首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Huh Y  Bhatt R  Jung D  Shin HS  Cho J 《PloS one》2012,7(1):e30699
Thalamocortical (TC) neurons are known to relay incoming sensory information to the cortex via firing in tonic or burst mode. However, it is still unclear how respective firing modes of a single thalamic relay neuron contribute to pain perception under consciousness. Some studies report that bursting could increase pain in hyperalgesic conditions while others suggest the contrary. However, since previous studies were done under either neuropathic pain conditions or often under anesthesia, the mechanism of thalamic pain modulation under awake conditions is not well understood. We therefore characterized the thalamic firing patterns of behaving mice in response to nociceptive pain induced by inflammation. Our results demonstrated that nociceptive pain responses were positively correlated with tonic firing and negatively correlated with burst firing of individual TC neurons. Furthermore, burst properties such as intra-burst-interval (IntraBI) also turned out to be reliably correlated with the changes of nociceptive pain responses. In addition, brain stimulation experiments revealed that only bursts with specific bursting patterns could significantly abolish behavioral nociceptive responses. The results indicate that specific patterns of bursting activity in thalamocortical relay neurons play a critical role in controlling long-lasting inflammatory pain in awake and behaving mice.  相似文献   

2.
The sensory thalamus has been reported to play a key role in central pain sensory modulation and processing, but its response to repeated nociception at thalamic level is not well known. Current study investigated thalamic response to repeated nociception by recording and comparing the activity of the same thalamic neuron during the 1st and 2nd formalin injection induced nociception, with a week interval between injections, in awake and behaving mice. Behaviorally, the 2nd injection induced greater nociceptive responses than the 1st. Thalamic activity mirrored these behavioral changes with greater firing rate during the 2nd injection. Analysis of tonic and burst firing, characteristic firing pattern of thalamic neurons, revealed that tonic firing activity was potentiated while burst firing activity was not significantly changed by the 2nd injection relative to the 1st. Likewise, burst firing property changes, which has been consistently associated with different phases of nociception, were not induced by the 2nd injection. Overall, data suggest that repeated nociception potentiated responsiveness of thalamic neurons and confirmed that tonic firing transmits nociceptive signals.  相似文献   

3.
Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four β2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of β2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing β2 subunits, we generated mice in which the gene encoding β2 was deleted (β2 knockout [KO]). Comparison of proteins from wild-type (WT) and β2 KO mice allowed unambiguous demonstration of the presence of β2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and β2 KO CCs in slices and found that β2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the β2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from β2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of β2 subunits may predispose to burst firing.  相似文献   

4.
In the experiments on the 20–25-day-old and adult rabbits, effects of tonic pain focus (a subcutaneous injection of formalin into leg dorsal surface) on behavioral and electrophysiological characteristics of acute pain were studied. The effect of the 40–60-min-long tonic pain was seen as a decrease of defensive reaction threshold and an increase of inhibitory effect of brain rewarding zones on evoked potential recorded in thalamus parafascicular complex in response to a nociceptive electrocutaneous stimulation in narcotized rabbits. The changes observed were biphasic and coincided in time with an enhancement of the earlier described [26] specific behavioral responses to formalin injection. It is established that the effect of tonic pain is more expressed by its intensity and duration in the 20–25-day-old than in adult rabbits.  相似文献   

5.
Current investigations regarding social stress primarily focus on the health consequences of being in stressful social hierarchies. The repetitive nature of social conflicts seems to favor an induction of hyperalgesia or hypoalgesia, both in rodents and humans. Additionally, social conflicts may affect the immune system. In order to better establish the pain and immune responses to stress, the present study implemented a sensory contact model on 32 male BALB/c mice. Subsequent to establishing a dominance/submissive social relationship, each mouse was injected with formalin (20 μl, 2%) and their pain behavior was scored and serum concentrations of proinflammatory cytokines IL-1 and IL-6, and corticosterone were also measured. Test results revealed that subordinate mice were hypoalgesic during chronic phase of formalin test compared to control and dominant mice (P<0.05). On the other hand, subordinate mice were hyperalgesic compared to dominant mice during the whole acute phase of formalin test (P<0.05). Corticosterone, IL-1 and IL-6 concentrations were much higher in serum of dominant and subordinate mice than in the control group (p<0.05). The results indicated that, although both dominant and subordinate animals displayed an increase in serum corticosterone and proinflammatory cytokines during social interactions, their response to pain perception differently was affected with the social status.  相似文献   

6.
This study assesses the antinociceptive effect induced by different dosages of topiramate (TP), an anticonvulsant drug that is orally administered in models of neuropathic pain and acute pain in rats and mice, respectively. Orally administered TP (80 mg/Kg) in mice causes antinociception in the first and second phases of a formalin test, while in doses of 20 and 40 mg/Kg it was only effective in the second phase. TP (80 mg/Kg, p.o) also exhibited antinociceptive action in the hot plate test, however, it did not have an effect in the capsaicin test in mice, nor in the model of neuropathic pain in diabetic rats. The antinociceptive effect caused by TP (80 mg/Kg, p.o) in the formalin test was reversed by prior treatment with naloxone (opioid antagonist), but not with glibenclamide (antagonist of the potassium channel), ondansetron (antagonist of the serotonin 5HT3 receptor) or cyproheptadine (antagonist of the serotonin 5HT2A receptor).The data show that TP has an important antinociceptive effect in the models of nociception induced by chemical (formalin) or thermal (hot plate) stimuli, and that the opioid system plays a part in the antinociceptive effect, as shown by formalin.  相似文献   

7.
Burst firing plays an important role in normal neuronal function and dysfunction. In Purkinje neurons, where the firing rate and discharge pattern encode the timing signals necessary for motor function, any alteration in firing properties, including burst activity, may affect the motor output. Therefore, we examined whether maternal exposure to the cannabinoid receptor agonist WIN 55212-2 (WIN) may affect the burst firing properties of cerebellar Purkinje cells in offspring. Whole-cell somatic patch-clamp recordings were made from cerebellar slices of adult male rats that were exposed to WIN prenatally. WIN exposure during pregnancy induced long-term alterations in the burst firing behavior of Purkinje neurons in rat offspring as evidenced by a significant increase in the mean number of spikes per burst (p < 0.05) and the prolongation of burst firing activity (p < 0.01). The postburst afterhyperpolarization potential (p < 0.001), the mean intraburst interspike intervals (p < 0.001) and the mean intraburst firing frequency (p < 0.001) were also significantly increased in the WIN-treated group. Prenatal exposure to WIN enhanced the firing irregularity as reflected by a significant decrease in the coefficient of variation of the intraburst interspike interval (p < 0.05). Furthermore, whole-cell voltage-clamp recordings revealed that prenatal WIN exposure significantly enhanced Ca2+ channel current amplitude in offspring Purkinje neurons compared to control cells. Overall, the data presented here strongly suggest that maternal exposure to cannabinoids can induce long-term changes in complex spike burst activity, which in turn may lead to alterations in neuronal output.  相似文献   

8.
The orexigenic peptide, ghrelin is known to influence function of GnRH neurons, however, the direct effects of the hormone upon these neurons have not been explored, yet. The present study was undertaken to reveal expression of growth hormone secretagogue receptor (GHS-R) in GnRH neurons and elucidate the mechanisms of ghrelin actions upon them. Ca2+-imaging revealed a ghrelin-triggered increase of the Ca2+-content in GT1-7 neurons kept in a steroid-free medium, which was abolished by GHS-R-antagonist JMV2959 (10µM) suggesting direct action of ghrelin. Estradiol (1nM) eliminated the ghrelin-evoked rise of Ca2+-content, indicating the estradiol dependency of the process. Expression of GHS-R mRNA was then confirmed in GnRH-GFP neurons of transgenic mice by single cell RT-PCR. Firing rate and burst frequency of GnRH-GFP neurons were lower in metestrous than proestrous mice. Ghrelin (40nM-4μM) administration resulted in a decreased firing rate and burst frequency of GnRH neurons in metestrous, but not in proestrous mice. Ghrelin also decreased the firing rate of GnRH neurons in males. The ghrelin-evoked alterations of the firing parameters were prevented by JMV2959, supporting the receptor-specific actions of ghrelin on GnRH neurons. In metestrous mice, ghrelin decreased the frequency of GABAergic mPSCs in GnRH neurons. Effects of ghrelin were abolished by the cannabinoid receptor type-1 (CB1) antagonist AM251 (1µM) and the intracellularly applied DAG-lipase inhibitor THL (10µM), indicating the involvement of retrograde endocannabinoid signaling. These findings demonstrate that ghrelin exerts direct regulatory effects on GnRH neurons via GHS-R, and modulates the firing of GnRH neurons in an ovarian-cycle and endocannabinoid dependent manner.  相似文献   

9.

Background

Serotonergic system participates in a wide range of physiological processes and behaviors, but its role is generally considered as modulatory and noncrucial, especially concerning life-sustaining functions. We recently created a transgenic mouse line in which a functional deficit in serotonin homeostasis due to excessive serotonin autoinhibition was produced by inducing serotonin 1A receptor (Htr1a) overexpression selectively in serotonergic neurons (Htr1a raphe-overexpressing or Htr1aRO mice). Htr1aRO mice exhibit episodes of autonomic dysregulation, cardiovascular crises and death, resembling those of sudden infant death syndrome (SIDS) and revealing a life-supporting role of serotonergic system in autonomic control. Since midbrain serotonergic neurons are chemosensitive and are implicated in arousal we hypothesized that their chemosensitivity might be impaired in Htr1aRO mice.

Principal findings

Loose-seal cell-attached recordings in brainstem slices revealed that serotonergic neurons in dorsal raphe nucleus of Htr1aRO mice have dramatically reduced responses to hypercapnic challenge as compared with control littermates. In control mice, application of 9% CO2 produced an increase in firing rate of serotonergic neurons (0.260±0.041 Hz, n = 20, p = 0.0001) and application of 3% CO2 decreased their firing rate (−0.142±0.025 Hz, n = 17, p = 0.0008). In contrast, in Htr1aRO mice, firing rate of serotonergic neurons was not significantly changed by 9% CO2 (0.021±0.034 Hz, n = 16, p = 0.49) and by 3% CO2 (0.012±0.046 Hz, n = 12, p = 0.97).

Conclusions

Our findings support the hypothesis that chemosensitivity of midbrain serotonergic neurons provides a physiological mechanism for arousal responses to life-threatening episodes of hypercapnia and that functional impairment, such as excessive autoinhibition, of midbrain serotonergic neuron responses to hypercapnia may contribute to sudden death.  相似文献   

10.
Group II metabotropic glutamate receptors (mGluRs) couple to the inhibitory G-protein Gi. The group II mGluRs include two subtypes, mGlu2 and mGlu3, and their pharmacological activation produces analgesic effects in inflammatory and neuropathic pain states. However, the specific contribution of each one of the two subtypes has not been clarified due to the lack of selective orthosteric ligands that can discriminate between mGlu2 and mGlu3 subtypes. In this study we used mGlu2 or mGlu3 knock-out mice to dissect the specific role for these two receptors in the endogenous control of inflammatory pain and their specific contribution to the analgesic activity of mixed mGlu2/3 receptor agonists. Our results showed that mGlu2-/- mice display a significantly greater pain response compared to their wild type littermates. Interestingly the increased pain sensitivity in mGlu2-/- mice occurred only in the second phase of the formalin test. No differences were observed in the first phase. In contrast, mGlu3-/- mice did not significantly differ from their wild type littermates in either phase of the formalin test. When systemically injected, a single administration of the mGlu2/3 agonist, LY379268 (3 mg/kg, ip), showed a significant reduction of both phases in wild-type mice and in mGlu3-/- but not in mGlu2-/- mice. However tolerance to the analgesic effect of LY379268 (3 mg/kg, ip) in mGlu3-/- mice developed following 5 consecutive days of injection. Taken together, these results demonstrate that: (i) mGlu2 receptors play a predominant role over mGlu3 receptors in the control of inflammatory pain in mice; (ii) the analgesic activity of mixed mGlu2/3 agonists is entirely mediated by the activation of the mGlu2 subtype and (iii) the development of tolerance to the analgesic effect of mGlu2/3 agonists develops despite the lack of mGlu3 receptors.  相似文献   

11.
The current investigations on social stress primarily point to the negative health consequences of being in a stressful social hierarchy. The repetitive nature of such stressors seems to affect behavioral response to pain both in rodents and humans. Moreover, a large discrepancy in the possibility of social stresses affecting pain perception in the two genders exists. The present study examined the effect of chronic social stress on nociceptive responses of both sexes by implementing of food deprivation, food intake inequality and unstable social status (cage-mate change every 3 days) for a period of 14 days in 96 Balb/c mice. In this regard we injected 20 µl formalin 2% into the plantar surface of hind paw at the end of stress period and scored pain behaviors of all subjects, then serum concentrations of proinflammatory cytokines were measured. Our results showed that there was significant difference in chronic phase of formalin test following implementation of food deprivation and inequality (P<0.05) as compared to control group, so that pain perception was decreased considerably and this decline in inequality exposed subjects was well above isolated ones (P<0.05); whereas unstable social situation did not affect pain perception. Moreover, IL-1 and IL-6 concentrations in serum of stressed mice of both genders were well above control group (p<0.05). Finally, despite chronic pain perception in control and unstable male subjects was larger than females; the decrease of chronic pain perception in male stressed animals (poverty and inequality experienced subjects) was much more than stressed females. These results revealed that although food deprivation and social inequality can induce hypoalgesia, some socioeconomic situations like social instability don''t affect pain sensation, whereas there were similar increases of proinflammatory cytokines level in all socially stressed subjects. In addition, males display larger hypoalgesic responses to inequality as compared with females.  相似文献   

12.
Zhang Y  Gong K  Zhou W  Shao G  Li S  Lin Q  Li J 《Neuro-Signals》2011,19(3):142-150
Protein kinase C (PKC) has been widely reported to participate in somatic pain; however, its role in visceral pain remains largely unclear. Using a colon inflammatory pain model by intracolonic injection of formalin in rats, the present study was to examine the role of PKC in visceral pain and determine which subtypes may be involved. The colon pain behavior induced by formalin injection could be enhanced by intrathecal pretreatment with a PKC activator (PMA), and alleviated by a PKC inhibitor (H-7). Wide dynamic range (WDR) neurons in the L6-S1 spinal dorsal horn that were responsive to colorectal distension were recorded extracellularly. It was found that neuronal activity was greatly increased following formalin injection. Microdialysis of PMA near the recorded neuron in the spinal dorsal horn facilitated the enhanced responsive activity induced by formalin injection, while H-7 inhibited significantly the enhanced response induced by formalin injection. Western blot analysis revealed that membrane translocation of PKC-γ and PKC-ε, but not other subtypes, in the spinal cord was obviously increased following formalin injection. Therefore, our findings suggest that PKC is actively involved in the colon pain induced by intracolonic injection of formalin. PKC-γ and PKC-ε subtypes seem to significantly contribute to this process.  相似文献   

13.
While genetic evidence shows that the Nav1.7 voltage-gated sodium ion channel is a key regulator of pain, it is unclear exactly how Nav1.7 governs neuronal firing and what biophysical, physiological, and distribution properties of a pharmacological Nav1.7 inhibitor are required to produce analgesia. Here we characterize a series of aminotriazine inhibitors of Nav1.7 in vitro and in rodent models of pain and test the effects of the previously reported “compound 52” aminotriazine inhibitor on the spiking properties of nociceptors in vivo. Multiple aminotriazines, including some with low terminal brain to plasma concentration ratios, showed analgesic efficacy in the formalin model of pain. Effective concentrations were consistent with the in vitro potency as measured on partially-inactivated Nav1.7 but were far below concentrations required to inhibit non-inactivated Nav1.7. Compound 52 also reversed thermal hyperalgesia in the complete Freund’s adjuvant (CFA) model of pain. To study neuronal mechanisms, electrophysiological recordings were made in vivo from single nociceptive fibers from the rat tibial nerve one day after CFA injection. Compound 52 reduced the spontaneous firing of C-fiber nociceptors from approximately 0.7 Hz to 0.2 Hz and decreased the number of action potentials evoked by suprathreshold tactile and heat stimuli. It did not, however, appreciably alter the C-fiber thresholds for response to tactile or thermal stimuli. Surprisingly, compound 52 did not affect spontaneous activity or evoked responses of Aδ-fiber nociceptors. Results suggest that inhibition of inactivated states of TTX-S channels, mostly likely Nav1.7, in the peripheral nervous system produces analgesia by regulating the spontaneous discharge of C-fiber nociceptors.  相似文献   

14.
GABAergic signaling is central to the function of the thalamus and has been traditionally attributed primarily to the nucleus reticularis thalami (nRT). Here we present a GABAergic pathway, distinct from the nRT, that exerts a powerful inhibitory effect selectively in higher-order thalamic relays of the rat. Axons originating in the anterior pretectal nucleus (APT) innervated the proximal dendrites of relay cells via large GABAergic terminals with multiple release sites. Stimulation of the APT in an in vitro slice preparation revealed a GABA(A) receptor-mediated, monosynaptic IPSC in relay cells. Activation of presumed single APT fibers induced rebound burst firing in relay cells. Different APT neurons recorded in vivo displayed fast bursting, tonic, or rhythmic firing. Our data suggest that selective extrareticular GABAergic control of relay cell activity will result in effective, state-dependent gating of thalamocortical information transfer in higher-order but not in first-order relays.  相似文献   

15.
Enhanced activity of the dopaminergic system originating in the ventral tegmental area is implicated in addictive and psychiatric disorders. Burst firing increases dopamine levels at the synapse to signal novelty and salience. We have previously reported a calcium-dependent burst firing of dopamine cells mediated by L-type channels following cholinergic stimulation; this paper describes a cellular mechanism resulting in burst firing following L-type channel activation. Calcium influx through L-type channels following FPL 64176 or (S)-(-)-Bay K8644 induced burst firing independent of dopamine, glutamate, or calcium from the internal stores. Burst firing induced as such was completely blocked by the substrate site protein kinase C (PKC) inhibitor chelerythrine but not by the diacylglycerol site inhibitor calphostin C. Western blotting analysis showed that FPL 64176 and (S)-(-)-Bay K8644 increased the cleavage of PKC to generate protein kinase M (PKM) and the specific calpain inhibitor MDL28170 blocked this increase. Prevention of PKM production by inhibiting calpain or depleting PKC blocked burst firing induction whereas direct loading of purified PKM into cells induced burst firing. Activation of the N-methyl-D-aspartic acid type glutamate or cholinergic receptors known to induce burst firing increased PKM expression. These results indicate that calcium influx through L-type channels activates a calcium-dependent protease that cleaves PKC to generate constitutively active and labile PKM resulting in burst firing of dopamine cells, a pathway that is involved in glutamatergic or cholinergic modulation of the central dopamine system.  相似文献   

16.

Background

The phenotype of large diameter sensory afferent neurons changes in several models of neuropathic pain. We asked if similar changes also occur in “functional” pain syndromes.

Methodology/Principal Findings

Acidic saline (AS, pH 4.0) injections into the masseter muscle were used to induce persistent myalgia. Controls received saline at pH 7.2. Nocifensive responses of Experimental rats to applications of Von Frey Filaments to the masseters were above control levels 1–38 days post-injection. This effect was bilateral. Expression of c-Fos in the Trigeminal Mesencephalic Nucleus (NVmes), which contains the somata of masseter muscle spindle afferents (MSA), was above baseline levels 1 and 4 days after AS. The resting membrane potentials of neurons exposed to AS (n = 167) were hyperpolarized when compared to their control counterparts (n = 141), as were their thresholds for firing, high frequency membrane oscillations (HFMO), bursting, inward and outward rectification. The amplitude of HFMO was increased and spontaneous ectopic firing occurred in 10% of acid-exposed neurons, but never in Controls. These changes appeared within the same time frame as the observed nocifensive behaviour. Ectopic action potentials can travel centrally, but also antidromically to the peripheral terminals of MSA where they could cause neurotransmitter release and activation of adjacent fibre terminals. Using immunohistochemistry, we confirmed that annulospiral endings of masseter MSA express the glutamate vesicular transporter VGLUT1, indicating that they can release glutamate. Many capsules also contained fine fibers that were labelled by markers associated with nociceptors (calcitonin gene-related peptide, Substance P, P2X3 receptors and TRPV1 receptors) and that expressed the metabotropic glutamate receptor, mGluR5. Antagonists of glutamatergic receptors given together with the 2nd injection of AS prevented the hypersensitivity observed bilaterally but were ineffective if given contralaterally.

Conclusions/Significance

Low pH leads to changes in several electrical properties of MSA, including initiation of ectopic action potentials which could propagate centrally but could also invade the peripheral endings causing glutamate release and activation of nearby nociceptors within the spindle capsule. This peripheral drive could contribute both to the transition to, and maintenance of, persistent muscle pain as seen in some “functional” pain syndromes.  相似文献   

17.
D-Serine, an endogenous coagonist of the N-methyl-D-aspartate receptor (NMDAR), is widely distributed in the central nervous system and is synthesized from L-serine by serine racemase (SR). NMDAR plays an important role in pain processing including central sensitization that eventually causes hyperalgesia. To elucidate the roles of D-serine and SR in pain transmission, we evaluated the behavioral changes and spinal nociceptive processing induced by formalin using SR knock-out (KO) mice. We found that SR is mainly distributed in lamina II of the dorsal horn of the spinal cord in wild-type (WT) mice. Although the formalin injected subcutaneously induced the biphasic pain response of licking in SR-KO and WT mice, the time spent on licking was significantly longer in the SR-KO mice during the second phase of the formalin test. The number of neurons immunopositive for c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK), which are molecular pain markers, in laminae I-II of the ipsilateral dorsal horn was significantly larger in the SR-KO mice. Immunohistochemical staining revealed that the distribution of SR changed from being broad to being concentrated in cell bodies after the formalin injection. On the other hand, the expression level of the cytosolic SR in the ipsilateral dorsal horn significantly decreased. Oral administration of 10 mM D-serine in drinking water for one week cancelled the difference in pain behaviors between WT and SR-KO mice in phase 2 of the formalin test. These findings demonstrate that the SR-KO mice showed increased sensitivity to inflammatory pain and the WT mice showed translocation of SR and decreased SR expression levels after the formalin injection, which suggest a novel antinociceptive mechanism via SR indicating an important role of D-serine in pain transmission.  相似文献   

18.

The nociceptive effect of Levetiracetam (LEV) on the expression of 5-HT1A and 5-HT7 receptors found in the thalamus was evaluated. Thirty-six male rats (Wistar) were randomized into six groups: in the Control group without treatment; LEV50 group LEV was administered in a single dose of 50 mg/kg i.g.; in the LEV300 group LEV dose of 300 mg/kg i.g.; in the FORMALIN group the formalin test was performed; in the LEV50/FORMALIN group LEV dose of 50 mg/kg i.g and the formalin test was performed; in the LEV300/FORMALIN group LEV dose of 300 mg/kg i.g and the formalin test was performed, subsequently the thalamus was dissected in all groups. In the formalin tests LEV exhibited an antinociceptive effect in the LEV300/FORMALIN group (p?<?0.05) and a pronociceptive effect in the LEV50/FORMALIN group (p?<?0.001). The results obtained by Real-time PCR confirmed the expression of the 5-HT1A and 5-HT7 receptors in the thalamus, 5-HT1A receptors increased significantly in the FORMALIN group and the LEV300/FORMALIN group (p?<?0.05). 5-HT7 receptors are only over expressed at a dose of 300 mg/Kg of LEV with formalin (p?<?0.05). This suggests that LEV modulates the sensation of pain by controlling the expression of 5-HT1A and 5-HT7 in a tonic pain model, and that changes in the expression of 5-HT1A and 5-HT7 receptors are associated with the sensation of pain, furthermore its possibility to be used in clinical treatments for pain.

  相似文献   

19.
Kim D  Song I  Keum S  Lee T  Jeong MJ  Kim SS  McEnery MW  Shin HS 《Neuron》2001,31(1):35-45
T-type Ca(2+) currents have been proposed to be involved in the genesis of spike-and-wave discharges, a sign of absence seizures, but direct evidence in vivo to support this hypothesis has been lacking. To address this question, we generated a null mutation of the alpha(1G) subunit of T-type Ca(2+) channels. The thalamocortical relay neurons of the alpha(1G)-deficient mice lacked the burst mode firing of action potentials, whereas they showed the normal pattern of tonic mode firing. The alpha(1G)-deficient thalamus was specifically resistant to the generation of spike-and-wave discharges in response to GABA(B) receptor activation. Thus, the modulation of the intrinsic firing pattern mediated by alpha(1G) T-type Ca(2+) channels plays a critical role in the genesis of absence seizures in the thalamocortical pathway.  相似文献   

20.
In mice behavioral response to pain is modulated by social status. Recently, social context also has been shown to affect pain sensitivity. In our study, we aimed to investigate the effects of interaction between status and social context in dyads of outbred CD-1 male mice in which the dominance/submission relationship was stable. Mice were assessed for pain response in a formalin (1% concentration) test either alone (individually tested-IT), or in pairs of dominant and subordinate mice. In the latter condition, they could be either both injected (BI) or only one injected (OI) with formalin. We observed a remarkable influence of social context on behavioral response to painful stimuli regardless of the social status of the mice. In the absence of differences between OI and IT conditions, BI mice exhibited half as much Paw-licking behavior than OI group. As expected, subordinates were hypoalgesic in response to the early phase of the formalin effects compared to dominants. Clear cut-differences in coping strategies of dominants and subordinates appeared. The former were more active, whereas the latter were more passive. Finally, analysis of behavior of the non-injected subjects (the observers) in the OI dyads revealed that dominant observers were more often involved in Self-grooming behavior upon observation of their subordinate partner in pain. This was not the case for subordinate mice observing the pain response of their dominant partner. In contrast, subordinate observers Stared at the dominant significantly more frequently compared to observer dominants in other dyads. The observation of a cagemate in pain significantly affected the observer''s behavior. Additionally, the quality of observer''s response was also modulated by the dominance/submission relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号