was. These results are discussed in the light of the idea that the development of temporal capacities has its roots in the maturation of the dynamic functioning of the brain. 相似文献
12.
13.
14.
Joachim Lange Marc de Lussanet Simone Kuhlmann Anja Zimmermann Markus Lappe Pienie Zwitserlood Christian Dobel 《PloS one》2009,4(10)
Prosopagnosia is a deficit in recognizing people from their faces. Acquired prosopagnosia results after brain damage, developmental or congenital prosopagnosia (CP) is not caused by brain lesion, but has presumably been present from early childhood onwards. Since other sensory, perceptual, and cognitive abilities are largely spared, CP is considered to be a stimulus-specific deficit, limited to face processing. Given that recent behavioral and imaging studies indicate a close relationship of face and biological-motion perception in healthy adults, we hypothesized that biological motion processing should be impaired in CP. Five individuals with CP and ten matched healthy controls were tested with diverse biological-motion stimuli and tasks. Four of the CP individuals showed severe deficits in biological-motion processing, while one performed within the lower range of the controls. A discriminant analysis classified all participants correctly with a very high probability for each participant. These findings demonstrate that in CP, impaired perception of faces can be accompanied by impaired biological-motion perception. We discuss implications for dedicated and shared mechanisms involved in the perception of faces and biological motion. 相似文献
15.
16.
17.
18.
19.
Milford Wolpoff 《American anthropologist》2001,103(3):850-851
The Human Career: Human Biological and Cultural Origins, Richard G. Klein. 2nd edition. Chicago: University of Chicago Press, 1999. 810 pp. 相似文献
20.
Brain Areas Active during Visual Perception of Biological Motion 总被引:19,自引:0,他引:19
Theories of vision posit that form and motion are represented by neural mechanisms segregated into functionally and anatomically distinct pathways. Using point-light animations of biological motion, we examine the extent to which form and motion pathways are mutually involved in perceiving figures depicted by the spatio-temporal integration of local motion components. Previous work discloses that viewing biological motion selectively activates a region on the posterior superior temporal sulcus (STSp). Here we report that the occipital and fusiform face areas (OFA and FFA) also contain neural signals capable of differentiating biological from nonbiological motion. EBA and LOC, although involved in perception of human form, do not contain neural signals selective for biological motion. Our results suggest that a network of distributed neural areas in the form and motion pathways underlie the perception of biological motion. 相似文献