首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Throughout most of the Americas, post-colonial dogs largely erased the genetic signatures of pre-historical dogs. However, the North American Arctic harbors dogs that are potentially descended from pre-historical ancestors, as well as those affected by post-colonial translocations and admixtures. In particular, Inuit dogs from Canada and Greenland are thought to descend from dogs associated with Thule peoples, who relied on them for transportation ca. 1000 years ago. Whether Thule dogs reflected an earlier colonization by Paleoeskimo dogs ca. 4500 years ago is unknown. During the Alaskan Gold Rush, additional sled dogs, possibly of post-colonial derivation, the Alaskan Husky, Malamute and Siberian Husky, were used in the Arctic. The genealogical relationships among and origins of these breeds are unknown. Here we use autosomal, paternal and maternal DNA markers to (1) test the hypothesis that Inuit dogs have retained their indigenous ancestry, (2) characterize their relationship to one another and to other Arctic breeds, and (3) estimate the age of North American indigenous matrilines and patrilines. On the basis of the agreement of all three markers we determined that Inuit dogs have maintained their indigenous nature, and that they likely derive from Thule dogs. In addition, we provide support for previous research that the Inuit dogs from Canada and Greenland dog should not be distinguished as two breeds. The Alaskan Husky displayed evidence of European introgression, in contrast to the Malamute and Siberian Husky, which appear to have maintained most of their ancient Siberian ancestry.  相似文献   

2.
Although a large part of the global domestic dog population is free-ranging and free-breeding, knowledge of genetic diversity in these free-breeding dogs (FBDs) and their ancestry relations to pure-breed dogs is limited, and the indigenous status of FBDs in Asia is still uncertain. We analyse genome-wide SNP variability of FBDs across Eurasia, and show that they display weak genetic structure and are genetically distinct from pure-breed dogs rather than constituting an admixture of breeds. Our results suggest that modern European breeds originated locally from European FBDs. East Asian and Arctic breeds show closest affinity to East Asian FBDs, and they both represent the earliest branching lineages in the phylogeny of extant Eurasian dogs. Our biogeographic reconstruction of ancestral distributions indicates a gradual westward expansion of East Asian indigenous dogs to the Middle East and Europe through Central and West Asia, providing evidence for a major expansion that shaped the patterns of genetic differentiation in modern dogs. This expansion was probably secondary and could have led to the replacement of earlier resident populations in Western Eurasia. This could explain why earlier studies based on modern DNA suggest East Asia as the region of dog origin, while ancient DNA and archaeological data point to Western Eurasia.  相似文献   

3.
Modern genetic samples are commonly used to trace dog origins, which entails untested assumptions that village dogs reflect indigenous ancestry or that breed origins can be reliably traced to particular regions. We used high-resolution Y chromosome markers (SNP and STR) and mitochondrial DNA to analyze 495 village dogs/dingoes from the Middle East and Southeast Asia, along with 138 dogs from >35 modern breeds to 1) assess genetic divergence between Middle Eastern and Southeast Asian village dogs and their phylogenetic affinities to Australian dingoes and gray wolves (Canis lupus) and 2) compare the genetic affinities of modern breeds to regional indigenous village dog populations. The Y chromosome markers indicated that village dogs in the two regions corresponded to reciprocally monophyletic clades, reflecting several to many thousand years divergence, predating the Neolithic ages, and indicating long-indigenous roots to those regions. As expected, breeds of the Middle East and East Asia clustered within the respective regional village dog clade. Australian dingoes also clustered in the Southeast Asian clade. However, the European and American breeds clustered almost entirely within the Southeast Asian clade, even sharing many haplotypes, suggesting a substantial and recent influence of East Asian dogs in the creation of European breeds. Comparison to 818 published breed dog Y STR haplotypes confirmed this conclusion and indicated that some African breeds reflect another distinct patrilineal origin. The lower-resolution mtDNA marker consistently supported Y-chromosome results. Both marker types confirmed previous findings of higher genetic diversity in dogs from Southeast Asia than the Middle East. Our findings demonstrate the importance of village dogs as windows into the past and provide a reference against which ancient DNA can be used to further elucidate origins and spread of the domestic dog.  相似文献   

4.
The canine major histocompatibility complex contains highly polymorphic genes, many of which are critical in regulating immune response. Since domestic dogs evolved from Gray Wolves (Canis lupus), common DLA class II alleles should exist. Sequencing was used to characterize 175 Gray Wolves for DLA class II alleles, and data from 1856 dogs, covering 85 different breeds of mostly European origin, were available for comparison. Within wolves, 28 new alleles were identified, all occurring in at least 2 individuals. Three DLA-DRB1, 8 DLA-DQA1, and 6 DLA-DQB1 alleles also identified in dogs were present. Twenty-eight haplotypes were identified, of which 2 three-locus haplotypes, and many DLA-DQA1/DQB1 haplotypes, are also found in dogs. The wolves studied had relatively few dog DLA alleles and may therefore represent a remnant population descended from Asian wolves. The single European wolf included carried a haplotype found in both these North American wolves and in many dog breeds. Furthermore, one wolf DQB1 allele has been found in Shih Tzu, a breed of Asian origin. These data suggest that the wolf ancestors of Asian and European dogs may have had different gene pools, currently reflected in the DLA alleles present in dog breeds.  相似文献   

5.
Modern Arctic Siberia provides a wealth of resources for archaeological, geological, and paleontological research to investigate the population dynamics of faunal communities from the Pleistocene, particularly as the faunal material coming from permafrost has proven suitable for genetic studies. In order to examine the history of the Canid species in the Siberian Arctic, we carried out genetic analysis of fourteen canid remains from various sites, including the well-documented Upper Paleolithic Yana RHS and Early Holocene Zhokhov Island sites. Estimated age of samples range from as recent as 1,700 years before present (YBP) to at least 360,000 YBP for the remains of the extinct wolf, Canis cf. variabilis. In order to examine the genetic affinities of ancient Siberian canids species to the domestic dog and modern wolves, we obtained mitochondrial DNA control region sequences and compared them to published ancient and modern canid sequences. The older canid specimens illustrate affinities with pre-domestic dog/wolf lineages while others appear in the major phylogenetic clades of domestic dogs. Our results suggest a European origin of domestic dog may not be conclusive and illustrates an emerging complexity of genetic contribution of regional wolf breeds to the modern Canis gene pool.  相似文献   

6.
The Kintamani dog is an evolving breed indigenous to the Kintamani region of Bali. Kintamani dogs cohabitate with feral Bali street dogs, although folklore has the breed originating 600 years ago from a Chinese Chow Chow. The physical and personality characteristics of the Kintamani dog make it a popular pet for the Balinese, and efforts are currently under way to have the dog accepted by the Federation Cynologique Internationale as a recognized breed. To study the genetic background of the Kintamani dog, 31 highly polymorphic short tandem repeat markers were analyzed in Kintamani dogs, Bali street dogs, Australian dingoes, and nine American Kennel Club (AKC) recognized breeds of Asian or European origin. The Kintamani dog was identical to the Bali street dog at all but three loci. The Bali street dog and Kintamani dog were most closely aligned with the Australian dingo and distantly related to AKC recognized breeds of Asian but not European origin. Therefore, the Kintamani dog has evolved from Balinese feral dogs with little loss of genetic diversity.  相似文献   

7.
Alaskan sled dogs are a genetically distinct population shaped by generations of selective interbreeding with purebred dogs to create a group of high-performance athletes. As a result of selective breeding strategies, sled dogs present a unique opportunity to employ admixture-mapping techniques to investigate how breed composition and trait selection impact genomic structure. We used admixture mapping to investigate genetic ancestry across the genomes of two classes of sled dogs, sprint and long-distance racers, and combined that with genome-wide association studies (GWAS) to identify regions that correlate with performance-enhancing traits. The sled dog genome is enhanced by differential contributions from four non-admixed breeds (Alaskan Malamute, Siberian Husky, German Shorthaired Pointer, and Borzoi). A principal components analysis (PCA) of 115,000 genome-wide SNPs clearly resolved the sprint and distance populations as distinct genetic groups, with longer blocks of linkage disequilibrium (LD) observed in the distance versus sprint dogs (7.5-10 and 2.5-3.75?kb, respectively). Furthermore, we identified eight regions with the genomic signal from either a selective sweep or an association analysis, corroborated by an excess of ancestry when comparing sprint and distance dogs. A comparison of elite and poor-performing sled dogs identified a single region significantly associated with heat tolerance. Within the region we identified seven SNPs within the myosin heavy chain 9 gene (MYH9) that were significantly associated with heat tolerance in sprint dogs, two of which correspond to conserved promoter and enhancer regions in the human ortholog.  相似文献   

8.
The human population in Greenland is characterized by migration events of Paleo- and Neo-Eskimos, as well as admixture with Europeans. In this study, the Y-chromosomal variation in male Greenlanders was investigated in detail by typing 73 Y-chromosomal single nucleotide polymorphisms (Y-SNPs) and 17 Y-chromosomal short tandem repeats (Y-STRs). Approximately 40% of the analyzed Greenlandic Y chromosomes were of European origin (I-M170, R1a-M513 and R1b-M343). Y chromosomes of European origin were mainly found in individuals from the west and south coasts of Greenland, which is in agreement with the historic records of the geographic placements of European settlements in Greenland. Two Inuit Y-chromosomal lineages, Q-M3 (xM19, M194, L663, SA01 and L766) and Q-NWT01 (xM265) were found in 23% and 31% of the male Greenlanders, respectively. The time to the most recent common ancestor (TMRCA) of the Q-M3 lineage of the Greenlanders was estimated to be between 4,400 and 10,900 years ago (y. a.) using two different methods. This is in agreement with the theory that the North Circumpolar Region was populated via a second expansion of humans in the North American continent. The TMRCA of the Q-NWT01 (xM265) lineage in Greenland was estimated to be between 7,000 and 14,300 y. a. using two different methods, which is older than the previously reported TMRCA of this lineage in other Inuit populations. Our results indicate that Inuit individuals carrying the Q-NWT01 (xM265) lineage may have their origin in the northeastern parts of North America and could be descendants of the Dorset culture. This in turn points to the possibility that the current Inuit population in Greenland is comprised of individuals of both Thule and Dorset descent.  相似文献   

9.
The origin and evolution of the domestic dog remains a controversial question for the scientific community, with basic aspects such as the place and date of origin, and the number of times dogs were domesticated, open to dispute. Using whole genome sequences from a total of 58 canids (12 gray wolves, 27 primitive dogs from Asia and Africa, and a collection of 19 diverse breeds from across the world), we find that dogs from southern East Asia have significantly higher genetic diversity compared to other populations, and are the most basal group relating to gray wolves, indicating an ancient origin of domestic dogs in southern East Asia 33 000 years ago. Around 15 000 years ago, a subset of ancestral dogs started migrating to the Middle East, Africa and Europe, arriving in Europe at about 10 000 years ago. One of the out of Asia lineages also migrated back to the east, creating a series of admixed populations with the endemic Asian lineages in northern China before migrating to the New World. For the first time, our study unravels an extraordinary journey that the domestic dog has traveled on earth.  相似文献   

10.
North Africa has a great diversity of indigenous sheep breeds whose origin is linked to its environmental characteristics and to certain historical events that took place in the region. To date, few genome‐wide studies have been conducted to investigate the population structure of North African indigenous sheep. The objective of the present study was to provide a detailed assessment of the genetic structure and admixture patterns of six Maghreb sheep populations using the Illumina 50K Ovine BeadChip and comparisons with 22 global populations of sheep and mouflon. Regardless of the method of analysis used, patterns of multiple hybridization events were observed within all North African populations, leading to a heterogeneous genetic architecture that varies according to the breed. The Barbarine population showed the lowest genetic heterogeneity and major southwest Asian ancestry, providing additional support to the Asian origin of the North African fat‐tailed sheep. All other breeds presented substantial Merino introgression ranging from 15% for D'man to 31% for Black Thibar. We highlighted several signals of ancestral introgression between North African and southern European sheep. In addition, we identified two opposite gradients of ancestry, southwest Asian and central European, occurring between North Africa and central Europe. Our results provide further evidence of the weak global population structure of sheep resulting from high levels of gene flow among breeds occurring worldwide. At the regional level, signs of recent admixture among North African populations, resulting in a change of the original genomic architecture of minority breeds, were also detected.  相似文献   

11.
Humans have shaped the population history of the horse ever since domestication about 5500 years ago. Comparative analyses of the Y chromosome can illuminate the paternal origin of modern horse breeds. This may also reveal different breeding strategies that led to the formation of extant breeds. Recently, a horse Y‐chromosomal phylogeny of modern horses based on 1.46 Mb of the male‐specific Y (MSY) was generated. We extended this dataset with 52 samples from five European, two American and seven Asian breeds. As in the previous study, almost all modern European horses fall into a crown group, connected via a few autochthonous Northern European lineages to the outgroup, the Przewalski's Horse. In total, we now distinguish 42 MSY haplotypes determined by 158 variants within domestic horses. Asian horses show much higher diversity than previously found in European breeds. The Asian breeds also introduce a deep split to the phylogeny, preliminarily dated to 5527 ± 872 years. We conclude that the deep splitting Asian Y haplotypes are remnants of a far more diverse ancient horse population, whose haplotypes were lost in other lineages.  相似文献   

12.
Various cattle populations in the Americas (known as criollo breeds) have an origin in some of the first livestock introduced to the continent early in the colonial period (16th and 17th centuries). These cattle constitute a potentially important genetic reserve as they are well adapted to local environments and show considerable variation in phenotype. To examine the genetic ancestry and diversity of Colombian criollo we obtained mitochondrial DNA control region sequence information for 110 individuals from seven breeds. Old World haplogroup T3 is the most commonly observed CR lineage in criollo (0.65), in agreement with a mostly European ancestry for these cattle. However, criollo also shows considerable frequencies of haplogroups T2 (0.9) and T1 (0.26), with T1 lineages in criollo being more diverse than those reported for West Africa. The distribution and diversity of Old World lineages suggest some North African ancestry for criollo, probably as a result of the Arab occupation of Iberia prior to the European migration to the New World. The mtDNA diversity of criollo is higher than that reported for European and African cattle and is consistent with a differentiated ancestry for some criollo breeds.  相似文献   

13.
The first cases of early-onset progressive polyneuropathy appeared in the Alaskan Malamute population in Norway in the late 1970s. Affected dogs were of both sexes and were ambulatory paraparetic, progressing to non-ambulatory tetraparesis. On neurologic examination, affected dogs displayed predominantly laryngeal paresis, decreased postural reactions, decreased spinal reflexes and muscle atrophy. The disease was considered eradicated through breeding programmes but recently new cases have occurred in the Nordic countries and the USA. The N-myc downstream-regulated gene (NDRG1) is implicated in neuropathies with comparable symptoms or clinical signs both in humans and in Greyhound dogs. This gene was therefore considered a candidate gene for the polyneuropathy in Alaskan Malamutes. The coding sequence of the NDRG1 gene derived from one healthy and one affected Alaskan Malamute revealed a non-synonymous G>T mutation in exon 4 in the affected dog that causes a Gly98Val amino acid substitution. This substitution was categorized to be “probably damaging” to the protein function by PolyPhen2 (score: 1.000). Subsequently, 102 Alaskan Malamutes from the Nordic countries and the USA known to be either affected (n = 22), obligate carriers (n = 7) or healthy (n = 73) were genotyped for the SNP using TaqMan. All affected dogs had the T/T genotype, the obligate carriers had the G/T genotype and the healthy dogs had the G/G genotype except for 13 who had the G/T genotype. A protein alignment showed that residue 98 is conserved in mammals and also that the entire NDRG1 protein is highly conserved (94.7%) in mammals. We conclude that the G>T substitution is most likely the mutation that causes polyneuropathy in Alaskan Malamutes. Our characterization of a novel candidate causative mutation for polyneuropathy offers a new canine model that can provide further insight into pathobiology and therapy of human polyneuropathy. Furthermore, selection against this mutation can now be used to eliminate the disease in Alaskan Malamutes.  相似文献   

14.
We examined 395 mtDNA control-region sequences from Greenlandic Inuit and Canadian Kitikmeot Inuit with the aim of shedding light on the migration history that underlies the present geographic patterns of genetic variation at this locus in the Arctic. In line with previous studies, we found that Inuit populations carry only sequences belonging to haplotype clusters A2 and D3. However, a comparison of Arctic populations from Siberia, Canada, and Greenland revealed considerable differences in the frequencies of these haplotypes. Moreover, large sample sizes and regional information about birthplaces of maternal grandmothers permitted the detection of notable differences in the distribution of haplotypes among subpopulations within Greenland. Our results cast doubt on the prevailing hypothesis that contemporary Inuit trace their all of their ancestry to so-called Thule groups that expanded from Alaska about 800-1,000 years ago. In particular, discrepancies in mutational divergence between the Inuit populations and their putative source mtDNA pool in Siberia/Alaska for the two predominant haplotype clusters, A2a and A2b, are more consistent with the possibility that expanding Thule groups encountered and interbred with existing Dorset populations in Canada and Greenland.  相似文献   

15.
The Eskimo-Aleut language phylum is distributed from coastal Siberia across Alaska and Canada to Greenland and is well distinguished from the neighboring Na Dene languages. Genetically, however, the distinction between Na Dene and Eskimo-Aleut speakers is less clear. In order to improve the genetic characterization of Eskimos in general and Greenlanders in particular, we have sequenced hypervariable segment I (HVS-I) of the mitochondrial DNA (mtDNA) control region and typed relevant RFLP sites in the mtDNA of 82 Eskimos from Greenland. A comparison of our data with published sequences demonstrates major mtDNA types shared between Na Dene and Eskimo, indicating a common Beringian history within the Holocene. We further confirm the presence of an Eskimo-specific mtDNA subgroup characterized by nucleotide position 16265G within mtDNA group A2. This subgroup is found in all Eskimo groups analyzed so far and is estimated to have originated <3,000 years ago. A founder analysis of all Eskimo and Chukchi A2 types indicates that the Siberian and Greenland ancestral mtDNA pools separated around the time when the Neo-Eskimo culture emerged. The Greenland mtDNA types are a subset of the Alaskan mtDNA variation: they lack the groups D2 and D3 found in Siberia and Alaska and are exclusively A2 but at the same time lack the A2 root type. The data are in agreement with the view that the present Greenland Eskimos essentially descend from Alaskan Neo-Eskimos. European mtDNA types are absent in our Eskimo sample.  相似文献   

16.
An analysis of eight microsatellite loci in 213 animals was performed to define the genetic structure and variability of 11 East Asian native dog populations. Allele diversity, observed heterozygosities, expected heterozygosities, F-statistics, G(ST) estimates, number of migrants per generation (Nm), and Nei's DA distance were calculated. Expected mean heterozygosities of Asian native dogs varied within a range of 0.310-0.718 with a mean value of 0.580. In a sample of 11 Asian dogs, the highest genetic diversity was exhibited in the Korean native dogs and the lowest in the Shiba, the Japanese native dog. All populations except the Kishu and Akita showed statistically significant deviation from Hardy-Weinberg equilibrium at more than one locus. After corrections for multiple significance tests, deviations over all loci were statistically significant in 7 of 11 dog populations, meaning that Asian dogs are genetically subdivided (global F(ST) = 0.154). Despite the locus-specific deviations, statistically significant departures from the Hardy-Weinberg equilibrium reflect deviations in the direction of heterozygote deficit, the global F(IS) being 0.072. In the neighbor-joining and unweighted pair group method with arithmetic mean (UPGMA) dendrograms based on Nei's DA distance, the Korean native breeds (the Sapsaree and the Jindo) were grouped together, then with the Eskimo dog. The two Japanese native dogs (the Hokkaido and the Akita) also clustered together, with moderate bootstrap support. In spite of some deviation, the three-dimensional scattergram based on principal components supported the conclusions suggested by the dendrograms based on Nei's DA distance. From these two analyses, the Korean native dogs formed the closest groups and then showed a close relationship to the Eskimo dogs, reflecting the fact that the Korean native dogs might be originated from dogs in the northern part of Far East Asia.  相似文献   

17.
Hybridization with free-ranging dogs isthought to threat the genetic integrity ofwolves in Europe, although available mtDNA dataevidenced only sporadic cases of crossbreeding.Here we report results of population assignmentand genetic admixture analyses in 107wild-living Italian wolves, 95 dogs including30 different breeds and feral dogs, andcaptive-reared wolves of unknown or hybridorigins, which were genotyped at 18microsatellites. Two Italian wolves showedunusually dark coats (``black wolves'), and oneshowed a spur in both hindlegs (``fifth fingerwolf'), suggesting hybridization. Italianwolves showed significant deficit ofheterozygotes, positive FIS values anddeviations from Hardy-Weinberg equilibrium.Genetic variability was significantlypartitioned between groups, suggesting thatwolves and dogs represent distinct gene pools.Multivariate ordination of individual genotypesand clustering of inter-individual geneticdistances split wolves and dogs into twodifferent clusters congruent with the priorphenotypic classification, but hybrids andwolves of unknown origin were not identifiedfrom genetic information alone. By contrast, aBayesian admixture analysis assigned all theItalian wolves and dogs to two differentclusters, independent of any prior phenotypicinformation, and simultaneously detected theadmixed gene composition of the hybrids, whichwere assigned to more than one cluster.Captive-reared wolves of unknown origin wereprevalently assigned to the Italian wolfpopulation. Admixture analyses showed that one``black wolf' had mixed ancestry in the dog genepool and could be a hybrid, while the other twowolves with unusual phenotypes were assigned tothe Italian wolf population.  相似文献   

18.
Because of past limitations in samples and genotyping technologies, important questions about the history of the present-day Greenlandic population remain unanswered. In an effort to answer these questions and in general investigate the genetic history of the Greenlandic population, we analyzed ∼200,000 SNPs from more than 10% of the adult Greenlandic population (n = 4,674). We found that recent gene flow from Europe has had a substantial impact on the population: more than 80% of the Greenlanders have some European ancestry (on average ∼25% of their genome). However, we also found that the amount of recent European gene flow varies across Greenland and is far smaller in the more historically isolated areas in the north and east and in the small villages in the south. Furthermore, we found that there is substantial population structure in the Inuit genetic component of the Greenlanders and that individuals from the east, west, and north can be distinguished from each other. Moreover, the genetic differences in the Inuit ancestry are consistent with a single colonization wave of the island from north to west to south to east. Although it has been speculated that there has been historical admixture between the Norse Vikings who lived in Greenland for a limited period ∼600–1,000 years ago and the Inuit, we found no evidence supporting this hypothesis. Similarly, we found no evidence supporting a previously hypothesized admixture event between the Inuit in East Greenland and the Dorset people, who lived in Greenland before the Inuit.  相似文献   

19.
As a result of strong artificial selection, the domesticated dog has arguably become one of the most morphologically diverse vertebrate species, which is mirrored in the classification of around 400 different breeds. To test the influence of breeding history on the genetic structure and variability of today's dog breeds, we investigated 12 dog breeds using a set of 19 microsatellite markers from a total of 597 individuals with about 50 individuals analysed per breed. High genetic diversity was noted over all breeds, with the ancient Asian breeds (Akita, Chow Chow, Shar Pei) exhibiting the highest variability, as was indicated chiefly by an extraordinarily high number of rare and private alleles. Using a Bayesian clustering method, we detected significant genetic stratification within the closely related Schnauzer breeds. The individuals of these three recently differentiated breeds (Miniature, Standard and Giant Schnauzer) could not be assigned to a single cluster each. This hidden genetic structure was probably caused by assortative mating owing to breeders' preferences regarding coat colour types and the underlying practice of breeding in separate lineages. Such processes of strong artificial disruptive selection for different morphological traits in isolated and relatively small lineages can result in the rapid creation of new dog types and potentially new breeds and represent a unique opportunity to study the evolution of genetic and morphological differences in recently diverged populations.  相似文献   

20.
We review the underlying principles and tools used in genomic studies of domestic dogs aimed at understanding the genetic changes that have occurred during domestication. We show that there are two principle modes of evolution within dogs. One primary mode that accounts for much of the remarkable diversity of dog breeds is the fixation of discrete mutations of large effect in individual lineages that are then crossed to various breed groupings. This transfer of mutations across the dog evolutionary tree leads to the appearance of high phenotypic diversity that in actuality reflects a small number of major genes. A second mechanism causing diversification involves the selective breeding of dogs within distinct phenotypic or functional groups, which enhances specific group attributes such as heading or tracking. Such progressive selection leads to a distinct genetic structure in evolutionary trees such that functional and phenotypic groups cluster genetically. We trace the origin of the nuclear genome in dogs based on haplotype-sharing analyses between dogs and gray wolves and show that contrary to previous mtDNA analyses, the nuclear genome of dogs derives primarily from Middle Eastern or European wolves, a result more consistent with the archeological record. Sequencing analysis of the IGF1 gene, which has been the target of size selection in small breeds, further supports this conclusion. Finally, we discuss how a black coat color mutation that evolved in dogs has transformed North American gray wolf populations, providing a first example of a mutation that appeared under domestication and selectively swept through a wild relative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号