首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An active coping style displayed under stress – which involves proactive investigatory responses toward environmental threats – has been associated with reduced vulnerability to psychiatric illness. However, the neurobiological determinants of coping styles are not well understood. When rats are exposed to a naturalistic stressor (cat fur) in a group, some individuals in the group show robust active investigation of the stimulus while others show a passive response involving retreat, immobility and close aggregation with conspecifics. Here we explored endocrine and epigenetic correlates of these contrasting coping styles. Male Wistar rats (n = 48) were exposed to cat fur in groups of 4 and the passive and active responders were identified and assessed for endocrine and epigenetic differences. Three days after the final cat fur exposure, active responders had substantially lower plasma levels of corticosterone and progesterone than passive responders. Plasma and testicular testosterone levels did not differ between active and passive responders. Active responders had markedly less methylation of the AVP CGCG promoter region located at base 4970 in the posterodorsal region of the medial amygdala but did not differ in the methylation status of the CCGG sequence located at base 2243. This is in agreement with prior research suggesting that AVP and progesterone act in opposition within the medial amygdala to modulate stress-related behaviors. The present study reports striking endocrine and epigenetic differences between active and passive responders, providing insight into potential systems involved in the manifestation of differing coping styles.  相似文献   

2.
In many prey species aggregation of individuals is a defensive strategy commonly employed in response to predators and predator-related cues. However, very little work has explored this adaptive response in laboratory rats. It is known that individual rats show characteristic defensive responses to predator odors, such as hiding, avoidance, inhibition of foraging, feeding and reproduction, and risk assessment directed toward the odor source. However, whether these species-typical responses in individuals are altered in the presence of other conspecifics is yet to be characterized. The present study therefore examined the defensive response of groups of two rats (dyads) or four rats (quads) to two unconditioned stressors: bright ambient light and cat odor (a 2g ball of cat fur). The dyads and quads were formed from familiar cage mates and test sessions (20 min) occurred in a large open arena (1200 mm(2)) to which the rats had been extensively habituated under dark conditions. The results showed that when quads of rats were exposed to either cat odor or bright light in this arena, they showed characteristic increases in close social proximity, termed "huddling". A tight grouping of 3 (triplet) or 4 (quad) rats was commonly seen in response to cat fur, while triplets were more commonly seen in response to bright light. Interestingly there was no evidence for increased social proximity in dyads exposed to either stressor, only in quads. However, cat odor caused other signs of fear (such as decreased locomotor activity and increased defecation) in both quads and dyads. It is concluded that huddling is a rodent defensive strategy in rats when anxiogenic stimuli are encountered by larger groups of rats.  相似文献   

3.
This study investigated a possible role for ventral hippocampal corticotropin-releasing factor (CRF) in modulating both unconditioned and conditioned defensive behaviors by examining the effects of pre-training ventral hippocampal ovine-CRF (oCRF) or acidic-astressin ([Glu11,16]Ast) microinfusions in male Long-Evans hooded rats exposed to various threat stimuli including the elevated plus-maze (EPM) (oCRF), cat odor (oCRF and [Glu11,16]Ast) and a live cat ([Glu11,16]Ast). Unconditioned defensive behaviors were assessed during threat exposure, while conditioned defensive behaviors were assessed in each predator context 24 h after the initial threat encounter. Pre-training infusions of the CRF1 and CRF2 receptor agonist oCRF significantly increased defensive behaviors during both the unconditioned and conditioned components of the cat odor test, as well as exposure to the EPM. In contrast to the behavioral effects of oCRF microinfusions, the CRF1 and CRF2 receptor antagonist [Glu11,16]Ast significantly decreased defensive behaviors during exposure to cat odor, while producing no discernible effects following a second injection in the cat exposure test. During conditioned test trials, pre-training infusions of [Glu11,16]Ast also significantly reduced defensive behaviors during re-exposure to both predator contexts. These results suggest a specific role for ventral hippocampal CRF receptors in modulating anxiety-like behaviors in several ethologically relevant animal models of defense.  相似文献   

4.
Predation is a strong selective force, and prey species may show specific adaptations that allow recognition, avoidance, and defense against predators. Facing a situation of predatory risk, anxiety constitutes a reaction of adaptive value, allowing to evaluate the potential risk of this encounter as well as to generate a physiological and behavioral response. Previous studies in the subterranean rodent Ctenomys talarum revealed that exposure to predator odors (urine or fur) generates an anxiety state and induces behavioral changes. However, no differences between the responses generated by both odor sources were observed, although fur odors may indicate a higher level of predatory immanence. Therefore, the aim of this study was to evaluate the behavioral and physiological responses of C. talarum to different intensities of predator odors (urine and fur) and to the repeated exposition to the same odorous stimulus. When comparing the highest behavioral effects elicited by both predatory odors on C. talarum, our study supports the assumption that fur odors are more anxiogenic than urine, while the former provoked significant changes in the distance traveled, the number of arm entries and time in transparent arms in the elevated plus maze; cat urine only caused slight changes on those behavioral parameters. Furthermore, we also found that the intensity of natural predator odor presented to tuco‐tucos has a role on the appearance of defensive behaviors, although an amount‐dependent relationship between predator odor and anxiety levels was not observed. Finally, while individuals exposed for 1 day to fur odor displayed an evident anxiety state, those exposed repeatedly for 5 consecutive days did not differ with the control group in their behavioral response, indicating a clear habituation to the predatory cue. In our intensity and habituation experiments, we did not find differences in the measured physiological parameters among control individuals, exposed to different cues intensity (urine and fur odor) and exposed only once or for 5 days to fur odor. These results provide valuable evidence that the types of predatory odor, along with the frequency of exposition, are important determinants of the appearance, strength, and extinction of defensive behaviors in the subterranean rodent C. talarum.  相似文献   

5.
Spatial learning, the cognitive ability that allows animals to efficiently locate food, partners or avoid predators, can be affected by various factors such as stress. Stressors represent a threat to the animal's homeostasis and trigger a set of physiological and behavioral changes known as stress response. The herbivorous rodent Ctenomys talarum (tuco‐tuco) inhabits underground complex gallery systems. Dispersal as well as food collection occurs on the surface, where they are exposed to terrestrial and aerial predators. We evaluated the effect of a natural stress factor, predation, on spatial learning of C. talarum. Additionally, we collected data on neutrophil/lymphocyte ratio, hematocrit, blood glucose, and plasma cortisol to assess physiological levels of stress. The acute exposure to direct cues indicating the presence of a predator (immobilization + cat urine) increased the time needed to reach the goal in a longitudinal labyrinth. The number of errors also increased albeit the difference was only marginally significant. The chronic exposure to predator cues (immobilization, cat urine, and cat fur) presented in an unpredictable order significantly increased both time and errors committed by tuco‐tucos during learning trials in the labyrinth. Results show the strong impact of predatory stress on the spatial abilities of C. talarum, a key cognitive process involved in most of their vital activities. They also highlight the importance of investigating wild species as regards the development of antipredatory defensive behaviors that contribute both to the avoidance of deleterious consequences of a direct attack and the influence on food search and mate localization performance.  相似文献   

6.
Predator odors have been found to induce unconditioned fear in adult animals and provide the opportunity to study the mechanisms underlying unlearned and learned fear. Predator threats change across an animal's lifetime, as do abilities that enable the animal to learn or engage in different defensive behaviors. Thus, the objective of this study was to determine the combination of factors that successfully induce unlearned fear to predator odor across development. Infant, juvenile, adolescent, and adult rats were exposed to one of the three odor stimuli (control odor, cat urine, or cat fur) in either a small or large chamber. Though all ages displayed fear-related behavior to cat odors, differences were reflected only in freezing behavior and not, as expected, risk-assessment. Infant and juvenile animals also increased freezing to cat urine compared to the control odor, possibly because these age groups possess limited defensive options to cope with threat and so may respond with freezing to all predator stimuli. Unexpectedly, chamber size had no effect on either freezing or risk-assessment in this study. Once the parameters of unconditioned fear are understood, they can be exploited to develop a learning paradigm to predator odors that could be used in early life.  相似文献   

7.
House PK  Vyas A  Sapolsky R 《PloS one》2011,6(8):e23277
Cat odors induce rapid, innate and stereotyped defensive behaviors in rats at first exposure, a presumed response to the evolutionary pressures of predation. Bizarrely, rats infected with the brain parasite Toxoplasma gondii approach the cat odors they typically avoid. Since the protozoan Toxoplasma requires the cat to sexually reproduce, this change in host behavior is thought to be a remarkable example of a parasite manipulating a mammalian host for its own benefit. Toxoplasma does not influence host response to non-feline predator odor nor does it alter behavior on olfactory, social, fear or anxiety tests, arguing for specific manipulation in the processing of cat odor. We report that Toxoplasma infection alters neural activity in limbic brain areas necessary for innate defensive behavior in response to cat odor. Moreover, Toxoplasma increases activity in nearby limbic regions of sexual attraction when the rat is exposed to cat urine, compelling evidence that Toxoplasma overwhelms the innate fear response by causing, in its stead, a type of sexual attraction to the normally aversive cat odor.  相似文献   

8.
The effect of the ACTH(4-10) analog Semax on immediate early gene c-Fos expression was studied in Wistar rats with high and low resistance to emotional stress under the usual conditions and during psychoemotional loading. Fos-immunoreactive cells in the were counted automatically with the help of a computer. It was shown that under the usual conditions the intraperitoneal Semax injection induced immediate early gene c-Fos expression in the lateral septal region in rats predisposed to emotional stress and in the paraventricular hypothalamus in rats of both groups. Preliminary Semax injection decreased the stress-induced c-Fos expression in the paraventricular hypothalamus and medial septum in rats predisposed to emotional stress and tended to reduce the number of stress-induced c-Fos-immunopositive cells in the lateral septum and basolateral amygdala in both groups of animals. The obtained data suggest that Semax differently affects the immediate early c-Fos gene expression in the brain of rats resistant and predisposed to emotional stress and this effect reflects the antistressor properties of the regulatory peptide.  相似文献   

9.
A single exposure to a cat or cat odors has been reported by some groups to induce contextual and auditory fear conditioning and long-lasting changes in anxiety-like behaviour, but there is no evidence for parallel changes in biological stress markers. In the present study we demonstrated in male rats that exposure to a novel environment containing a cloth impregnated with cat fur odor resulted in avoidance of the odor, lower levels of activity and higher pituitary-adrenal (PA) response as compared to those exposed to the novel environment containing a clean cloth, suggesting increased levels of stress in the former animals. When re-exposed 9 days later to the same environment with a clean cloth, previously cat fur exposed rats again showed avoidance of the cloth area and lower levels of activity, suggesting development of contextual fear conditioning, which again was associated with a higher PA activation. In contrast, unaltered both anxiety-like behaviour and PA responsiveness to an elevated plus-maze were found 7 days after cat odor exposure. It is concluded that: (i) PA activation is able to reflect both the stressful properties of cat fur odor and odor-induced contextual fear conditioning; (ii) development of cat odor-induced contextual fear conditioning is independent of the induction of long-lasting changes in anxiety-like behaviour; and (iii) greater PA activation during exposure to the odor context is not explained by non-specific sensitization of the PA axis caused by previous exposure to cat fur odor.  相似文献   

10.
1. Within-population infectious disease dynamics depend on multiple factors, including the ability of hosts to mount an effective immune response. These immune responses can be highly plastic, responding to pathogen risk, as well as the ecological context in which pathogens are encountered. 2. High conspecific density can stimulate immune activity, and recent research suggests that predators can cause indirect protective effects in their prey through the induction of increased immune responses. Comparatively little work, however, has investigated whether exposure to potentially cannibalistic conspecifics, representing both increased density and predatory pressures, will have similar effects on immune expression. 3. Using dragonfly larvae, the present study investigated whether exposure to potentially cannibalistic conspecifics altered the melanisation of simulated parasites. 4. Increased levels of melanisation were found in larvae regardless of whether that conspecific had recently engaged in cannibalism or not. Melanisation also increased as conspecific density increased, even if the conspecifics present were small, and therefore unlikely to pose a cannibalism threat. 5. The findings obtained in the present study indicate that conspecific presence is sufficient to affect immune responses in these insects even though they are relatively solitary compared with the phase-polyphenic taxa typically associated with density-dependent prophylaxis. Because melanisation is also important for wound healing, we suggest that the increased melanin response observed with increased conspecific density might act to induce heightened immunity when faced with potentially increased risk of infection, and also facilitate wound healing under threat of predation/cannibalism.  相似文献   

11.
Prey species may reduce the likelihood of injury or death by engaging in defensive behavior but often incur costs related to decreased foraging success or efficiency. To lessen these costs, prey may adjust the intensity or type of antipredator behavior according to the nature of the perceived threat. We evaluated the potential for threat‐sensitive responses by Allegheny Mountain dusky salamanders (Desmognathus ochrophaeus) exposed to chemical stimuli associated with predation by asking three questions: (1) Do individual D. ochrophaeus respond to chemical cues in a threat‐sensitive manner? (2) Do salamanders exhibit the same pattern of behavioral response while foraging? and (3) Is foraging efficiency reduced when focal individuals are exposed to stimuli from predators or predation events? In our first experiment, we evaluated salamander chemosensory movements (nose‐taps), locomotor activity (steps), and edge behavior in response to chemical stimuli from disturbed and injured conspecifics as well as predatory Gyrinophilus porphyriticus and found that individual D. ochrophaeus show a significant graded increase in nose‐taps when exposed to cues from conspecifics and a reduction in activity when exposed to the predator. In our second experiment, we again observed salamander responses to the same chemical stimuli but in this instance added five Drosophila prey to the test dishes. We found that salamanders exhibited a similar pattern of response to the chemical stimuli in the presence of prey, showing a graded increase in nose‐taps to cues from conspecifics and a reduction in activity when exposed to the predator. However, foraging efficiency (i.e. the proportion of successful strikes) did not vary significantly among treatments. Our data show that individual D. ochrophaeus detect and differentially respond to chemical stimuli associated with predation, but do not significantly reduce foraging efficiency. Overall, the type and relative intensity of these responses is largely unaffected by the presence of potential prey.  相似文献   

12.
Behavioral inhibition (BI) is an adaptive defensive response to threat; however, children who display extreme BI as a stable trait are at risk for development of anxiety disorders and depression. The present study validates a rodent model of BI based on an ethologically relevant predator exposure paradigm. We show that individual differences in rat BI are stable and trait‐like from adolescence into adulthood. Using in situ hybridization to quantify expression of the immediate early genes homer1a and fos as measures of neuronal activation, we show that individual differences in BI are correlated with the activation of various stress‐responsive brain regions that include the paraventricular nucleus of the hypothalamus and CA3 region of the hippocampus. Further supporting the concept that threat‐induced BI in rodents reflects levels of anxiety, we also show that BI is decreased by administration of the anxiolytic, diazepam. Finally, we developed criteria for identifying extreme BI animals that are stable in their expression of high levels of BI and also show that high BI (HBI) individuals exhibit maladaptive appetitive responses following stress exposure. These findings support the use of predator threat as a stimulus and HBI rats as a model to study mechanisms underlying extreme and stable BI in humans.  相似文献   

13.
14.
Total destruction of the septum, the dorsal hippocampus (DH), or the lesion of the DH combined with that of the medial septal nucleus in rats was shown to facilitate elaboration of conditioned avoidance responses in a shuttle-box due to an increase of general excitability of the animals, and to cause significant impairment of internal inhibition formation. Lesions of the medial or the lateral septal nuclei as well as a combined lesion of the DH and the lateral septal nucleus had no significant effect on conditioning and internal inhibition elaboration. Therefore the septo-hippocampal connections had different functional directions during active defensive behaviour.  相似文献   

15.
Animals failing to deter predation are eaten. Among the many deterrents to predation, antipredator behaviors are perhaps the most variable, ranging from active (fight or flight) to passive (immobility). We assessed variation in the expression of a passive defensive behavior, death‐feigning, in Plains Hog‐nosed Snakes (Heterodon nasicus) and predicted that intrinsic and extrinsic factors would influence the duration of this behavior and the latency to its onset. We simulated predatory attacks on 27 snakes encountered in the field, and analyzed the behavioral responses of snakes as a function of differences among individuals (sex and size) and environmental factors (temperature and microhabitat). Larger snakes death‐feigned for longer durations than smaller ones; this relationship was stronger for female snakes than for males. Death feints were initiated sooner when snakes were encountered at higher temperatures. Extrinsic factors had a greater influence on latency to death‐feigning behavior, whereas intrinsic factors more strongly influenced its duration. Because our results involved wild snakes, they provide an improved, highly relevant understanding of individual and environmental factors that regulate the expression of immobile defensive behavior. Furthermore, additional hypotheses can now be proposed that address the evolution of defensive behaviors that leave animals prone to attack.  相似文献   

16.
We and others have recently demonstrated that the pharmacological tolerance observed after prolonged exposure to plant and synthetic cannabinoids in adult individuals seems to have a pharmacodynamic basis, based on the observed down-regulation of cannabinoid receptors in the brain of cannabinoid-tolerant rats. However, we were unable to elicit a similar receptor down-regulation after a chronic exposure to anandamide, the first discovered endogenous cannabinoid, possibly because of its rapid metabolic breakdown in arachidonic acid and ethanolamine. The present study was designed to progress in these previous studies, by using R-methanandamide, a more stable analog, instead anandamide. In addition, we examined not only cannabinoid receptor binding, but also WIN-55,212-2-stimulated [35S]-GTPγS binding, by autoradiography, and cannabinoid receptor mRNA levels, by in situ hybridization. Results were as follows. The daily administration of R-methanandamide for a period of five days produced decreases in cannabinoid receptor binding in the lateral caudate-putamen, cerebellum, entopeduncular nucleus and substantia nigra. The remaining areas, the medial caudate-putamen, globus pallidus, cerebral cortex (layers I and VI), hippocampus (dentate gyrus and Ammon’s horn) and several limbic structures (nucleus accumbens, septum nuclei and basolateral amygdaloid nucleus), exhibited no changes in cannabinoid receptor binding. Similarly, the levels of cannabinoid receptor mRNA expression decreased in the lateral and medial caudate-putamen and in the CA1 and CA2 subfields of the Ammon’s horn in the hippocampus after the chronic exposure to R-methanandamide, whereas the remaining areas showed no changes. WIN-55,212-2-stimulated [35S]-GTPγS binding did not change in the lateral caudate-putamen, cerebral cortex (layer I), septum nuclei and hippocampal structures (dentate gyrus and Ammon’s horn) of animals chronically exposed to R-methanandamide, whereas a certain trend to decrease could be observed in the substantia nigra and deep layer (VI) of the cerebral cortex in these animals. In summary, as reported for other cannabinoid receptor agonists, the prolonged exposure of rats to R-methanandamide, a more stable analog of anandamide, was able to produce cannabinoid receptor-related changes in contrast with the absence of changes observed early with the metabolically labile anandamide. The observed changes exhibited an evident regional pattern with areas, such as basal ganglia, cerebellum and hippocampus, responding to chronic R-methanandamide treatment while regions, such as the cerebral cortex and limbic nuclei, not responding.  相似文献   

17.
In the near-natural conditions of a fluvarium in the River Frome, U.K., European minnows Phoxinus phoxinus displayed schooling preferences for familiar conspecifics. Schools were composed of 75% familiar fish. The minnows in this river co-occur with many piscivores, the most notable being the pike Esox Iucius . The preference for familiar shoalmates was not increased by the threat of predatory attack from a model pike, despite the antipredator benefits afforded to individual members of schools of familiar fish.  相似文献   

18.
The review summarizes the results of long-term studies on the role of the brain neurotransmitter serotonin in genetic predisposition to various types of defensive behavior. The involvement of the serotonergic brain system in the mechanisms of genetic control of both active and passive defensive responses has been established using silver foxes, Norway rats of S40 selection for low and high aggressiveness to humans, aggressive mice with genetic knockout of monoaminoxidase A, and S40 rats selected for predisposition to passive defensive response of freezing (catalepsy). The changes in the serotonergic 5-HT1A brain receptors of rats genetically predisposed to different strategies of defensive behavior were similar. However, the activity of the key enzyme of serotonin biosynthesis and the brain structures, in which serotonin metabolism was altered, significantly differed with regard to the preferred strategy. The conclusion was drawn that the 5-HT1A receptors and enzymes of serotonin metabolism in the brain are involved in implementing genetic control of defensive behavior. Expression of the 5-HT1A brain receptors was suggested to determine the levels of fear and anxiety and, consequently, the predisposition to defensive behavior, whereas the preferred strategy of defensive response (active or passive defensive) depends on genetically determined features of serotonin metabolism in the brain structures.  相似文献   

19.
We and others have recently demonstrated that the pharmacological tolerance observed after prolonged exposure to plant and synthetic cannabinoids in adult individuals seems to have a pharmacodynamic basis, based on the observed down-regulation of cannabinoid receptors in the brain of cannabinoid-tolerant rats. However, we were unable to elicit a similar receptor down-regulation after a chronic exposure to anandamide, the first discovered endogenous cannabinoid, possibly because of its rapid metabolic breakdown in arachidonic acid and ethanolamine. The present study was designed to progress in these previous studies, by using R-methanandamide, a more stable analog, instead anandamide. In addition, we examined not only cannabinoid receptor binding, but also WIN-55,212-2-stimulated [35S]-GTPγS binding, by autoradiography, and cannabinoid receptor mRNA levels, by in situ hybridization. Results were as follows. The daily administration of R-methanandamide for a period of five days produced decreases in cannabinoid receptor binding in the lateral caudate-putamen, cerebellum, entopeduncular nucleus and substantia nigra. The remaining areas, the medial caudate-putamen, globus pallidus, cerebral cortex (layers I and VI), hippocampus (dentate gyrus and Ammon’s horn) and several limbic structures (nucleus accumbens, septum nuclei and basolateral amygdaloid nucleus), exhibited no changes in cannabinoid receptor binding. Similarly, the levels of cannabinoid receptor mRNA expression decreased in the lateral and medial caudate-putamen and in the CA1 and CA2 subfields of the Ammon’s horn in the hippocampus after the chronic exposure to R-methanandamide, whereas the remaining areas showed no changes. WIN-55,212-2-stimulated [35S]-GTPγS binding did not change in the lateral caudate-putamen, cerebral cortex (layer I), septum nuclei and hippocampal structures (dentate gyrus and Ammon’s horn) of animals chronically exposed to R-methanandamide, whereas a certain trend to decrease could be observed in the substantia nigra and deep layer (VI) of the cerebral cortex in these animals. In summary, as reported for other cannabinoid receptor agonists, the prolonged exposure of rats to R-methanandamide, a more stable analog of anandamide, was able to produce cannabinoid receptor-related changes in contrast with the absence of changes observed early with the metabolically labile anandamide. The observed changes exhibited an evident regional pattern with areas, such as basal ganglia, cerebellum and hippocampus, responding to chronic R-methanandamide treatment while regions, such as the cerebral cortex and limbic nuclei, not responding.  相似文献   

20.
Popova NK 《Genetika》2004,40(6):770-778
The review summarizes the results of long-term studies on the role of the brain mediator serotonin and genetic predisposition to various types of defensive behavior. The involvement of the serotonergic brain system in the mechanisms of genetic control of both active and passive defensive responses has been established using silver foxes, Norway rats of S40 selection for low and high aggressiveness to humans, aggressive mice with genetic knockout of monoaminoxidase A, and S40 rats selected for predisposition to passive defensive response of freezing (catalepsy). The changes in the serotonergic 5-HT1A-brain receptors of rats genetically predisposed to different strategies of defensive behavior were similar. However, the activity of the key enzyme of serotonin biosynthesis and the brain structures, in which serotonin metabolism was altered, significantly differed with regard to the preferred strategy. The conclusion was drawn that the 5-HT1A-receptors and enzymes of serotonin metabolism in the brain are involved in implementing genetic control of defensive behavior. Expression of the 5-HT1A-brain receptors was suggested to determine the levels of fear and anxiety and, consequently, the predisposition to defensive behavior, whereas the preferred strategy of defensive response (active or passive defensive) depends on genetically determined features of serotonin metabolism in the brain structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号