首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

By using hypoxia-inducible factor-1 alpha conditional knockout (HIF-1α CKO) mice and a dry eye (DE) mouse model, we aimed to determine the role played by delta-like ligand 4 (Dll4)/Notch signaling and HIF-1α in the lymphangiogenesis of lacrimal glands (LGs).

Methods

C57BL/6 mice were housed in a controlled-environment chamber for DE induction. During DE induction, the expression level of Dll4/Notch signaling and lymphangiogenesis in LGs was measured by quantitative RT-PCR, immunoblot, and immunofluorescence staining. Next, lymphangiogenesis was measured after Dll4/Notch signal inhibition by anti-Dll4 antibody or γ-secretase inhibitor. Using HIF-1α CKO mice, the expression of Dll4/Notch signaling and lymphangiogenesis in LGs of DE-induced HIF-1α CKO mice were assessed. Additionally, the infiltration of CD45+ cells in LGs was assessed by immunohistochemical (IHC) staining and flow cytometry for each condition.

Results

DE significantly upregulated Dll4/Notch and lymphangiogenesis in LGs. Inhibition of Dll4/Notch significantly suppressed lymphangiogenesis in LGs. Compared to wild-type (WT) mice, DE induced HIF-1α CKO mice showed markedly low levels of Dll4/Notch and lymphangiogenesis. Inhibition of lymphangiogenesis by Dll4/Notch suppression resulted in increased CD45+ cell infiltration in LGs. Likewise, CD45+ cells infiltrated more in the LGs of HIF-1α CKO DE mice than in non-DE HIF-1α CKO mice.

Conclusions

Dll4/Notch signaling and HIF-1α are closely related to lymphangiogenesis in DE-induced LGs. Lymphangiogenesis stimulated by Dll4/Notch and HIF-1α may play a role in protecting LGs from DE-induced inflammation by aiding the clearance of immune cells from LGs.  相似文献   

2.

Background

Cyanosis and myocardial hypertrophy frequently occur in combination. Hypoxia or cyanosis can be potent inducers of angiogenesis, regulating the expression of hypoxia-inducible factors (HIF), vascular endothelial growth factors (VEGF), and VEGF receptors (VEGFR-1 and 2); in contrast, pressure overload hypertrophy is often associated with impaired pro-angiogenic signaling and decreased myocardial capillary density. We hypothesized that the physiological pro-angiogenic response to cyanosis in the hypertrophied myocardium is blunted through differential HIF and VEGF-associated signaling.

Methods and Results

Newborn rabbits underwent aortic banding and, together with sham-operated littermates, were transferred into a hypoxic chamber (FiO2 = 0.12) at 3 weeks of age. Control banded or sham-operated rabbits were housed in normoxia. Systemic cyanosis was confirmed (hematocrit, arterial oxygen saturation, and serum erythropoietin). Myocardial tissue was assayed for low oxygen concentrations using a pimonidazole adduct. At 4 weeks of age, HIF-1α and HIF-2α protein levels, HIF-1α DNA-binding activity, and expression of VEGFR-1, VEGFR-2, and VEGF were determined in hypoxic and normoxic rabbits. At 6 weeks of age, left-ventricular capillary density was assessed by immunohistochemistry. Under normoxia, capillary density was decreased in the banded rabbits compared to non-banded littermates. As expected, non-hypertrophied hearts responded to hypoxia with increased capillary density; however, banded hypoxic rabbits demonstrated no increase in angiogenesis. This blunted pro-angiogenic response to hypoxia in the hypertrophied myocardium was associated with lower HIF-2α and VEGFR-2 levels and increased HIF-1α activity and VEGFR-1 expression. In contrast, non-hypertrophied hearts responded to hypoxia with increased HIF-2α and VEGFR-2 expression with lower VEGFR-1 expression.

Conclusion

The participation of HIF-2α and VEGFR-2 appear to be required for hypoxia-stimulated myocardial angiogenesis. In infant rabbit hearts with pressure overload hypertrophy, this pro-angiogenic response to hypoxia is effectively uncoupled, apparently in part due to altered HIF-mediated signaling and VEGFR subtype expression.  相似文献   

3.

Background

Pathological angiogenesis plays an essential role in tumor aggressiveness and leads to unfavorable prognosis. The aim of this study is to detect the potential role of Retinoblastoma binding protein 2 (RBP2) in the tumor angiogenesis of non-small cell lung cancer (NSCLC).

Methods

Immunohistochemical staining was used to detect the expression of RBP2, hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and CD34. Two pairs of siRNA sequences and pcDNA3-HA-RBP2 were used to down-regulate and up-regulate RBP2 expression in H1975 and SK-MES-1 cells. An endothelial cell tube formation assay, VEGF enzyme-linked immunosorbent assay, real-time PCR and western blotting were performed to detect the potential mechanisms mediated by RBP2 in tumor angiogenesis.

Results

Of the 102 stage I NSCLC specimens analyzed, high RBP2 protein expression is closely associated with tumor size (P = 0.030), high HIF-1α expression (P = 0.028), high VEGF expression (P = 0.048), increased tumor angiogenesis (P = 0.033) and poor prognosis (P = 0.037); high MVD was associated with high HIF-1α expression (P = 0.034), high VEGF expression (P = 0.001) and poor prognosis (P = 0.040). Multivariate analysis indicated that RBP2 had an independent influence on the survival of patients with stage I NSCLC (P = 0.044). By modulating the expression of RBP2, our findings suggested that RBP2 protein depletion decreased HUVECs tube formation by down-regulating VEGF in a conditioned medium. RBP2 stimulated the up-regulation of VEGF, which was dependent on HIF-1α, and activated the HIF-1α via phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Moreover, VEGF increased the activation of Akt regulated by RBP2.

Conclusions

The RBP2 protein may stimulate HIF-1α expression via the activation of the PI3K/Akt signaling pathway under normoxia and then stimulate VEGF expression. These findings indicate that RBP2 may play a critical role in tumor angiogenesis and serve as an attractive therapeutic target against tumor aggressiveness for early-stage NSCLC patients.  相似文献   

4.

Background

The Notch ligand Delta-like 4 (Dll4) is highly expressed in vascular endothelium and has been shown to play a pivotal role in regulating tumor angiogenesis. Blockade of the Dll4-Notch pathway in preclinical cancer models has been associated with non-productive angiogenesis and reduced tumor growth. Given the cross-talk between the vascular endothelial growth factor (VEGF) and Delta-Notch pathways in tumor angiogenesis, we examined the activity of a function-blocking Dll4 antibody, REGN1035, alone and in combination with anti-VEGF therapy in renal cell carcinoma (RCC).

Methods and Results

Severe combined immunodeficiency (SCID) mice bearing patient-derived clear cell RCC xenografts were treated with REGN1035 and in combination with the multi-targeted tyrosine kinase inhibitor sunitinib or the VEGF blocker ziv-aflibercept. Immunohistochemical and immunofluorescent analyses were carried out, as well as magnetic resonance imaging (MRI) examinations pre and 24 hours and 2 weeks post treatment. Single agent treatment with REGN1035 resulted in significant tumor growth inhibition (36–62%) that was equivalent to or exceeded the single agent anti-tumor activity of the VEGF pathway inhibitors sunitinib (38–54%) and ziv-aflibercept (46%). Importantly, combination treatments with REGN1035 plus VEGF inhibitors resulted in enhanced anti-tumor effects (72–80% growth inhibition), including some tumor regression. Magnetic resonance imaging showed a marked decrease in tumor perfusion in all treatment groups. Interestingly, anti-tumor efficacy of the combination of REGN1035 and ziv-aflibercept was also observed in a sunitinib resistant ccRCC model.

Conclusions

Overall, these findings demonstrate the potent anti-tumor activity of Dll4 blockade in RCC patient-derived tumors and a combination benefit for the simultaneous targeting of the Dll4 and VEGF signaling pathways, highlighting the therapeutic potential of this treatment modality in RCC.  相似文献   

5.

Objectives

Low energy shock waves have been shown to induce angiogenesis, improve left ventricular ejection fraction and decrease angina symptoms in patients suffering from chronic ischemic heart disease. Whether there is as well an effect in acute ischemia was not yet investigated.

Methods

Hind-limb ischemia was induced in 10–12 weeks old male C57/Bl6 wild-type mice by excision of the left femoral artery. Animals were randomly divided in a treatment group (SWT, 300 shock waves at 0.1 mJ/mm2, 5 Hz) and untreated controls (CTR), n = 10 per group. The treatment group received shock wave therapy immediately after surgery.

Results

Higher gene expression and protein levels of angiogenic factors VEGF-A and PlGF, as well as their receptors Flt-1 and KDR have been found. This resulted in significantly more vessels per high-power field in SWT compared to controls. Improvement of blood perfusion in treatment animals was confirmed by laser Doppler perfusion imaging. Receptor tyrosine kinase profiler revealed significant phosphorylation of VEGF receptor 2 as an underlying mechanism of action. The effect of VEGF signaling was abolished upon incubation with a VEGFR2 inhibitor indicating that the effect is indeed VEGFR 2 dependent.

Conclusions

Low energy shock wave treatment induces angiogenesis in acute ischemia via VEGF receptor 2 stimulation and shows the same promising effects as known from chronic myocardial ischemia. It may therefore develop as an adjunct to the treatment armentarium of acute muscle ischemia in limbs and myocardium.  相似文献   

6.

Objectives

The aim of this study was to determine whether the concentration of disintegrin and metalloprotease protein12 (ADAM12) in first trimester maternal serum can be used as a marker for first-trimester complete spontaneous abortions, missed abortions, ectopic pregnancies and hydatidiform moles.

Methods

The maternal serum concentrations of ADAM12 were measured in the range of 5–9+6 weeks of gestation using an automated AutoDelfia immunoassay platform in 9 cases of complete spontaneous abortion, 27 cases of missed abortions, 56 cases of ectopic pregnancies, 12 cases of hydatidiform moles, and 100 controls. Logistic regression analysis was used to determine significant factors for predicting adverse pregnancy outcomes in early pregnancy. Screening performance was assessed using receiver operating characteristic curves.

Results

Two hundred and four women were enrolled in the study. In the control group, the level of ADAM12 increased with gestational age. The median ADAM12 levels in the spontaneous abortion (0.430 MoM), ectopic pregnancy (0.460 MoM) and hydatidiform mole (0.037 MoM) groups were lower than that in the control group, while the median ADAM12 level in the missed abortion group (1.062 MoM) was not significant from the controls (1.002 MoM). Logistic regression analysis demonstrated that the level of ADAM12 in maternal serum facilitated the detection of ectopic pregnancies (OR = 0.909; 95% CI = 0.841∼0.982) and complete spontaneous abortion (OR = 0.863; 95% CI = 0.787∼0.946).

Conclusions

In complete spontaneous abortion and ectopic pregnancy, ADAM12 maintained at low levels in early pregnancies, and there were significant differences compared to normal pregnancies. ADAM12 is a promising marker for the diagnosis of complete spontaneous abortion and ectopic pregnancy in symptomatic women, and under certain conditions, ADAM12 can diagnose ectopic pregnancy and spontaneous abortion before an ultrasonographic detection of the conditions.  相似文献   

7.

Background

Descending thoracic aortic aneurysm and dissection (DTAAD) is characterized by progressive medial degeneration, which may result from excessive tissue destruction and insufficient repair. Resistance to tissue destruction and aortic self-repair are critical in preventing medial degeneration. The signaling pathways that control these processes in DTAAD are poorly understood. Because Notch signaling is a critical pathway for cell survival, proliferation, and tissue repair, we examined its activation in DTAAD.

Methods

We studied descending thoracic aortic tissue from patients with sporadic thoracic aortic aneurysm (TAA; n = 14) or chronic thoracic aortic dissection (TAD; n = 16) and from age-matched organ donors (n = 12). Using western blot, real-time RT-PCR, and immunofluorescence staining, we examined aortic tissue samples for the Notch ligands Delta-like 1, Delta-like 4 (DLL1/4), and Jagged1; the Notch receptor 1 (Notch1); the Notch1 intracellular domain (NICD); and Hes1, a downstream target of Notch signaling.

Results

Western blots and RT-PCR showed higher levels of the Notch1 protein and mRNA and the NICD and Hes1 proteins in both TAA and TAD tissues than in control tissue. However, immunofluorescence staining showed a complex pattern of Notch signaling in the diseased tissue. The ligand DLL1/4 and Notch1 were significantly decreased and NICD and Hes1 were rarely detected in medial vascular smooth muscle cells (VSMCs) in both TAA and TAD tissues, indicating downregulation of Notch signaling in aortic VSMCs. Interestingly Jagged1, NICD, and Hes1 were highly present in CD34+ stem cells and Stro-1+ stem cells in aortas from TAA and TAD patients. NICD and Hes1 were also detected in most fibroblasts and macrophages that accumulated in the aortic wall of DTAAD patients.

Conclusions

Notch signaling exhibits a complex pattern in DTAAD. The Notch pathway is impaired in medial VSMCs but activated in stem cells, fibroblasts, and macrophages.  相似文献   

8.
Huang H  Shen J  Vinores SA 《PloS one》2011,6(6):e21411

Objective

VEGFR1 and 2 signaling have both been increasingly shown to mediate complications of ischemic retinopathies, including retinopathy of prematurity (ROP), age-related macular degeneration (AMD), and diabetic retinopathy (DR). This study evaluates the effects of blocking VEGFR1 and 2 on pathological angiogenesis and vascular leakage in ischemic retinopathy in a model of ROP and in choroidal neovascularization (CNV) in a model of AMD.

Materials and Methods

Neutralizing antibodies specific for mouse VEGFR1 (MF1) and VEGFR2 (DC101) were administrated systemically. CNV was induced by laser photocoagulation and assessed 14d after laser treatment. Retinal NV was generated in oxygen-induced ischemic retinopathy (OIR) and assessed at p17. NV quantification was determined by measuring NV tufts and vascular leakage was quantified by measuring [3H]-mannitol leakage from blood vessels into the retina. Gene expression was measured by real-time quantitative (Q)PCR.

Results

VEGFR1 and VEGFR2 expressions were up-regulated during CNV pathogenesis. Both MF1 and DC101 significantly suppressed CNV at 50 mg/kg: DC101 suppressed CNV by 73±5% (p<0.0001) and MF1 by 64±6% (p = 0.0002) in a dosage-dependent manner. The combination of MF1 and DC101 enhanced the inhibitory efficacy and resulted in an accumulation of retinal microglia at the CNV lesion. Similarly, both MF1 and DC101 significantly suppressed retinal NV in OIR at 50 mg/kg: DC101 suppressed retinal NV by 54±8% (p = 0.013) and MF1 by 50±7% (p<0.0002). MF1 was even more effective at inhibiting ischemia-induced BRB breakdown than DC101: the retina/lung leakage ratio for MF1 was reduced by 73±24%, p = 0.001 and for DC101 by 12±4%, p = 0.003. The retina/renal leakage ratio for MF1 was reduced by 52±28%, p = 0.009 and for DC101 by 13±4%, p = 0.001.

Conclusion

Our study provides further evidence that both VEGFR1 and 2 mediate pathological angiogenesis and vascular leakage in these models of ocular disease and suggests that antagonist antibodies to these receptor tyrosine kinases (RTKs) are potential therapeutic agents.  相似文献   

9.

Objectives

The pathogenesis of the higher occurrence of peptic ulcer disease in cirrhotic patients is complex. Platelets can stimulate angiogenesis and promote gastric ulcer healing. We compared the expressions of proangiogenic growth factors and their receptors in the gastric ulcer margin between cirrhotic patients with thrombocytopenia and those of non-cirrhotic patients to elucidate possible mechanisms.

Methods

Eligible cirrhotic patients (n = 55) and non-cirrhotic patients (n = 55) who had gastric ulcers were enrolled. Mucosa from the gastric ulcer margin and non-ulcer areas were sampled and the mRNA expressions of the proangiogenic growth factors (vascular endothelial growth factor [VEGF], platelet derived growth factor [PDGF], basic fibroblast growth factor [bFGF]) and their receptors (VEGFR1, VEGFR2, PDGFRA, PDGFRB, FGFR1, FGFR2) were measured and compared. Platelet count and the expressions of these growth factors and their receptors were correlated with each other.

Results

The two groups were comparable in terms of gender, ulcer size and infection rate of Helicobacter pylori. However, the cirrhotic group were younger in age, had a lower platelet count than those in the non-cirrhotic group (p<0.05). The cirrhotic patients had diminished mRNA expressions of PDGFB, VEGFR2, FGFR1, and FGFR2 in gastric ulcer margin when compared with those of the non-cirrhotic patients (p<0.05). Diminished expressions of PDGFB and VEGFR2, FGFR1, and FGFR2 were well correlated with the degree of thrombocytopenia in these cirrhotic patients (ρ>0.5, p<0.001).

Conclusions

Our findings implied that diminished activity of proangiogenic factors and their receptors may contribute to the pathogenesis of gastric ulcers in cirrhotic patients.  相似文献   

10.

Background

The Notch signaling pathway is an evolutionary conserved signal transduction pathway involved in embryonic patterning and regulation of cell fates during development and self-renewal. Recent studies have demonstrated that this pathway is integral to a complex system of interactions, involving as well other signal transduction pathways, and implicated in distinct human diseases. Delta-like 1 (Dll1) is one of the known ligands of the Notch receptors. The role of the Notch ligands is less well understood. Loss-of-function of Dll1 leads to embryonic lethality, but reduction of Delta-like 1 protein levels has not been studied in adult stage.

Methodology/Principal Findings

Here we present the haploinsufficient phenotype of Dll1 and a missense mutant Dll1 allele (Dll1C413Y). Haploinsufficiency leads to a complex phenotype with several biological processes altered. These alterations reveal the importance of Dll1 mainly in metabolism, energy balance and in immunology. The animals are smaller, lighter, with altered fat to lean ratio and have increased blood pressure and a slight bradycardia. The animals have reduced cholesterol and triglyceride levels in blood. At the immunological level a subtle phenotype is observed due to the effect and fine-tuning of the signaling network at the different levels of differentiation, proliferation and function of lymphocytes. Moreover, the importance of the proteolytic regulation of the Notch signaling network emphasized.

Conclusions/Significance

In conclusion, slight alterations in one player of Notch signaling alter the entire organism, emphasizing the fine-tuning character of this pathway in a high number of processes.  相似文献   

11.
12.

Background

Hypoxia-inducible factor-1α (HIF-1α) and heme oxygenase-1(HO-1) are involved in the tissue hypoxic response.

Hypothesis

HIF-1α and HO-1 levels may predict cardiac ischemia and adverse cardiac events during non-cardiac surgery.

Methods

HIF-1α and HO-1 levels were determined in elderly patients undergoing non-cardiac surgery preoperatively and at 30 minutes, 48 and 72 hours postoperatively. Results were analyzed with respect to the occurrence of adverse cardiac events.

Results

A total of 380 patients with a mean age of 65.3 years were included, and 54 (14.2%) who had adverse cardiac events during or after the surgery. HIF-1α and HO-1 levels in the adverse cardiac event group were significantly higher than in the group without adverse cardiac events at each time point (all, P<0.05). In multivariates regression analysis, the odds of an adverse cardiac event was increased by every 1-year increase in age (odd ratio [OR] 1.39, P<0.001), abnormal ECG at baseline (OR 2.27, P = 0.048), myocardial infarction history (OR 3.18, P = 0.015), and positive baseline cTnI level were associated with an increased likelihood of an adverse cardiac event (OR 8.78, P = 0.019), and for every 1 unit increase of HO-1, the odds of an adverse cardiac event increased by 1.30 (P = 0.002).

Conclusion

Determination of preoperative HO-1 levels may aid in identifying patients at risk of developing ischemic cardiac events.  相似文献   

13.

Background

HIF-1α is a major regulator in tumor progression and metastasis which responds to hypoxia. Many studies have demonstrated that hypoxia-inducible factor1-α (HIF-1α) polymorphisms are significantly associated with cancer metastasis, but the results are inconsistent. We conducted a comprehensive meta-analysis to estimate the associations between HIF-1α C1772 T polymorphism and cancer metastasis.

Methods

Comprehensive searches were conducted on PubMed and EMBASE database. Fifteen studies were included in the meta-analysis. We used the OR and 95%CI to assess the associations between HIF-1α C1772T polymorphism and cancer metastasis. Heterogeneity and publication bias were also assessed by Q test, I 2, and funnel plot.

Results

Totally, fifteen studies including 1239 cases with metastasis-positive (M+) and 2711 cases with metastasis-negative (M−) were performed in this meta-analysis. The results showed that HIF-1a C1772T polymorphism was associated with the increased risk of cancer metastasis (T allele vs. C allele, OR  = 1.36, 95% CI  = 1.12–1.64; TT+ TC vs. CC, OR  = 1.39, 95% CI  = 1.13–1.71; TT vs. TC+ CC, OR  = 1.93, 95% CI  = 0.86–4.36). In the subgroup analyses, the significant associations remained significant among Asians, Caucasians and other cancers in the dominant model. Publication bias was not observed in the analysis.

Conclusions

Our results indicate that the HIF-1αC1772T polymorphism T allele may increase the risk of cancer metastasis, which might be a potential risk factor of cancer progress.  相似文献   

14.

Background

Despite recent progress, therapy for metastatic clear cell renal cell carcinoma (CCRCC) is still inadequate. Dysregulated Notch signaling in CCRCC contributes to tumor growth, but the full spectrum of downstream processes regulated by Notch in this tumor form is unknown.

Methodology/Principal Findings

We show that inhibition of endogenous Notch signaling modulates TGF-β dependent gene regulation in CCRCC cells. Analysis of gene expression data representing 176 CCRCCs showed that elevated TGF-β pathway activity correlated significantly with shortened disease specific survival (log-rank test, p = 0.006) and patients with metastatic disease showed a significantly elevated TGF-β signaling activity (two-sided Student''s t-test, p = 0.044). Inhibition of Notch signaling led to attenuation of both basal and TGF-β1 induced TGF-β signaling in CCRCC cells, including an extensive set of genes known to be involved in migration and invasion. Functional analyses revealed that Notch inhibition decreased the migratory and invasive capacity of CCRCC cells.

Conclusion

An extensive cross-talk between the Notch and TGF-β signaling cascades is present in CCRCC and the functional properties of these two pathways are associated with the aggressiveness of this disease.  相似文献   

15.

Objective

Mechanical ventilation (MV) is a life saving intervention for patients with respiratory failure. Even after 6 hours of MV, diaphragm atrophy and dysfunction (collectively referred to as ventilator-induced diaphragmatic dysfunction, VIDD) occurs in concert with a blunted blood flow and oxygen delivery. The regulation of hypoxia sensitive factors (i.e. hypoxia inducible factor 1α, 2α (HIF-1α,–2α), vascular endothelial growth factor (VEGF)) and angio-neogenetic factors (angiopoietin 1–3, Ang) might contribute to reactive and compensatory alterations in diaphragm muscle.

Methods

Male Wistar rats (n = 8) were ventilated for 24 hours or directly sacrificed (n = 8), diaphragm and mixed gastrocnemius muscle tissue was removed. Quantitative real time PCR and western blot analyses were performed to detect changes in angio-neogenetic factors and inflammatory markers. Tissues were stained using Isolectin (IB 4) to determine capillarity and calculate the capillary/fiber ratio.

Results

MV resulted in up-regulation of Ang 2 and HIF-1α mRNA in both diaphragm and gastrocnemius, while VEGF mRNA was down-regulated in both tissues. HIF-2α mRNA was reduced in both tissues, while GLUT 4 mRNA was increased in gastrocnemius and reduced in diaphragm samples. Protein levels of VEGF, HIF-1α, -2α and 4 did not change significantly. Additionally, inflammatory cytokine mRNA (Interleukin (IL)-6, IL-1β and TNF α) were elevated in diaphragm tissue.

Conclusion

The results demonstrate that 24 hrs of MV and the associated limb disuse induce an up-regulation of angio-neogenetic factors that are connected to HIF-1α. Changes in HIF-1α expression may be due to several interactions occurring during MV.  相似文献   

16.

Background and Objectives

Human papillomavirus (HPV)-16 infection may be related to non-smoking associated lung cancer. Our previous studies have found that HPV-16 oncoproteins promoted angiogenesis via enhancing hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) expression in non-small cell lung cancer (NSCLC) cells. In this study, we further investigated the roles of PI3K/Akt and c-Jun signaling pathways in it.

Methods

Human NSCLC cell lines, A549 and NCI-H460, were stably transfected with pEGFP-16 E6 or E7 plasmids. Western blotting was performed to analyze the expression of HIF-1α, p-Akt, p-P70S6K, p-P85S6K, p-mTOR, p-JNK, and p-c-Jun proteins. VEGF and IL-8 protein secretion and mRNA levels were determined by ELISA and Real-time PCR, respectively. The in vitro angiogenesis was observed by human umbilical vein endothelial cells (HUVECs) tube formation assay. Co-immunoprecipitation was performed to analyze the interaction between c-Jun and HIF-1α.

Results

HPV-16 E6 and E7 oncoproteins promoted the activation of Akt, P70S6K, P85S6K, mTOR, JNK, and c-Jun. LY294002, a PI3K inhibitor, inhibited HPV-16 oncoprotein-induced activation of Akt, P70S6K, and P85S6K, expression of HIF-1α, VEGF, and IL-8, and in vitro angiogenesis. c-Jun knockdown by specific siRNA abolished HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis. Additionally, HPV-16 oncoproteins promoted HIF-1α protein stability via blocking proteasome degradation pathway, but c-Jun knockdown abrogated this effect. Furthermore, HPV-16 oncoproteins increased the quantity of c-Jun binding to HIF-1α.

Conclusions

PI3K/Akt signaling pathway and c-Jun are involved in HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis. Moreover, HPV-16 oncoproteins promoted HIF-1α protein stability possibly through enhancing the interaction between c-Jun and HIF-1α, thus making a contribution to angiogenesis in NSCLC cells.  相似文献   

17.

Introduction

Emerging evidence suggests that microRNAs (miRNAs) are crucially involved in tumorigenesis and that paired expression profiles of miRNAs and mRNAs can be used to identify functional miRNA-target relationships with high precision. However, no studies have applied integrated analysis to miRNA and mRNA profiles in chordomas. The purpose of this study was to provide insights into the pathogenesis of chordomas by using this integrated analysis method.

Methods

Differentially expressed miRNAs and mRNAs of chordomas (n = 3) and notochord tissues (n = 3) were analyzed by using microarrays with hierarchical clustering analysis. Subsequently, the target genes of the differentially expressed miRNAs were predicted and overlapped with the differentially expressed mRNAs. Then, GO and pathway analyses were performed for the intersecting genes.

Results

The microarray analysis indicated that 33 miRNAs and 2,791 mRNAs were significantly dysregulated between the two groups. Among the 2,791 mRNAs, 911 overlapped with putative miRNA target genes. A pathway analysis showed that the MAPK pathway was consistently enriched in the chordoma tissue and that miR-149-3p, miR-663a, miR-1908, miR-2861 and miR-3185 likely play important roles in the regulation of MAPK pathways. Furthermore, the Notch signaling pathway and the loss of the calcification or ossification capacity of the notochord may also be involved in chordoma pathogenesis.

Conclusion

This study provides an integrated dataset of the miRNA and mRNA profiles in chordomas, and the results demonstrate that not only the MAPK pathway and its related miRNAs but also the Notch pathway may be involved in chordoma development. The occurrence of chordoma may be associated with dysfunctional calcification or ossification of the notochord.  相似文献   

18.

Purpose

The potential impact of different SNPs of VEGF/VEGFR pathway on the clinical outcome of mCRC patients receiving bev-containing regimens has been investigated in retrospective experiences with contrasting results. We previously reported the association of VEGFA rs833061 C/T variants with PFS in metastatic colorectal cancer patients treated with first-line FOLFIRI plus bevacizumab. The primary objective of this work was to prospectively validate that retrospective finding. A confirmatory analysis of other SNPs of VEGF/VEGFR pathway genes was included.

Experimental design

To detect a HR for PFS of 1.7 for VEGFA rs833061 T/T compared to C- variants in metastatic colorectal cancer patients treated with first-line FOLFIRI plus bevacizumab, setting two-sided α = 0.05 and β = 0.20, 199 events were required. VEGFA rs699946 A/G, rs699947 A/C, VEGFR1 rs9582036 A/C and rs7993418 A/G, VEGFR2 rs11133360 C/T, rs12505758 C/T and rs2305948 C/T and EPAS1 rs4145836 A/G were also tested. Germ-line DNA was extracted from peripheral blood. SNPs were analyzed by PCR and sequencing.

Results

Four-hundred-twenty-four pts were included. At the univariate analysis, no differences according to VEGFA rs833061 C/T variants were observed in PFS (p = 0.38) or OS (p = 0.95). Among analyzed SNPs, only VEGFR2 rs12505758 C- variants, compared to T/T, were associated to shorter PFS (HR: 1.36 [1.05–1.75], p = 0.015, dominant genetic model) and OS, with a trend toward significance (HR: 1.34 [0.95–1.88], p = 0.088). In the multivariate model, this association retained significance (HR: 1.405 [1.082–1.825], p = 0.012) in PFS, that was lost by applying multiple testing correction (p = 0.14).

Conclusion

This prospective experience failed to validate the hypothesized predictive impact of VEGFA rs833061 variants. Retrospective findings on different candidate SNPs were not confirmed. Only VEGFR2 rs12505758 variants, whose prognostic and not predictive impact was previously reported, correlated with PFS. Given the complexity of angiogenesis, it is rather unlike that a single germ-line SNP might be a good predictor of benefit from bevacizumab.  相似文献   

19.

Background

In mouse embryos, homozygous or heterozygous deletions of the gene encoding the Notch ligand Dll4 result in early embryonic death due to major defects in endothelial remodeling in the yolk sac and embryo. Considering the close developmental relationship between endothelial and hematopoietic cell lineages, which share a common mesoderm-derived precursor, the hemangioblast, and many key regulatory molecules, we investigated whether Dll4 is also involved in the regulation of early embryonic hematopoiesis.

Methodology/Principal Findings

Using Embryoid Bodies (EBs) derived from embryonic stem cells harboring hetero- or homozygous Dll4 deletions, we observed that EBs from both genotypes exhibit an abnormal endothelial remodeling in the vascular sprouts that arise late during EB differentiation, indicating that this in vitro system recapitulates the angiogenic phenotype of Dll4 mutant embryos. However, analysis of EB development at early time points revealed that the absence of Dll4 delays the emergence of mesoderm and severely reduces the number of blast-colony forming cells (BL-CFCs), the in vitro counterpart of the hemangioblast, and of endothelial cells. Analysis of colony forming units (CFU) in EBs and yolk sacs from Dll4+/− and Dll4−/− embryos, showed that primitive erythropoiesis is specifically affected by Dll4 insufficiency. In Dll4 mutant EBs, smooth muscle cells (SMCs) were seemingly unaffected and cardiomyocyte differentiation was increased, indicating that SMC specification is Dll4-independent while a normal dose of this Notch ligand is essential for the quantitative regulation of cardiomyogenesis.

Conclusions/Significance

This study highlights a previously unnoticed role for Dll4 in the quantitative regulation of early hemato-vascular precursors, further indicating that it is also involved on the timely emergence of mesoderm in early embryogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号