共查询到20条相似文献,搜索用时 0 毫秒
1.
Choi E Park PG Lee HO Lee YK Kang GH Lee JW Han W Lee HC Noh DY Lekomtsev S Lee H 《Developmental cell》2012,22(2):295-308
Germline mutations that inactivate BRCA2 promote early-onset cancer with chromosome instability. Here, we report that BRCA2 regulates the spindle assembly checkpoint (SAC). Previously, we reported that BubR1 acetylation is essential for SAC activity. In this study we show that BRCA2 recruits the PCAF acetyltransferase and aids in BubR1 acetylation during mitosis. In the absence of BRCA2, BubR1 acetylation is abolished, and the level of BubR1 decreases during mitosis. Similarly, Brca2-deficient mouse embryonic fibroblasts exhibited weak SAC activity. Transgenic mice that were engineered to have interruptions in the BRCA2-BubR1 association exhibited marked decrease of BubR1 acetylation, weakened SAC activity, and aneuploidy. These transgenic mice developed spontaneous tumors at 40% penetrance. Moreover, immunohistochemical analyses of human breast cancer specimens suggested that BRCA2 mutation and BubR1 status is closely linked. Our results provide an explanation for how mutation of BRCA2 can lead to chromosome instability without apparent mutations in SAC components. 相似文献
2.
3.
Min Li Xiao Fang Zhubo Wei J. Philippe York Pumin Zhang 《The Journal of cell biology》2009,185(6):983-994
Genomic instability is a hallmark of human cancers. Spindle assembly checkpoint (SAC) is a critical cellular mechanism that prevents chromosome missegregation and therefore aneuploidy by blocking premature separation of sister chromatids. Thus, SAC, much like the DNA damage checkpoint, is essential for genome stability. In this study, we report the generation and analysis of mice carrying a Cdc20 allele in which three residues critical for the interaction with Mad2 were mutated to alanine. The mutant Cdc20 protein (AAA-Cdc20) is no longer inhibited by Mad2 in response to SAC activation, leading to the dysfunction of SAC and aneuploidy. The dysfunction could not be rescued by the additional expression of another Cdc20 inhibitor, BubR1. Furthermore, we found that Cdc20AAA/AAA mice died at late gestation, but Cdc20+/AAA mice were viable. Importantly, Cdc20+/AAA mice developed spontaneous tumors at highly accelerated rates, indicating that the SAC-mediated inhibition of Cdc20 is an important tumor-suppressing mechanism. 相似文献
4.
Carlos Conde Mariana Osswald João Barbosa Tatiana Moutinho‐Santos Diana Pinheiro Sofia Guimarães Helder Maiato Claudio E Sunkel 《The EMBO journal》2013,32(12):1761-1777
Maintenance of genomic stability during eukaryotic cell division relies on the spindle assembly checkpoint (SAC) that prevents mitotic exit until all chromosomes are properly attached to the spindle. Polo is a mitotic kinase proposed to be involved in SAC function, but its role has remained elusive. We demonstrate that Polo and Aurora B functional interdependency comprises a positive feedback loop that promotes Mps1 kinetochore localization and activity. Expression of constitutively active Polo restores normal Mps1 kinetochore levels even after Aurora B inhibition, highlighting a role for Polo in Mps1 recruitment to unattached kinetochores downstream of Aurora B. We also show that Mps1 kinetochore localization is required for BubR1 hyperphosphorylation and formation of the 3F3/2 phosphoepitope. This is essential to allow recruitment of Cdc20 to unattached kinetochores and the assembly of anaphase‐promoting complex/cyclosome‐inhibitory complexes to levels that ensure long‐term SAC activity. We propose a model in which Polo controls Mps1‐dependent BubR1 phosphorylation to promote Cdc20 kinetochore recruitment and sustained SAC function. 相似文献
5.
《Cell cycle (Georgetown, Tex.)》2013,12(6):1112-1121
BubR1 (Bub1-related kinase or MAD3/Bub1b) is an essential component of the spindle assembly checkpoint (SAC) and plays an important role in kinetochore localization of other spindle checkpoint proteins in mitosis. But its roles in mammalian oocyte meiosis are unclear. In the present study, we examined the expression, localization and function of BubR1 during mouse oocyte meiotic maturation. The expression level of BubR1 increased progressively from germinal vesicle to metaphase II stages. Immunofluorescent analysis showed that BubR1 localized to kinetochores from the germinal vesicle breakdown to the prometaphase I stages, co-localizing with polo-like kinase 1, while it disappeared from the kinetochores at the metaphase I stage. Spindle disruption by nocodazole treatment caused relocation of BubR1 to kinetochores at metaphase I, anaphase I and metaphase II stages; spindle microtubules were disrupted by low temperature treatment in the BubR1-depleted oocytes in meiosis I, suggesting that BubR1 monitors kinetochore-microtubule (K-MT) attachments. Over-expression of exogenous BubR1 arrested oocyte meiosis maturation at the M I stage or earlier; in contrast, dominant-negative BubR1 and BubR1 depletion accelerated meiotic progression. In the BubR1-depleted oocytes, higher percentage of chromosome misalignment was observed and more oocytes overrode the M I stage arrest induced by low concentration of nocodazole. Our data suggest that BubR1 is a spindle assembly checkpoint protein regulating meiotic progression of oocytes. 相似文献
6.
7.
Most current models of spindle assembly checkpoint signaling involve inhibition of the Cdc20-APC by Mad2 protein. Interestingly, a paper from Hongtao Yu and colleagues in this issue of Developmental Cell suggests that the Cdc20/APC can also be inhibited in a Mad2-independent manner by a complex of proteins that includes BubR1. 相似文献
8.
Zohra Rahmani Mary E. Gagou Christophe Lefebvre Doruk Emre Roger E. Karess 《The Journal of cell biology》2009,187(5):597-605
BubR1 performs several roles during mitosis, affecting the spindle assembly checkpoint (SAC), mitotic timing, and spindle function, but the interdependence of these functions is unclear. We have analyzed in Drosophila melanogaster the mitotic phenotypes of kinase-dead (KD) BubR1 and BubR1 lacking the N-terminal KEN box. bubR1-KD individuals have a robust SAC but abnormal spindles with thin kinetochore fibers, suggesting that the kinase activity modulates microtubule capture and/or dynamics but is relatively dispensable for SAC function. In contrast, bubR1-KEN flies have normal spindles but no SAC. Nevertheless, mitotic timing is normal as long as Mad2 is present. Thus, the SAC, timer, and spindle functions of BubR1 are substantially separable. Timing is shorter in bubR1-KEN mad2 double mutants, yet in these flies, lacking both critical SAC components, chromosomes still segregate accurately, reconfirming that in Drosophila, reliable mitosis does not need the SAC. 相似文献
9.
Xiong B Li S Ai JS Yin S Ouyang YC Sun SC Chen DY Sun QY 《Biology of reproduction》2008,79(4):718-726
BRCA1 as a tumor suppressor has been widely investigated in mitosis, but its functions in meiosis are unclear. In the present study, we examined the expression, localization, and function of BRCA1 during mouse oocyte meiotic maturation. We found that expression level of BRCA1 was increased progressively from germinal vesicle to metaphase I stage, and then remained stable until metaphase II stage. Immunofluorescent analysis showed that BRCA1 was localized to the spindle poles at metaphase I and metaphase II stages, colocalizing with centrosomal protein gamma-tubulin. Taxol treatment resulted in the presence of BRCA1 onto the spindle microtubule fibers, whereas nocodazole treatment induced the localization of BRCA1 onto the chromosomes. Depletion of BRCA1 by both antibody injection and siRNA injection caused severely impaired spindles and misaligned chromosomes. Furthermore, BRCA1-depleted oocytes could not arrest at the metaphase I in the presence of low-dose nocodazole, suggesting that the spindle checkpoint is defective. Also, in BRCA1-depleted oocytes, gamma-tubulin dissociated from spindle poles and MAD2L1 failed to rebind to the kinetochores when exposed to nocodazole at metaphase I stage. Collectively, these data indicate that BRCA1 regulates not only meiotic spindle assembly, but also spindle assembly checkpoint, implying a link between BRCA1 deficiency and aneuploid embryos. 相似文献
10.
The mitotic checkpoint is the major cell cycle control mechanism for maintaining chromosome content in multicellular organisms. Prevention of premature onset of anaphase requires activation at unattached kinetochores of the BubR1 kinase, which acts with other components to generate a diffusible "stop anaphase" inhibitor. Not only does direct binding of BubR1 to the centromere-associated kinesin family member CENP-E activate its essential kinase, binding of a motorless fragment of CENP-E is shown here to constitutively activate BubR1 bound at kinetochores, producing checkpoint signaling that is not silenced either by spindle microtubule capture or the tension developed at those kinetochores by other components. Using purified BubR1, microtubules, and CENP-E, microtubule capture by the CENP-E motor domain is shown to silence BubR1 kinase activity in a ternary complex of BubR1-CENP-E-microtubule. Together, this reveals that CENP-E is the signal transducing linker responsible for silencing BubR1-dependent mitotic checkpoint signaling through its capture at kinetochores of spindle microtubules. 相似文献
11.
Takashi Akera 《Cell cycle (Georgetown, Tex.)》2016,15(4):493-497
Faithful chromosome segregation relies on dynamic interactions between spindle microtubules and chromosomes. Especially, all chromosomes must be aligned at the equator of the spindle to establish bi-orientation before they start to segregate. The spindle assembly checkpoint (SAC) monitors this process, inhibiting chromosome segregation until all chromosomes achieve bi-orientation. The original concept of ‘checkpoints’ was proposed as an external surveillance system that does not play an active role in the process it monitors. However, accumulating evidence from recent studies suggests that SAC components do play an active role in chromosome bi-orientation. In this review, we highlight a novel Mad1 role in chromosome alignment, which is the first conserved mechanism that links the SAC and kinesin-mediated chromosome gliding. 相似文献
12.
Antonio Espert Pelin Uluocak Ricardo Nunes Bastos Davinderpreet Mangat Philipp Graab Ulrike Gruneberg 《The Journal of cell biology》2014,206(7):833-842
The spindle assembly checkpoint (SAC) monitors correct attachment of chromosomes to microtubules, an important safeguard mechanism ensuring faithful chromosome segregation in eukaryotic cells. How the SAC signal is turned off once all the chromosomes have successfully attached to the spindle remains an unresolved question. Mps1 phosphorylation of Knl1 results in recruitment of the SAC proteins Bub1, Bub3, and BubR1 to the kinetochore and production of the wait-anaphase signal. SAC silencing is therefore expected to involve a phosphatase opposing Mps1. Here we demonstrate in vivo and in vitro that BubR1-associated PP2A-B56 is a key phosphatase for the removal of the Mps1-mediated Knl1 phosphorylations necessary for Bub1/BubR1 recruitment in mammalian cells. SAC silencing is thus promoted by a negative feedback loop involving the Mps1-dependent recruitment of a phosphatase opposing Mps1. Our findings extend the previously reported role for BubR1-associated PP2A-B56 in opposing Aurora B and suggest that BubR1-bound PP2A-B56 integrates kinetochore surveillance and silencing of the SAC. 相似文献
13.
Elowe S 《Molecular and cellular biology》2011,31(15):3085-3093
The spindle checkpoint ensures genome fidelity by temporarily halting chromosome segregation and the ensuing mitotic exit until the last kinetochore is productively attached to the mitotic spindle. At the interface between proper chromosome attachment and the metaphase-to-anaphase transition are the mammalian spindle checkpoint kinases. Compelling evidence indicates that the checkpoint kinases Bub1 and BubR1 have the added task of regulating kinetochore-microtubule attachments. However, the debate on the requirement of kinase activity is in full swing. This minireview summarizes recent advances in our understanding of the core spindle checkpoint kinases Bub1 and BubR1 and considers evidence that supports and opposes the role of kinase activity in regulating their functions during mitosis. 相似文献
14.
Cdk1 phosphorylation of BubR1 controls spindle checkpoint arrest and Plk1-mediated formation of the 3F3/2 epitope 总被引:2,自引:1,他引:2 下载免费PDF全文
Accurate chromosome segregation is controlled by the spindle checkpoint, which senses kinetochore– microtubule attachments and tension across sister kinetochores. An important step in the tension-signaling pathway involves the phosphorylation of an unknown protein by polo-like kinase 1/Xenopus laevis polo-like kinase 1 (Plx1) on kinetochores lacking tension to generate the 3F3/2 phosphoepitope. We report here that the checkpoint protein BubR1 interacts with Plx1 and that phosphorylation of BubR1 by Plx1 generates the 3F3/2 epitope. Formation of the BubR1 3F3/2 epitope by Plx1 requires a prior phosphorylation of BubR1 on Thr 605 by cyclin-dependant kinase 1 (Cdk1). This priming phosphorylation of BubR1 by Cdk1 is required for checkpoint-mediated mitotic arrest and for recruitment of Plx1 and the checkpoint protein Mad2 to unattached kinetochores. Biochemically, formation of the 3F3/2 phosphoepitope by Cdk1 and Plx1 greatly enhances the kinase activity of BubR1. Thus, Cdk1-mediated phosphorylation of BubR1 controls checkpoint arrest and promotes the formation of the kinetochore 3F3/2 epitope. 相似文献
15.
16.
The kinetochore is a supramolecular structure essential for microtubule attachment and the mitotic checkpoint. Human blinkin/human Spc105 (hSpc105)/hKNL1 was identified originally as a mixed-lineage leukemia (MLL) fusion partner and later as a kinetochore component. Blinkin directly binds to several structural and regulatory proteins, but the precise binding sites have not been defined. Here, we report distinct and essential binding domains for Bub1 and BubR1 (here designated Bubs) at the N terminus of blinkin and for Zwint-1 and hMis14/hNsl1 at the C terminus. The minimal binding sites for Bub1 and BubR1 are separate but contain a consensus KI motif, KI(D/N)XXXF(L/I)XXLK. RNA interference (RNAi)-mediated replacement with mutant blinkin reveals that the Bubs-binding domain is functionally important for chromosome alignment and segregation. We also provide evidence that hMis14 mediates hNdc80 binding to blinkin at the kinetochore. The C-terminal fragment of blinkin locates at kinetochores in a dominant-negative fashion by displacing endogenous blinkin from kinetochores. This negative dominance is relieved by mutations of the hMis14 binding PPSS motif on the C terminus of blinkin or by fusion of the N sequence that binds to Bub1 and BubR1. Taken together, these results indicate that blinkin functions to connect Bub1 and BubR1 with the hMis12, Ndc80, and Zwint-1 complexes, and disruption of this connection may lead to tumorigenesis. 相似文献
17.
18.
Díaz-Rodríguez E Álvarez-Fernández S Chen X Paiva B López-Pérez R García-Hernández JL San Miguel JF Pandiella A 《PloS one》2011,6(11):e27583
Multiple myeloma (MM) is a hematological disease characterized by an abnormal accumulation of plasma cells in the bone marrow. These cells have frequent cytogenetic abnormalities including translocations of the immunoglobulin heavy chain gene and chromosomal gains and losses. In fact, a singular characteristic differentiating MM from other hematological malignancies is the presence of a high degree of aneuploidies. As chromosomal abnormalities can be generated by alterations in the spindle assembly checkpoint (SAC), the functionality of such checkpoint was tested in MM. When SAC components were analyzed in MM cell lines, the RNA levels of most of them were conserved. Nevertheless, the protein content of some key constituents was very low in several cell lines, as was the case of MAD2 or CDC20 in RPMI-8226 or RPMI-LR5 cells. The recovery of their cellular content did not substantially affect cell growth, but improved their ability to segregate chromosomes. Finally, SAC functionality was tested by challenging cells with agents disrupting microtubule dynamics. Most of the cell lines analyzed exhibited functional defects in this checkpoint. Based on the data obtained, alterations both in SAC components and their functionality have been detected in MM, pointing to this pathway as a potential target in MM treatment. 相似文献
19.
《Cellular signalling》2014,26(10):2217-2222
The spindle assembly checkpoint (SAC) monitors unsatisfied connections of microtubules to kinetochores and prevents anaphase onset by inhibition of the ubiquitin ligase E3 anaphase-promoting complex or cyclosome (APC/C) in association with the activator Cdc20. Another APC/C activator, Cdh1, exists permanently throughout the cell cycle but it becomes active from telophase to G1. Here, we show that Cdh1 is partially active and mediates securin degradation even in SAC-active metaphase cells. Additionally, Cdh1 mediates Cdc20 degradation in metaphase, promoting formation of the APC/C-Cdh1. These results indicate that Cdh1 opposes the SAC and promotes anaphase transition. 相似文献
20.
Chen RH 《The Journal of cell biology》2002,158(3):487-496
The spindle checkpoint delays anaphase onset until all chromosomes have attached properly to the mitotic spindle. Checkpoint signal is generated at kinetochores that are not bound with spindle microtubules or not under tension. Unattached kinetochores associate with several checkpoint proteins, including BubR1, Bub1, Bub3, Mad1, Mad2, and CENP-E. I herein show that BubR1 is important for the spindle checkpoint in Xenopus egg extracts. The protein accumulates and becomes hyperphosphorylated at unattached kinetochores. Immunodepletion of BubR1 greatly reduces kinetochore binding of Bub1, Bub3, Mad1, Mad2, and CENP-E. Loss of BubR1 also impairs the interaction between Mad2, Bub3, and Cdc20, an anaphase activator. These defects are rescued by wild-type, kinase-dead, or a truncated BubR1 that lacks its kinase domain, indicating that the kinase activity of BubR1 is not essential for the spindle checkpoint in egg extracts. Furthermore, localization and hyperphosphorylation of BubR1 at kinetochores are dependent on Bub1 and Mad1, but not Mad2. This paper demonstrates that BubR1 plays an important role in kinetochore association of other spindle checkpoint proteins and that Mad1 facilitates BubR1 hyperphosphorylation at kinetochores. 相似文献